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Abstract

UNMT tackles translation on monolingual corpora in two re-
quired languages. Since there is no explicitly cross-lingual
signal, pre-training and synthetic sentence pairs are signifi-
cant to the success of UNMT. In this work, we empirically
study the core training procedure of UNMT to analyze the
synthetic sentence pairs obtained from back-translation. We
introduce new losses to UNMT to regularize the synthetic
sentence pairs by training the UNMT objective and the reg-
ularization objective jointly. Our comprehensive experiments
support that our method can generally improve the perfor-
mance of currently successful models on three similar pairs
{French,German,Romanian} ↔ English and one dis-
similar pair Russian ↔ English with acceptably addi-
tional cost.

Introduction
UNMT (unsupervised neural machine translation) lever-
ages language modeling, e.g., denoising language modeling
(Hill, Cho, and Korhonen 2016; Dai and Le 2015; Lam-
ple et al. 2018a; Artetxe et al. 2018), to both the two re-
quired languages, learning to reconstruct sentences in the
two languages. The idea is, language knowledge can facil-
itate UNMT to decompose representation for required lan-
guages, and such language knowledge can be transferred and
eventually help UNMT to translate fluently due to shared
layers/weights. Given the nature of translation, although
shared layers/weights are employed to work as a pivot lan-
guage, some weak cross-lingual signals are expected at the
very least. Therefore, to train UNMT for a true translation
task without violating the constraint of using nothing but
monolingual corpora, back-translation (Sennrich, Haddow,
and Birch 2016a) is jointly used in training. Significantly,
this on-the-fly back-translation generates synthetic sentence
pairs to provide synthetic supervision for training.

(Artetxe, Labaka, and Agirre 2016; Zhang et al. 2017;
Artetxe, Labaka, and Agirre 2017, 2018; Lample et al.
2018b) first observe that the recently successful UBWE (un-
supervised bilingual word embeddings) can provide UNMT
required word-level cross-lingual knowledge in the initial-
ization. On the other hand, the objective of BERT (Devlin

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2019) or MLM (masked language modeling) encour-
ages a model to find multilingual properties (Wu and Dredze
2020; Karthikeyan et al. 2020; Pires, Schlinger, and Garrette
2019) by inputting multilingual corpora. Thus, XLM (Lam-
ple et al. 2018b), MASS (Song et al. 2019), BART (Lewis
et al. 2020) and mBART (Liu et al. 2020) are proposed to
adapt MLM for UNMT in pre-training and training, hence
encouraging UNMT to build a robustly multilingual space
upon shared layers/weights. The robustly multilingual space
eventually and implicitly provides cross-lingual knowledge.

Although a large body of the previous study shows the
significance of pre-training, we are aware that the quality
of the synthetic sentence pairs is not guaranteed. Compared
to NMT, which leverages the synthetic sentence pairs for
further improvement through back-translation, the synthetic
sentence pairs significantly provide cross-lingual knowledge
to UNMT, facilitating training in a pseudo NMT scenario.
Meanwhile, NMT generates the synthetic sentence pairs by
typically reusing a trained translation model in finetuning,
whereas UNMT generates the synthetic sentence pairs in
a zero-shot (Johnson et al. 2017) style or a few-shot style
(Brown et al. 2020), which only pre-trains the model on
monolingual corpora at the most.

In this work, to guarantee the quality of the synthetic sen-
tence pairs, we tackle the challenge with pure neural set-
tings. Concretely, we present regularization models to regu-
larize the synthetic sentence pairs. In this way, UNMT can
be jointly trained with the new objective of regularization.
Intuitively, the regularization should have three properties:
1) Low-cost : it should be very simple to be implemented
with a little additional cost in time because training UNMT
is time-consuming; 2) Data free: the model does not need
additional data to regularize the synthetic sentence pairs; 3)
Efficient decoding: the method should not hurt the efficiency
of decoding. To explore this idea, we have three main works:

• We present a method to regularize the shared semantics
of a synthetic sentence pair, regardless of word semantics
somewhat. This method adds a new loss to UNMT based
on the high-level meaning of the sentence.

