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Abstract

Coreference resolution and semantic role labeling are NLP
tasks that capture different aspects of semantics, indicating
respectively, which expressions refer to the same entity, and
what semantic roles expressions serve in the sentence. How-
ever, they are often closely interdependent, and both generally
necessitate natural language understanding. Do they form a
coherent abstract representation of documents? We present a
neural network architecture for joint coreference resolution
and semantic role labeling for English, and train graph neural
networks to model the coherence of the combined shallow
semantic graph. Using the resulting coherence score as a re-
ward for our joint semantic analyzer, we use reinforcement
learning to encourage global coherence over the document and
between semantic annotations. This leads to improvements on
both tasks in multiple datasets from different domains, and
across a range of encoders of different expressivity, calling,
we believe, for a more holistic approach to semantics in NLP.

Introduction
Coreference resolution and semantic role labeling (SRL)
contribute in complimentary ways to forming coherent dis-
course representations. SRL establishes predicate-argument
relations between expressions, and coreference resolution
determines what entities these expressions refer to. While
often treated separately (He et al. 2017, 2018; Lee et al. 2017;
Lee, He, and Zettlemoyer 2018; Joshi et al. 2019), some
frameworks consider coreference and semantic roles part of
a more holistic meaning representation (Shibata and Kuro-
hashi 2018). For example, the Groningen Meaning Bank (Bos
et al. 2017) annotates documents with discourse represen-
tation structures (Kamp and Reyle 2013), which subsume
both levels of analysis; the same holds for other meaning
representation frameworks, such as UCCA (Abend and Rap-
poport 2013; Prange, Schneider, and Abend 2019) and AMR
(Banarescu et al. 2013; O’Gorman et al. 2018). However,
these frameworks do not offer the simplicity of SRL and
coreference annotation, and perhaps consequently require
more effort to annotate, and do not have the same amounts
of training data (Abend and Rappoport 2017). Furthermore,
comprehensive meaning representation parsing approaches
(Liu, Cohen, and Lapata 2018; Hershcovich, Abend, and
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Figure 1: Example coreference and semantic role annotation
for a two-sentence document. Top: the original annotation
shown as dependencies. Bottom: shallow semantic graph
(SSG), where sub-graph heads are connected (with dotted
lines) to a dummy root node.

Rappoport 2017; Cai and Lam 2020) tend to be more com-
plex than the sequence tagging or span-based models often
used for coreference resolution and SRL, often referred to as
shallow semantic parsing.

In this paper, we investigate a “minimal” approach to
discourse-level semantic parsing, combining coreference and
semantic roles in shallow semantic graphs (SSGs) that can
be seen as a simple, yet rich, discourse-level meaning rep-
resentations. Consider the two sentences shown in Figure 1,
augmented with a (partial) annotation of coreference and
semantic roles. A coreference resolver is expected to resolve
Nadine as an antecedent of she, and tea as an antecedent of
it, since these mentions refer to the same entities. A semantic
role labeler is expected to detect that these entities are argu-
ments of the predicates like and drink. The overall semantic
analysis corresponds to a coherent and common situation,
where someone likes something and consumes it—a very
plausible interpretation. This paper presents a model that
scores the plausibility or coherence of an interpretation based
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on merged SRL and coreference graphs, or SSGs. While Fig-
ure 1 is a simple example that existing SRL and coreference
systems will likely handle well, we explore whether such
systems in general benefit from feedback from a model that
rewards the coherence of their output.

Contributions We jointly model coreference resolution
and SRL to form discourse-level semantic structures, or SSGs
(§). We explicitly model their coherence, presenting a re-
inforcement learning architecture for semi-supervised fine-
tuning of coreference resolvers and semantic role labelers
with coherence rewards on unlabeled data (§), improving
both coreference resolution and SRL. We present experi-
ments across six encoders of different complexities, six dif-
ferent coreference resolution datasets, and four different SRL
datasets (§), showing improvements across all encoders for
coreference resolution, and on 4/6 for SRL, for single-task
setups; and similar improvements in multi-task setups, where
encoder parameters are shared across the two tasks (§). Fi-
nally, we analyze the results (§), showing that our fine-tuning
setup is particularly beneficial for smaller documents while
being on-par with strong baselines on larger documents and
that the majority of the remaining coreference errors occur
when the antecedent is a pronoun.