• We empirically study the regularization word-wise. Con-
cretely, instead of regularizing the shared semantic be-
tween the two sentences from a synthetic sentence pair,
we present a method to regularize similar/close words in

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12471



a synthetic sentence pair. This method does not eventually
enable the model to learn word translation (Lample et al.
2018b; Artetxe, Labaka, and Agirre 2018) but adds a new
objective into UNMT for joint training.

• We conduct comprehensive experiments to evaluate our
methods in different configurations.
Note that, although there have been successful models

(Lample et al. 2018c; Artetxe, Labaka, and Agirre 2019;
Ren et al. 2019) employing phrase-based models, statisti-
cal models and their variants, in this paper, we only study
pure neural models without any benefits from these models,
e.g., SMT or PBSMT (Lample and Conneau 2019; Ren et al.
2019; Artetxe, Labaka, and Agirre 2019; Koehn, Och, and
Marcu 2003). Our method is general and can be applied to
any UNMT/NMT architecture, e.g., LSTM (Wu et al. 2016)
and Transformer (Vaswani et al. 2017). Besides, we focus
on the training phase instead of the pre-training phase. In the
evaluation section, we conduct comprehensive experiments
to show how our method performs on pre-trained models
with different configurations and on random models.

Background and Related Work
NMT (neural machine translation) (Bahdanau, Cho, and
Bengio 2015; Wu et al. 2016; Vaswani et al. 2017; Sutskever,
Vinyals, and Le 2014) can be studied in an unsupervised
learning manner. Concretely, UNMT models are based on
the assumption that the two languages can be reconstructed
from shared encodings (Lample et al. 2018a; Artetxe et al.
2018). In other words, the shared encoding works as a pivot
language that is translated to the required language regard-
less of the input language. Typically, the recently success-
ful UNMT models build upon denoising language model-
ing (Dai and Le 2015; Hill, Cho, and Korhonen 2016) for
the two languages, respectively, with shared layers between
the two languages (Artetxe et al. 2018; Lample et al. 2018a;
Lample and Conneau 2019; Lample et al. 2018c; Sun et al.
2019; Yang et al. 2018; Liu et al. 2020; Lewis et al. 2020;
Song et al. 2019), as:

Llm(X) = EX∼φL1 [−logP (X|X ′; θEncL1
, θDecL1

)]

Llm(Y ) = EY∼φL2
[−logP (Y |Y ′; θEncL2

, θDecL2
)]

(1)

whereX ′ and Y ′ are corruptedX and Y in language L1 and
languageL2 respectively and (θEncL1

∪θDecL1
)∩(θEncL2

∪
θDecL2

) 6= φ. Nevertheless, this idea only accounts one lan-
guage without considering the translation between the two
languages when training the objective of denoising language
modeling only, i.e., the input and the output are in the same
language. To facilitate translation training without violating
the constraint of using nothing but monolingual corpora,
on-the-fly back-translation (Sennrich, Haddow, and Birch
2016a) is used to generate synthetic sentence pairs. Con-
cretely, given two input sentences (X,Y ) in the two lan-
guages respectively, we obtain two synthetic sentence pairs
X → Ỹ and Y → X̃ in inference mode. UNMT learns
translation knowledge on both the language sides by simul-
taneously modeling Ỹ → X and X̃ → Y in the NMT sce-
nario. Hence, we jointly optimize two translation losses for

the two input sentences:

Lbt(X, Ỹ ) = EX∼φL1 [−logP (X|Ỹ ; θEncL2
, θDecL1

)]

Lbt(Y, X̃) = EY∼φL2
[−logP (Y |X̃; θEncL1

, θDecL2
)]

(2)

where {X, Ỹ } and {X̃, Y } are synthetic sentence pairs.
Thus, UNMT learns to jointly optimize the loss:

LUNMT =

Llm(X) + Llm(Y ) + Lbt(X, Ỹ ) + Lbt(Y, X̃)
(3)

To improve the performance of UNMT, successful
UNMT models (Liu et al. 2020; Lewis et al. 2020; Song
et al. 2019; Lample and Conneau 2019; Lample et al.
2018c) pay attention to pre-train the encoder and the de-
coder, i.e., θEncL1

, θDecL1
, θEncL2

and θDecL2
, in multilin-

gual modeling settings, i.e., θEncL1
= θEncL2

and θDecL1
=

θDecL2
. The pre-trained encoder-decoder eventually facil-

itates UNMT training and improves the quality of trans-
lation. Meanwhile, pre-trained bilingual word embeddings
that are learned in an unsupervised manner (Lample et al.
2018b; Artetxe, Labaka, and Agirre 2016, 2017, 2018),
i.e., UBWE, can facilitate UNMT training (Lample et al.
2018a,c; Artetxe, Labaka, and Agirre 2019; Artetxe et al.
2018). In this scenario, all the lookup tables are initialized
from pre-trained bilingual word embeddings.

Although there have been successful models (Lample
et al. 2018c; Artetxe, Labaka, and Agirre 2019; Ren et al.
2019) employing phrase-based models, e.g., phrase-based
statistical machine translation, to improve and guarantee the
quality of the synthetic sentence pairs, we present neural
models in this work. That is, given the loss Eq.3 of UNMT,
we use a regularization model to regularize the synthetic
sentence pairs. In this way, UNMT can be jointly trained
with the new objective of regularization.

Besides, there has been a topic to search potentially
aligned sentences (Grover and Mitra 2017; Munteanu,
Fraser, and Marcu 2004; Hangya and Fraser 2020; Hangya
et al. 2018) that can be indirectly leveraged for UNMT. The
idea is more or less similar to using synthetic sentence pairs,
but additional models are introduced so that the efficiency of
UNMT training degrades significantly. Thus, it is not preva-
lent in the UNMT scenario.

Train with Regularization
Notation We use x and y to denote the word embed-
ding/vector in language L1 and language L2, respectively.
dmodel is the model dimension, and dwe is the word em-
bedding dimension. X = (x1, x2, ..., xn) ∈ RN×dwe and
Y = (y1, y2, ..., ym) ∈ RM×dwe are the sentences sampled
from corpora in language L1 and language L2 respectively,
where N and M are the sequence length. The synthetic sen-
tence X̃ and Ỹ are similar to X and Y . Besides, {X, Ỹ }
and {X̃, Y } denote synthetic sentence pairs. V oc denotes
the last layer that outputs a probability over a vocabulary.
For notational simplicity, in most presentation of this paper,
we use {X̃, Y } as an example to discuss and present our
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idea. However, all the operations are simultaneously applied
to both {X, Ỹ } and {X̃, Y } in training.

Framework
Given {X̃, Y }, we assume an implicit error Esynthetic that
indicates the semantic distance 1 between X̃ and Y as:

Esynthetic = ‖F(X̃)−F(Y )‖ (4)
where latent F extracts high-level semantic features for dis-
tance measurement and {X, Ỹ } is similar to {X̃, Y }. We
anticipate three main properties of Esynthetic: 1) the value
of Esynthetic in the NMT scenario is smaller than in the
UNMT scenario because NMT generates the synthetic sen-
tence pairs by reusing the trained translation model in fine-
tuning; 2) training on {X̃, Y } with small Esynthetic can im-
prove the performance of translation because X̃ and Y are
aligned tightly; 3) F should be a soft function 2 that does
not degrade training efficiency significantly. We then define
a regularization loss of UNMT Lreg as:

Lreg = LF (X̃, Y ) + LF (X, Ỹ ) (5)
where LF is the loss of our regularization model implying
the implicit error Esynthetic.

To optimize Lreg , we propose to introduce Lreg to
UNMT, adding the new loss Lreg into the loss of UNMT
Eq.3 for joint optimizing:

LUNMT =

Llm(X) + Llm(Y ) + Lbt(X, Ỹ ) + Lbt(Y, X̃) + λLreg
(6)

where λ is the weight for Lreg . Lreg is minimized dur-
ing joint training on monolingual corpora. Significantly, our
method does not affect pre-training. In this work, we as-
sume UNMT has been pre-trained completely or initialized
randomly. We will experiment with both configurations in §
Experiment and Empirical Study.