Joint Coreference Resolution and SRL
We build baseline single-task and multi-task supervised mod-
els for coreference resolution and SRL. The overall model
architecture is illustrated in Figure 2 (bottom half; till the
coreference clusters and SRL tags are generated). In the multi-
task setup only the contextualizing encoder is shared. In the
single-task setup no parameters are shared.

Coreference Resolver
The coreference model is based on the architecture presented
in Lee et al. (2017). Each token’s embedding is obtained
using a contextualizing encoder. Using a span encoder, the
token embeddings are combined into span representations
s(i, j), where i and j are the start and end indices in the doc-
ument. Each span is represented as the concatenation of: (i)
its first and last token embeddings, and (ii) an attention-based
aggregation of embeddings of all tokens in the span. These
span representations are pruned with a mention scorer, which
outputs the probability of s(i, j) being a coreferent mention.
Next, the mention representations are paired together and
scored again with a pair scorer, which predicts the proba-
bility of the mentions referring to each other. Coreferring
mentions are collected to form clusters. This architecture is
combined with pre-trained language models in Lee, He, and
Zettlemoyer (2018) and Joshi et al. (2019) to get state-of-the-
art results.

Semantic Role Labeler
The SRL tagger is based on the architecture presented in He
et al. (2017). The model uses the contextualizing encoder to
embed tokens which are concatenated with a binary indicator
to identify whether the token is a verb or not. These token
representations are presented to a argument classifier for BIO
sequence tagging. The current state-of-the-art (He et al. 2018)
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Figure 2: Joint coreference resolution and SRL (bottom half)
with a coherence objective (top half). The contextualizing
encoder is shared in the multi-task setup, and separate in the
single-task one. Predictions from the coreference and SRL
models are combined to a document-level SSG, which is
scored by coherence classifiers to reward the models.

uses an architecture similar to that of Lee et al. (2017), where
it jointly predicts both arguments and predicates.

Contextualizing Encoder
In all setups, we experiment with (i) an LSTM + CNN en-
coder, and (ii) five BERT (Devlin et al. 2019) encoders of
different sizes. In the LSTM + CNN encoder, a bi-LSTM
contextualizes words embedded with GloVe (Pennington,
Socher, and Manning 2014) and a CNN encodes individual
characters. The final representation is the concatenation of
the two. For the BERT encoders, we experiment with dif-
ferent encoder sizes as shown in Table 2, using each token’s
wordpiece embeddings. Encoder hyperparameters are given
in §.

Semi-Supervised Fine-Tuning
In the semi-supervised stage of training, classifiers trained
on SSGs created from labeled data (Figure 1) are used to
fine-tune the supervised models on unlabeled data by rein-
forcement learning. For each unlabeled document, we use the
predicted annotations of the supervised models to build an
SSG consisting of SRL predicates and arguments, with links
between coreferent mentions. Edge labels are used to distin-
guish between SRL and coreference edges. These graphs are
scored by graph classifiers (§), trained using graph perturba-
tions (§) to model semantic coherence. The confidence value
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is used as a reward to fine-tune the supervised models using
policy gradient (§).

Coherence Classifiers
We use a graph convolution network (GCN; Kipf and
Welling 2017) to construct continuous representations of
the SSGs, where a node representation is composed via a
learnt weighted sum of neighboring nodes. Since nodes corre-
spond to text spans, to initialize their representations, we use
the supervised model’s span encoder. To get the final graph
encoding, all the node representations are averaged and com-
pressed using the logistic function as shown in Equation 1.

graphenc = σ

(
1

N

N∑
i=1

nodeienc

)
(1)

The GCN parameters are pre-trained using deep graph in-
fomax (DGI; Veličković et al. 2018), which relies on graph
perturbations to learn a task-independent representation. We
contrastively train the GCN encoder on gold and perturbed
graphs, which are generated by randomly perturbing the gold
graphs (§). We then use the same perturbations to train a lo-
gistic regression classifier, with the GCN outputs as features,
to discriminate gold graphs from perturbed graphs. As shown
in §, the trained classifiers are almost perfectly accurate on
an unseen development set.