Sentence-wise Regularization
Preprocess We first present the sentence-wise regulariza-
tion. Since both X̃ and Y are a sequence of vector, we ag-
gregate all the vectors with position encodings to obtain a
vector of sentence semantic, similar to that is leveraged in
GNMT (generative NMT) (Shah and Barber 2018; Bowman
et al. 2016). The procedure is formally described as:

X̃s =
1

N

N∑
i=0

FFN(x̃i + Pi);Ys =
1

M

M∑
i=0

FFN(yi + Pi)

(7)

where X̃s, Ys ∈ Rdwe , FFN is a two-layer feed-forward
network (Vaswani et al. 2017) and Pi is a static position en-
coding (Vaswani et al. 2017). X̃s and Ys are encouraged to
model sentence semantics naively. For {X, Ỹ }, we do simi-
lar preprocess.

1If X̃ and Y are parallel or perfectly aligned, the semantic dis-
tance is 0, otherwise > 0.

2The hard function can be described as a translation model that
translates X̃ and Y to a pivot language.

Auto-encoder Regularization Significantly, X̃s and Ys
have to share some latent features because we expect a
shared semantic between {X̃, Y } for translation. Inspired
by (Vincent 2010), we adapt denoising auto-encoder with
a drop probability 0.1 for each element in X̃s and Ys,
obtaining bottleneck features for the regularization. Con-
cretely, we employ a 3-layer denoising auto-encoder out-
puting bottleneck features of size dwe/2 as our auto-
encoder regularization. The auto-encoder is simultaneously
trained with UNMT. Then, we increase the similarity be-
tween the bottleneck features from auto-encoder(X̃s) and
auto-encoder(Ys). Therefore, LF (X̃, Y ) can be written as:

LF (X̃, Y ) = 1− cos(BF (AE(X̃s)), BF (AE(Ys))
(8)

where AE(∗) denotes the denoising auto-encoder and
BF (∗) denotes the bottleneck features obtained from
AE(∗). LF (X, Ỹ ) is similar to LF (X̃, Y ). Significantly,
AE is multilingual, discussed in the following comparison.

BOW Regularization Formally, given the general process
in Eq.7, we extend the idea significantly as:

X̃s = σ
N∑
i=0

V oc(FFN(x̃i)); Ys = σ
N∑
i=0

V oc(yi) (9)

where σ is a sigmoid activation layer, V oc is the word
generator (see §Notation) and X̃s, Ys ∈ Rvocabulary size .
Specifically, we aggregate all the outputs of the word gen-
erator and then perform sigmoid activation that outputs the
BOW (bag-of-words) scores X̃s and Ys (or sentence seman-
tics) for X̃ and Y respectively, where X̃ is preprocessed by
FFN position-wise. In other words, the index of X̃s or Ys
represents the index of a word in the lookup table, and the
sigmoid value of each element/index in X̃s or Ys represents
the probability of a word that appears in the sentence regard-
less of the position in the sentence. Intuitively, we expect the
two BOW scores are as the same as possible, hence encour-
aging UNMT to minimize:

LF (X̃, Y ) = EX̃∼φL1
(−logPL2→L1

(X̃s|Ys)) (10)

LF (X, Ỹ ) is similar to LF (X̃, Y ).

Comparison We have noticed some close ideas. 1) For
auto-encoder regularization, since we process both X̃s and
Ys to the same auto-encoder, the auto-encoder is trained as
a simply multilingual encoder somewhat. Compared to the
close idea BERT (Devlin et al. 2019) and its variants (Liu
et al. 2020; Lewis et al. 2020; Song et al. 2019; Lample
and Conneau 2019), which consider word semantics, our
method encourages the auto-encoder to extract latent fea-
tures of sentence semantic and makes latent features as simi-
lar as possible because a high-quality synthetic sentence pair
has to share the same sentence semantic. 2) For BOW reg-
ularization, previous works (Mikolov et al. 2013) study the
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Algorithm 1 Local Alignment

Input: {Z̃, Z}, Z̃ ∈ (z̃0, ..., z̃N ), Z ∈ (z0, ..., zM )
INDEX = list
for i = 0 to N do
candidate = double cos(z̃i, Z)
c = get the index of the largest value(candidate)
INDEX.append(c)

end for
Output: {Z̃, Z[INDEX]}

word distribution for one language based on a BOW score,
whereas we study the word distribution for two languages
based on two BOW scores, preprocessing one of the two
languages by FFN .

Word-wise Regularization
Preprocess Both UBWE pre-training and encoder-
decoder pre-training can provide high-quality bilingual
word embeddings for UNMT, especially at the beginning
of UNMT training. Furthermore, (Sun et al. 2019; Lample
et al. 2018c; Artetxe et al. 2018) study the correlation
between the quality of bilingual word embeddings and
the performance of UNMT, reporting the degradation of
the quality of bilingual word embeddings during training.
Therefore, they propose to update bilingual word embed-
dings periodically or, more aggressively, fix bilingual word
embeddings in training, which regularizes the synthetic
sentence pairs statically and globally. On the contrary, we
regularize synthetic sentence pairs dynamically and locally.
Specifically, given {X̃, Y }, x̃k has to be close to yi in
the space of bilingual word embedding, where i and k are
positions of the corresponding words. Intuitively, we only
need to regularize x̃k and yi in order to regularize {X̃, Y }.

However, this idea faces a local alignment problem.
Specifically, different languages do not perfectly share the
same word order. Therefore, it is difficult to decide i and
k for the word-wise regularization. For instance, given
Y = (I, like, to, drink, coffee, in, the, morning.) and X̃ =
(J’aime, boire, du, café, le, matin.), (y4 = coffee) is not
parallel or close to (x̃4 = le) if we simply set i = k = 4. To
solve this problem, we fix X̃ and reconstruct Y . Concretely,
we run Algorithm 1, which is based on double cos score
(Lample et al. 2018b) 3, to search yi for x̃k, hence matching
Y to X̃ at every position and reconstructing Y to the length
of X̃ . After this operation, xi and yi are potentially aligned,
i.e., i = k in our previous example. Note that the original
version of synthetic sentence pairs is still used for the UNMT
objective without any change.

Naive Regularization Intuitively, we can improve the
quality of a synthetic sentence pair by maximizing the simi-
larity between word embeddings from X̃ and corresponding
word embeddings from Y . Formally, we aim to minimize

3Readers can refer to (Lample et al. 2018b) for more details.

the objective function:

LF (X̃, Y ) = 1.0− similarity(X̃, Y ) (11)

where similarity(X̃, Y ) = 1
N

∑N
k=0 cos(x̃k, yk) and N is

the length of X̃ . LF (X, Ỹ ) is similar to LF (X̃, Y ).

GAN Regularization Inspired by works of (Lample et al.
2018a; Sun et al. 2019; Mikolov, Le, and Sutskever 2013;
Kim, Gao, and Ney 2019), which study the linear transfor-
mation between two languages, we introduce a transforma-
tionWL1toL2

to synthetic sentence pairs, constructing a gen-
erative model G. And, we use a discriminator D to predict
which language word embeddings belong. Concretely, we
define WL1toL2

∈ Rdwe×dwe that constructs a generative
mode G = WL1toL2

x̃ for any word embedding in X̃ . To
learnG (orWL1toL2 ) andD, we simply utilize GAN (Good-
fellow et al. 2014) architecture, optimizing the objective as:

LF (X̃, Y ) = LD + LG (12)

whereLD(D|G) = 1
N

∑N
k=0(Ex̃k

[− log (1−D(G(x̃k)))]+
Eyk [− logD(yk)]), LG(G|D) =
1
N

∑N
k=0(Ex̃k

[− logD(G(x̃k))]+Eyk [− log (1−D(yk))])

andN is the length of X̃ .LF (X, Ỹ ) is similar toLF (X̃, Y ).

Trick In practice, given {X̃, Y }, we search k near-
est neighbors to obtain the mean score as the input of
LF (X̃, Y ). In other words, we consider a word embed-
ding and its k nearest neighbors in the space of bilingual
word embedding. By this method, intuitively, we encour-
age the model to tolerate word choices in synthetic sentence
pairs. We empirically set k = 3. LF (X, Ỹ ) is similar to
LF (X̃, Y ).

Comparison The idea of the word-wise regularization is
very close to word translation (Artetxe, Labaka, and Agirre
2016, 2017, 2018; Lample et al. 2018b) and its application,
but we have two main differences. 1) Objective: compared
to word translation, which tries to minimize the distance be-
tween two word-embedding matrixes, the word-wise regu-
larization pays attention to two possibly aligned word em-
beddings from a synthetic sentence pair. 2) Training: word
translation is trained on a synthetic vocabulary, or on a col-
lection of selected words at the very least, which is formed
from common words, e.g., numbers (Artetxe, Labaka, and
Agirre 2017) or frequent words (Lample et al. 2018b),
whereas our method does not need the synthetic vocabulary
because bilingual word embeddings have been pre-trained in
pre-training.