The process for training the coherence classifiers is shown
in Algorithm 1. First an SSG g ∈ G is built for each labeled
document. Then for each type of perturbation p ∈ P , we
train one classifier as follows: (i) perturb g to get gp using
perturbation p. We use a decay factor d ∈ {0, 1} to decide the
probability of perturbing a sentence in the document. We start
with d = 0.8 and decay it till d = 0.1, (ii) once we have a list
of perturbed graphs Gp, we train the GCN using DGI, which
uses a contrastive loss to learn graph representations such
that each pair (g, gp) is as different to each other as possible,
(iii) we use the GCN to get the final representations of graphs
in G and Gp and create a training dataset consisting of the
following (graph, label) pairs: {(g, 1) : g ∈ G} ∪ {(gp, 0) :
gp ∈ Gp}, and (iv) we train a logistic regression classifier.

Graph Perturbations
To train the GCN with DGI, we perturb the gold graphs to
reflect the statistics of errors made by the supervised models
we want to fine-tune. In general, perturbations are sampled
from the following operations: (i) randomly removing edges,
(ii) randomly adding edges between existing nodes with a
random label, or (iii) randomly adding nodes with a span
that is a constituent in the sentence, and a random edge to
another existing node. We arbitrarily choose to sample SRL
and coreference perturbations with a 3-to-1 ratio.

For SRL perturbations, we rely on the error analysis made
by He et al. (2017), whose SRL model is the basis for ours:
29.3% of errors correspond to incorrect argument labels;
4.5% to moved unique arguments; 10.6% to split arguments;
14.7% to merged arguments; 18% to incorrect boundaries;
7.4% to superfluous arguments; and 11% to missed argu-
ments. Consequently, we sample perturbations proportionally
to the corresponding error’s frequency. We further use He

Algorithm 1 Training Coherence Classifiers

Require: G: List of SSGs
Require: P: List of perturbations to perform
Require: d: Decay factor

Initialize clfs = ∅
for p in P do

for epoch = 1, . . . , N do
Initialize Gp = ∅
for g in G do

gp = p (g, d)
Gp.add (gp)

end for
encoder = DGI (G,Gp)
d = decay (d)

end for
data+ = (encoder (G), 1)
data− = (encoder (Gp), 0)
clfp = logistic (data+, data−)
clfs.add (clfp)

end for
return clfs

et al. (2017)’s observed confusion matrix of predicted and
gold argument labels, sampling replacement labels accord-
ingly. For coreference perturbations, we add a random edge
between existing nodes or remove an edge, with uniform
probability.

We train one classifier to identify each type of perturbation,
resulting in nine different classifiers (seven for SRL and two
for coreference; an example for one of each is illustrated in
Figure 3). The final confidence for a graph is the average of
the individual classifier confidence scores.

Model Fine-Tuning

Finally, we use the learned classifiers to fine-tune the under-
lying coreference resolver and semantic role labeler; using
plain text from summary paragraphs of Wikipedia articles,
we apply the supervised models to sample an SSG. Using the
coherence classifiers’ confidence score as a reward, we train
the models with policy gradient.

During policy gradient, we consider the selection of SSG
edges as actions. More concretely, for coreference resolution,
picking the antecedent to each mention is considered an ac-
tion. Therefore from Figure 1, assuming the model found
four mentions (‘Nadine’, ‘tea’, ‘She’, and ‘it’), it takes four
actions (connecting ‘Nadine→ φ’, ‘tea→ φ’, ‘she→Nadine’,
‘it→tea’).1 For SRL, assigning a label to a token is considered
as an action. Therefore the model has to perform nine actions
(one for each token) to label Figure 1.

In this work, we assume that all actions are equally good
and reward them uniformly. Assigning rewards to individual
actions would probably yield better results but is non-trivial
and left for future exploration.

1φ indicates no antecedent
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Figure 3: Examples for graph perturbations, starting from the SSG in Figure 1 (center). An ‘SRL change label’ perturbation
is applied to generate a graph (left), where ARG1 is changed to ARG2. A ‘Coref drop antecedent’ perturbation is applied to
generate a graph (right) where a COREF edge is deleted.

Experiments
In this section, we briefly describe the datasets used to train
and evaluate our models before moving on to the experimen-
tal setup. We then provide implementation details for each
stage of the training process and finally present the results of
our experiments.

Datasets
For supervised training, we use data from the CoNLL-2012
shared task (Pradhan et al. 2012), which contains data from
OntoNotes 5.02 with annotations for both coreference resolu-
tion and semantic role labeling.

As additional out-of-domain (OOD) development and test
data for coreference resolution, we use (i) PreCo (Chen et al.
2018), which contains web-crawled documents and data from
the RACE dataset (Lai et al. 2017); (ii) Phrase Detectives
(Poesio et al. 2013), which contains two evaluation sets, one
sampled from Wikipedia and the other from the Gutenberg
project; (iii) WikiCoref (Ghaddar and Langlais 2016), which
contains long form documents from the English Wikipedia;
and (iv) WinoBias (Zhao et al. 2018), which is focused on
gender bias with Winograd-schema style sentences, authored
manually.

For SRL, we additionally use (i) the CoNLL-2005
shared task data (Carreras and Màrquez 2005), which con-
tains two evaluation sets: the in-domain WSJ set and the
OOD Brown set; and (ii) English Web Treebank (Silveira
et al. 2014)3, which contains weblogs, newsgroups, email,
question-answers and review text.

Experimental Setup
We first train the coreference and SRL models (§) using super-
vised learning, and the coherence classifiers on gold graphs
and their perturbations. Both are trained on the CoNLL-2012
training set. We then fine-tune the models by semi-supervised
learning (§), with the summary paragraphs of 10,000 ran-
domly sampled English Wikipedia articles.4 We test our mod-

2https://catalog.ldc.upenn.edu/LDC2013T19
3https://catalog.ldc.upenn.edu/LDC2017T15
4https://www.wikipedia.org, dump from March 4, 2019.

Hyperparameters
Lee et
al.
(2018)

Joshi
et al.
(2019)

Ours

max. span width 30 30 10
cxt. enc. (layers/dims) 3/1024 24/1024 12/768*
span enc. (layers/dims) 3/400 - 1/400
pruner (layers/dims) 2/150 1/1000 1/150
top span ratio 0.4 0.4 0.3
max antecedents 250 50 100
course to fine inference True True False

Table 1: Comparison of hyperparameters between state-of-
the-art and our coreference models. ∗This value is for BERT-
Base. See Table 2 for other sizes.

els across six domains for coreference resolution, and four
domains for SRL, using in-domain evaluation data.

Implementation Details
Since the goal of this work is not to surpass the state of the art,
but to demonstrate that discourse-level coherence can be used
to improve shallow semantic analysis, and due to memory
and compute constraints, we use smaller versions of the best
performing architectures in the literature as baselines.

Coreference Model
We use the same architecture that state-of-the-art coreference
systems like Lee et al. (2017); Lee, He, and Zettlemoyer
(2018) and Joshi et al. (2019) use, but with lesser capacity.
A comparison of the important hyperparameters that vary
between our model and the current state-of-the-art is shown
in Table 1.

SRL Model
He et al. (2017) use 8 LSTM layers with highway connections
and recurrent dropout. We replace this encoder with each of
our contextualizing encoder configurations. Following He
et al. (2017), we also use constrained decoding to produce
only valid BIO tags as output.
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Encoder # layers dim
LSTM + CNN 1 500
BERT-Tiny 2 128
BERT-Mini 4 256
BERT-Small 4 512
BERT-Medium 8 512
BERT-Base 12 768

Table 2: Number of layers and the output dimension of our
contextualizing encoders.