Experiment and Empirical Study
We adapt our methods for UNMT initialized from UBWE
pre-training or encoder-decoder pre-training to show our
method can generally improve the performance of UNMT
regardless of the pre-training methods. For further evalua-
tion, we also observe the performance of random UNMT and
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discuss some important aspects of our methods. Note that,
there have been some successful statistics-based/phrase-
based methods (Lample et al. 2018c; Artetxe, Labaka, and
Agirre 2019) that are out of the scope of this work. We leave
the adaptation with these technics for future work.

Dataset and Tokenization To be comparable, we train
the model on the same dataset used in previous
work (Liu et al. 2020; Lewis et al. 2020; Song
et al. 2019; Lample and Conneau 2019; Lample et al.
2018c). Specifically, we first retrieve monolingual corpora
{French,German,English,Russian} from WMT 2018
4 (Bojar et al. 2018) including all available NewsCrawl
datasets from 2007 through 2017 and monolingual corpora
Romanian from WMT 2016 5 (Bojar et al. 2016) includ-
ing NewsCrawl 2016. We then train the model on Sim-
ilar pairs: {French,German,Romanian} ↔ English
and one Dissimilar pair: Russian ↔ English. We re-
port case-sensitive BLEU computed by multi-BLEU.perl6
for Fr ↔ En on newstest2014 and {Ru,De,Ro} ↔ En
on newstest2016. Meanwhile, we use BPE (Sennrich, Had-
dow, and Birch 2016b) tokens, selecting the most frequent
60K tokens from concatenated corpora of language pairs by
applying the same criteria in (Lample and Conneau 2019).

Training Setting We implement our experiments on Ten-
sorflow 2.0 (Abadi et al. 2016) and will open our source
code on GitHub. We set λ = 1 to obtain a balanced at-
tention between the UNMT loss and the regularization loss
in Eq.6. Adam optimizer (Kingma and Ba 2015) is used
with parameters β1 = 0.9, β2 = 0.98, ε = 10−9 and a
dynamic learning rate over the course of training (Vaswani
et al. 2017) (warmup steps = 5000). We set dropout reg-
ularization with a drop rate rate = 0.1 and label smoothing
with gamma = 0.1 (Mezzini 2018).

Reimplementation Principle To be fair, we reimplement
some models on our machine with a smaller batch size. We
compare the reimplemented results to the reported results
on the same test set to ensure the difference less than 5% (or
1.5) in BLEU. Then, we can confirm the correctness.

Adaptation with UBWE Pre-training
UNMT Configuration The UNMT configuration is iden-
tical to the baseline model (Lample et al. 2018c). Specif-
ically, UNMT has four layers in both the encoder and the
decoder for each language, and three out of the four encoder
and decoder layers are shared between the two languages.
All the lookup tables are initialized from UBWE.

Pre-training Configuration Given the monolingual cor-
pora, we independently train word embeddings on each lan-

4http://www.statmt.org/wmt18/translation-task.html
5http://www.statmt.org/wmt16/translation-task.html
6https://github.com/moses-smt/mosesdecoder/blob/master/

scripts/generic/multi-BLEU.perl

guage side by using fastText 7 (Bojanowski et al. 2017). We
then use the public VecMap8 (Artetxe, Labaka, and Agirre
2018) to map trained word embeddings to shared space, us-
ing the recommended configuration and setting dim = dwe.

Result Table 1 shows the performance of our methods on
the {De, Fr,Ru} ↔ En test sets. Based on the experiment
with only monolingual corpora, we have three observations.
1) Our method significantly outperforms the previous meth-
ods in all the language pairs. 2) The naive regularization
shows the weakest performance. Intuitively, the naive reg-
ularization just introduces a new loss to UNMT, whereas
other objectives are jointly trained with UNMT, having more
interaction with UNMT. On the other hand, compared to
the naive regularization, which is parameter-free, other reg-
ularizations slightly increase the size of the parameter, but
we do not observe any significant degradation of training
efficiency. 3) The word-wise regularization generally out-
performs the sentence-wise regularization on similar pairs
{Fr,De} ↔ English, but the sentence-wise regularization
shows better performance on the dissimilar pair Ru↔ En.
We explain that the improvement gaining from the word-
wise regularization is proportional to the performance of
bilingual word embeddings. Generally, the performance of
bilingual word embeddings is better on similar pairs than on
dissimilar pairs (Lample et al. 2018b; Artetxe, Labaka, and
Agirre 2018, 2017, 2016) so that the word-wise regulariza-
tion shows better performance on similar pairs. Compared
to that, the sentence-wise regularization gives UNMT a se-
mantic prototype UNMT can get benefits from, not relying
on the performance of bilingual word embeddings heavily.