Contextualizing Encoders
For the LSTM + CNN encoder, 300-dimensional GloVe em-
beddings (Pennington, Socher, and Manning 2014) are fed
into a bi-LSTM with a hidden size of 200, to get a 400-
dimensional word representation. We concatenate this with
100-dimensional character embeddings obtained from a CNN
character encoder with a filter size of 5. The other five en-
coders are based on the standard BERT recipe (Turc et al.
2019), and their sizes can be seen in Table 2.

Supervised Training
For training both single-task and multi-task models, we use
the Adam optimizer (Kingma and Ba 2015) with a weight
decay of 0.01 and initial learning rate of 10−3. For BERT
parameters, the learning rate is lowered to 10−5. We reduce
the learning rates by a factor of 2 if the evaluation on the
development sets does not improve after every other epoch.
The training is stopped either after 100 epochs, or when the
minimum learning rate of 10−7 is reached. In the multi-task
setup, we sample a batch from each task with a frequency
proportional to the dataset size of that task. All experiments
are run on a single GPU with 16GB memory. The hyperpa-
rameters were manually selected to accommodate for training
time and resource limitation, and were not tuned based on
model evaluation.

Coherence Classifiers
The GCN encoder used to encode the SSGs has 512 hidden
channels and is trained with Adam for 10 epochs. We use a
20-dimensional embedding to represent the type of node and
a binary indicator to represent the edge type.

Finetuning
The supervised models are fine-tuned for 10 epochs with
the same optimizer configuration. Only the learning rate is
changed to 3 · 10−4. Hill climbing is used during policy gra-
dient, i.e., if fine-tuning on a batch of Wikipedia documents
does not yield an improvement, the parameters are reset to
their previous best state.

In the multi-task setup, the coreference resolution and SRL
sub-models are fine-tuned separately. This is because we do
not want to sample actions for both tasks as it makes the
constructed SSG more noisy. For constructing the SSGs in
the single-task setup, we use the best performing SRL model
for fine-tuning the coreference resolution model, and the best

Perturbation type Accuracy (%)

SRL

change label 98.98
move argument 99.88
split spans 99.72
merge spans 99.29
change boundary 98.96
add argument 99.22
drop argument 100.00

Coref add antecedent 99.10
drop antecedent 100.00

Table 3: Graph classifier development accuracy.

performing coreference resolution model for fine-tuning the
SRL model.

Results
Coreference Resolution and SRL
The mean F1 over MUC, CEAFφ4

, and B3 scores averaged
across the six test sets for coreference resolution and four
test sets for SRL (including in-domain and out-of-domain),
for each of the six encoder configurations, is presented in
Table 4. The individual results for each dataset is presented
in Tables 5 and 7 for single-task models, and in Tables 6 and
8 for multi-task models respectively.

We see substantial improvements from coherence fine-
tuning across the board for all coreference tasks. Results for
single-task SRL improves in all settings except for BERT-
mini and BERT-medium encoders. In the multi-task setting
for SRL, we see consistent improvements with two excep-
tions: the results for LSTM + CNN and BERT-base. Coref-
erence resolution generally improves more than for SRL.

Coherence Classifiers
The accuracy of the nine coherence classifiers (§) on the
CoNLL-2012 development set is shown in Table 3, show-
ing that the classifiers can almost perfectly detect perturbed
graphs, and explaining their effectiveness at providing a re-
ward signal to the models. While it could be argued that this
indicates that the perturbations are too easy to detect, observ-
ing the perturbed graphs (exemplified in Figure 3) leads to
the impression that they require sensitivity to distinctions
that are important for correct coreference resolution, SRL
and the coherence between them. Indeed, the rewards lead to
improvements in each of the tasks.

Error Analysis
By analysing the results of the fine-tuned models on all
datasets (Table 4), we make the following observations:5

Document length Fine-tuning leads to larger improve-
ments on smaller documents (see Figure 4). This is likely
because the unlabeled data we use for fine-tuning consists

5Unless mentioned otherwise, all analysis is carried out on the
single-task BERT-Base model.
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Single-Task Multi-Task
Coreference SRL Coreference SRLEncoder

Baseline Ours Baseline Ours Baseline Ours Baseline Ours
LSTM + CNN 49.01 49.40 67.63 67.74 48.65 49.60 67.28 67.05

BERT-Tiny 49.70 50.95 56.87 57.08 45.65 51.17 56.65 56.85
BERT-Mini 52.61 52.88 70.51 70.48 50.14 53.02 71.10 71.13

BERT-Small 52.76 53.90 74.26 74.48 51.26 53.73 74.72 74.77
BERT-Medium 55.67 56.19 75.62 75.57 51.48 55.52 77.89 78.01

BERT-Base 57.78 58.18 79.46 79.52 56.40 57.55 80.25 80.19

Table 4: COREFERENCE RESOLUTION and SEMANTIC ROLE LABELING results of single-task and multi-task models. ‘Baseline’
and ‘Ours’ represent the the supervised baseline and coherence fine-tuned models respectively. The numbers are the mean of
MUC, B3 and CEAFφ4F1 scores averaged over six (four) coreference (SRL) datasets.

of short paragraphs. While using longer documents for fine-
tuning was not possible due to memory constraints, we expect
that this will increase the model’s sensitivity to long-distance
inter-dependencies, and further improve its performance on
these documents.

Coreference resolution vs. SRL In general, SRL sees
smaller improvements from fine-tuning with policy gradi-
ent than coreference resolvers, probably because it is harder
to assign credit to specific model decisions (Langford and
Zadrozny 2005). Semantic role labeling of a paragraph typi-
cally requires a much longer sequence of actions than deter-
mining coreference, leading to limited benefit from reinforce-
ment learning. Similar results have been observed in machine
translation (Choshen et al. 2020).

Precision vs. recall Precision often increases after fine-
tuning whereas recall decreases. Similar effects have been
reported for knowledge-base grounding of coreference re-
solvers (Aralikatte et al. 2019).

Encoder sizes From the results, we also see that our fine-
tuning approach is robust to encoder sizes with improvements
across the board. It is particularly interesting to see that the
multi-task BERT-Tiny coreference models come close or
even surpass the bigger BERT-Base models on datasets like
PreCo and WinoBias, which contain short documents (see
Table 6).

In both single-task and multi-task setups, fine-tuning helps
the smaller coreference models more than the larger ones,
which are already more accurate. This trend is expected as
the larger models tend to be over-parameterized.

Domain adaptation We also perform an error analysis to
identify the domains which are hard for our coreference mod-
els (see Figure 5). We find that our coherence fine-tuned
(CO) model always performs better than or on par with the
supervised baseline (SU) model, expect in the case of Phrase
Detectives - Gutenburg (PD-G). We postulate that the in-
crease in PD-G errors can be attributed to the length of the
documents in the dataset.6

6The average document length of PD-G is 1507.2 tokens, which
is the highest among all datasets.

Figure 4: Percentage of correct predictions of our BERT-
Base coreference model across all datasets plotted against
document lengths.

Part-of-speech As seen in Figure 6, across all domains,
most errors from the coherence fine-tuned system occur when
the antecedent is a pronoun, except for WikiCoref, where the
most errors occur when the antecedent was a multi-word
expression. This trend is seen in the supervised baseline
models as well.

Apart from being the most frequent among mentions, two
possible reasons why pronouns could be predicted incorrectly
most often are: (i) as the distance in text increases between
the original antecedent and subsequent pronouns, it becomes
more difficult to resolve, and (ii) as a text becomes more
complex, with multiple possible antecedents to choose from,
linking becomes harder. Given the increased performance of
our coreference resolver from the inclusion of a coherence
classifier, we hypothesize that the second problem would be
easier for our system to overcome, while the first could still
persist.

Span length Finally, we analyse the length of the mentions
linked by our models. In general, both supervised baseline
and coherence fine-tuned models perform similarly for very
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Figure 5: Percentage of errors over the total amount of predic-
tions that our coreference system makes across each domain
of the evaluation data.

short (0–3 tokens) and very long (7+ tokens) mentions. How-
ever, we see an improvement in linking accuracy of the coher-
ence fine-tuned model when the mention length is between
3–7.