Adaptation with Encoder-decoder Pre-training
UNMT Configuration The UNMT configuration is iden-
tical to XLM (Lample and Conneau 2019) that has a 6-layer
encoder and a 6-layer decoder. All encoder layers, decoder
layers, and lookup tables are shared by the two languages.

Pre-training Configuration We pre-train the encoder-
decoder by reimplementing baseline models: XLM(Lample
and Conneau 2019), MASS(Song et al. 2019) and
mBART(Liu et al. 2020) that gain significant benefits from
large mini-batches. Based on the official code9, we reim-
plement these baseline models that only process approx.4k
tokens per mini-batch.

Result Table 2 shows that our method can generally im-
prove the performance of baseline models. Meanwhile, we
believe our method can also get benefits from larger mini-
batches. We will leave it for future work.

Random Initialization
UNMT Configuration We use the same configuration of
XLM in the Encoder-decoder Pre-training experiment.

7https://github.com/facebookresearch/fastText
8https://github.com/artetxem/vecmap
9https://github.com/facebookresearch/XLM
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Model De→ En En→ De Fr → En En→ Fr Ru→ En En→ Ru

baseline (Lample et al. 2018c) 21.34 17.89 24.20 25.83 9.19 8.08
+AL (Yang et al. 2018) 22.23 18.11 25.50 27.97 9.38 8.22
+UBWE Agreement (Sun et al. 2019) 22.67 18.29 25.87 28.38

+Naive 23.01 18.57 26.01 28.51 9.42 8.31
+Auto-encoder 23.46 18.91 26.57 29.55 10.11 9.04
+GAN 24.12 19.87 27.24 30.53 9.89 8.71
+BOW 23.87 19.22 26.96 30.17 10.42 9.35

Table 1: Performance of 4-layer transformer UNMT with UBWE pre-training (baseline). AL: adversarial learning. Agreement:
static and global maintenance. The baseline model and the ”baseline + AL” model are reimplemented.

Model De→ En En→ De Fr → En En→ Fr Ro→ En En→ Ro

XLM (Lample et al. 2018c) 33.81 26.32 32.87 32.94 31.12 32.81
+ Naive 34.01 26.49 33.17 33.33 31.54 33.12
+ Auto-encoder 34.34 26.78 33.51 33.64 31.92 33.61
+ GAN 34.94 27.12 33.92 34.24 32.53 34.01
+ BOW 34.73 26.90 33.65 33.90 32.30 33.69

MASS (Song et al. 2019) 34.91 28.03 34.42 37.02 32.75 34.82
+ Naive 35.32 28.27 34.82 37.44 33.01 35.21
+ Auto-encoder 35.59 28.60 35.09 37.72 33.35 35.52
+ GAN 36.04 28.98 35.61 38.29 34.01 35.91
+ BOW 35.75 28.81 35.27 37.84 33.68 35.74

mBART (Liu et al. 2020) 33.65 29.37 32.75 34.12 30.01 34.54
+ Naive 33.87 29.61 32.90 34.63 30.32 34.81
+ Auto-encoder 34.49 30.19 33.11 35.03 30.21 35.00
+ GAN 34.94 30.82 33.56 35.55 30.94 35.46
+ BOW 34.71 30.47 33.41 35.19 30.60 35.14

Table 2: Performance of 6-layer transformer UNMT with encoder-decoder pre-training. All the baseline models are reimple-
mented by using smaller mini-batches.