Related Work
Augmented Coreference Resolution
Previous work has augmented Coreference resolvers with
syntax information (Wiseman, Rush, and Shieber 2016; Clark
and Manning 2016a,b), external world knowledge (Rahman
and Ng 2011; Emami et al. 2018; Aralikatte et al. 2019) and
a variety of other linguistic features (Ng 2007; Haghighi
and Klein 2009; Zhang, Song, and Song 2019). Similarly,
Ponzetto and Strube (2006a,b) used features from SRL and
external sources for a non-neural coreference resolver.

Augmented Semantic Role Labelling
SRL systems have long utilised annotations from syntactic
formalisms as an essential component (Levin 1993; Hacioglu
2004; Pradhan et al. 2005; Sutton and McCallum 2005; Pun-
yakanok, Roth, and Yih 2008). More recently, Strubell et al.
(2018) showed that it was possible to exploit information
from syntactic parses for supervision of the self-attention
mechanism in a fully differentiable transformer-based SRL
model, surpassing the previous state-of-the-art. Xia et al.
(2019) follow up on this, presenting a detailed investigation
into various methods of incorporating syntactic knowledge
into neural SRL models, finding it consistently beneficial.

Document Level Consistency
Document-level modelling has been shown to be beneficial
for NLP tasks such as machine summarization (Chen et al.
2016), translation (Maruf and Haffari 2018; Voita et al. 2018;
Junczys-Dowmunt 2019), sentiment analysis (Bhatia, Ji, and
Eisenstein 2015), and question answering (Verberne et al.
2007; Sadek and Meziane 2016). For semantic analyzers,
document-level consistency is an important requirement. In-
deed, when training on complete documents, it also provides

Figure 6: Heatmap showing the POS-tag categories for the an-
tecedents that our fine-tuned coreference system incorrectly
classified. All domains except WikiCoref have the highest
amount of errors made when the antecedent is a pronoun.
Here, pronouns are PRP, PRP$; MWE is any multi-word ex-
pression, nouns are NN, NNS; proper-nouns are NNP, NNPS;
verbs are VB, VBD, VBG, VBN, VBP, VBZ; other tags
we observed were IN, JJR, JJ, RB, DT, CD, MD, POS; and
wh-words are WDT, WRB, WP, WP$.

a strong input signal. In previous work Tang, Qin, and Liu
(2015) presented a user product neural network and validated
the effects of users and products in terms of sentiment and
text-based consistency. Likewise, Du et al. (2019) used la-
bel consistency as an additional objective for a procedural
text comprehension model, showing state-of-the-art perfor-
mance. More recently, Liu and Lapata (2018) used discourse
structure and global consistency to guide a machine compre-
hension model.

Our approach is orthogonal and possibly complementary
to those described above: we investigate the consistency in
the overall information presented in complete documents for
span graphs composed of semantic role labeling and corefer-
ence resolution annotations.

Conclusion

We presented a joint coreference resolver and semantic role la-
beler along with a method of fine-tuning them with document-
level coherence rewards over unlabeled documents. We find
that this leads to considerable performance gains for corefer-
ence resolution across domains, and moderate improvements
for semantic role labeling. Results are presented across six
English coreference resolution datasets and four English se-
mantic role labeling datasets. Our code will be made publicly
available at https://github.com/rahular/joint-coref-srl

Future work will improve the efficiency of our training
procedure to allow fine-tuning on longer documents, and
investigate how the models can be further improved with
better credit assignment.
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OntoNotes PreCo PD-G PD-W WikiCoref WinoBias Average
Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours

LSTM + CNN 62.58 62.59 42.36 44.37 46.99 46.73 32.72 33.24 39.80 39.82 69.61 69.68 49.01 49.40
BERT-Tiny 61.01 61.35 42.26 45.41 48.44 48.93 37.65 37.76 45.16 45.03 63.68 67.23 49.70 50.95
BERT-Mini 64.20 64.15 44.82 46.07 49.95 50.31 40.22 40.26 49.70 49.44 66.76 67.07 52.61 52.88

BERT-Small 65.81 66.39 44.32 47.51 51.25 52.14 42.35 42.11 50.30 50.55 62.53 64.72 52.76 53.90
BERT-Medium 68.46 68.72 45.85 48.53 54.65 54.68 42.41 41.80 54.05 54.20 68.57 69.23 55.67 56.19

BERT-Base 71.48 71.53 46.89 48.61 56.87 57.27 44.79 44.16 55.02 55.32 71.62 72.17 57.78 58.18

Table 5: COREFERENCE RESOLUTION results of single-task models. ‘Baseline’ and ‘Ours’ indicate the average F1 scores of
MUC, B3 and CEAFφ4 for the supervised baseline and coherence fine-tuned models respectively. PD-(G/W) — Phrase Detectives
(Gutenberg/Wikipedia) splits.

OntoNotes PreCo PD-G PD-W WikiCoref WinoBias Average
Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours

LSTM + CNN 62.13 62.15 42.77 47.66 47.06 47.10 35.23 35.54 40.47 41.01 64.23 64.13 48.65 49.60
BERT Tiny 59.76 60.53 42.22 49.11 42.58 42.22 35.46 35.53 46.68 47.90 47.23 71.73 45.65 51.17
BERT Mini 63.43 63.80 44.18 46.40 47.11 47.56 38.95 39.09 51.32 51.89 55.88 69.45 50.14 53.02

BERT Small 65.40 65.75 44.91 46.82 51.29 51.42 41.33 40.72 51.72 52.24 52.89 65.30 51.26 53.73
BERT Medium 67.70 68.06 45.99 47.52 53.65 53.21 42.65 42.80 52.94 53.30 45.97 68.46 51.48 55.52

BERT Base 70.78 71.23 47.29 48.23 55.46 55.32 43.80 43.50 57.78 57.53 63.29 69.62 56.40 57.55

Table 6: COREFERENCE RESOLUTION results of multi-task models. ‘Baseline’ and ‘Ours’ indicate the average F1 scores of
MUC, B3 and CEAFφ4 for the supervised baseline and coherence fine-tuned models respectively. PD-(G/W) — Phrase Detectives
(Gutenberg/Wikipedia) splits.

OntoNotes Conll05-WSJ Conll05-Brown EWT Average
Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours

LSTM + CNN 72.14 72.14 67.33 67.72 63.41 63.26 67.64 67.84 67.63 67.74
BERT-Tiny 65.05 65.01 53.02 52.91 51.62 52.56 57.79 57.83 56.87 57.08
BERT-Mini 77.32 77.34 68.74 68.59 65.75 65.46 70.22 70.53 70.51 70.48

BERT-Small 81.21 81.21 73.11 73.45 69.80 70.42 72.91 72.85 74.26 74.48
BERT-Medium 82.30 82.32 75.24 75.21 70.21 69.96 74.73 74.79 75.62 75.57

BERT-Base 85.88 85.97 78.93 78.83 75.01 75.30 78.00 77.99 79.46 79.52

Table 7: SEMANTIC ROLE LABELING results of single-task models. ‘Baseline’ and ‘Ours’ indicate the average token F1 scores
of the supervised baseline and coherence fine-tuned models respectively.

OntoNotes Conll05-WSJ Conll05-Brown EWT Average
Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours

LSTM + CNN 72.92 72.58 68.02 67.82 60.98 60.52 67.21 67.27 67.28 67.05
BERT Tiny 63.91 64.03 52.16 52.19 52.60 52.97 57.94 58.23 56.65 56.85
BERT Mini 77.68 77.69 66.10 66.19 69.83 69.86 70.78 70.77 71.10 71.13

BERT Small 81.08 81.10 69.89 70.07 73.45 73.67 74.48 74.25 74.72 74.77
BERT Medium 84.45 84.47 73.05 73.35 77.52 77.68 76.55 76.55 77.89 78.01

BERT Base 86.41 86.40 76.59 76.47 79.34 79.30 78.67 78.58 80.25 80.19

Table 8: SEMANTIC ROLE LABELING results of multi-task models. ‘Baseline’ and ‘Ours’ indicate the average token F1 scores of
the supervised baseline and coherence fine-tuned models respectively.
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