Model De→ En En→ De

random (Lample et al. 2018c) 20.99 17.01

random + Naive, λ = 1 21.11 17.36
random + Auto-encoder, λ = 1 21.23 17.51
random + GAN, λ = 1 21.61 17.96
random + BOW, λ = 1 21.39 17.71

random + Naive, annealing λ 22.03 17.85
random + Auto-encoder, annealing λ 22.33 18.18
random + GAN, annealing λ 22.81 18.62
random + BOW, annealing λ 22.62 18.31

Table 3: Performance of 6-layer transformer UNMT with
random initialization.

Pre-training Configuration All the parameters of UNMT
including the lookup tables and the encoder-decoder are ran-
domly initialized by Xavier initialization (Glorot and Bengio
2010) without pre-training.

Result Table 3 shows that our method can generally im-
prove the performance of random UNMT even the im-
provement is marginal. We explain that random initializa-
tion does not provide reliable bilingual word embeddings for

UNMT, and our methods are word-embedding-based meth-
ods10 somewhat. Specifically, the regularization is trivial
over the early training because bilingual word embeddings
are randomly initialized, which results in random regulariz-
ing and aligning. To further understand this aspect, we an-
neal λ to weigh the new loss of regularization in Eq.6, lin-
early increasing λ from 0 to 1 over the first 200k iterations of
training. Therefore, UNMT pays a little attention to the new
loss over the early training when bilingual word embeddings
have not been trained, and UNMT pays more attention to the
new loss over the late training when bilingual word embed-
dings have been trained. In Table 3, the performance in the
last 4 rows is better than the corresponding performance in
the row 2 ∼ 5, which explicitly indicates this aspect. Mean-
while, we are aware our method is only a complementary
method of pre-training because pre-training can generally
achieve better performance. However, our method and pre-
training are perfectly compatible.

Impact of Tokenization Method
Our methods are word-embedding-based methods, which is
discussed in the Random Initialization experiment. We are

10Regardless of word-wise regularization and sentence-wise reg-
ularization, the input is word embeddings. See §5 Framework.
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Configuration Model De→ En En→ De

1) BPE-ENDE baseline 33.81 26.32
+ GAN 34.94 27.12
+ BOW 34.73 26.90

Word-ENDE baseline 33.04 25.67
+ GAN 34.21 26.48
+ BOW 33.83 26.21

2) BPE-UBWE baseline 21.34 17.89
+ GAN 24.12 19.87
+ BOW 23.87 19.22

Word-UBWE baseline 21.12 17.65
+ GAN 23.94 19.62
+ BOW 23.71 19.43

Table 4: Performance of UNMT. 1): 6-layer transformer
UNMT with encoder-decoder pre-training. 2): 4-layer trans-
former UNMT with UBWE pre-training.

interested in how the tokenization method affects the per-
formance of our method because there are potential prob-
lems when dealing with non-standard-word BPE tokens,
e.g., non-standard-word tokens may not be aligned properly.

UNMT Configuration We use two configurations: 1) the
UNMT configuration is identical to the configuration of
XLM in the Encoder-decoder Pre-training experiment; 2)
the UNMT configuration is identical to the configuration in
the UBWE Pre-training experiment.

Pre-training Configuration Also, we have two config-
urations: 1) ENDE: the encoder-decoder pre-training con-
figuration is identical to the configuration of XLM in the
Encoder-decoder Pre-training experiment; 2) UBWE: the
UBWE pre-training configuration is identical to the configu-
ration in the UBWE Pre-training experiment. We use both
BPE-ENDE and BPE-UBWE to denote the models on BPE
vocabularies and both Word-ENDE and Word-UBWE to de-
note the models on word vocabularies. Meanwhile, to be
comparable, the size of the word vocabulary is the same as
the size of the BPE vocabulary.

Result Table 4 shows that our method is robust to different
tokenization methods. Regardless of the marginal difference
between the two baseline models in the same configuration,
our method can generally improve the performance.

Effect of λ
We have conducted a λ-related experiment in the Random
Initialization experiment. We further study the effect of λ in
this experiment. Although we empirically set λ = 1 (Eq.6)
to weigh the new loss in training, we further study how λ
affects the UNMT performance.

UNMT Configuration & Pre-training Configuration
All the configurations are identical to the configurations in
the UBWE Pre-training experiment.

Model λ De→ En En→ De

baseline 0 21.34 17.89
+ GAN anneal from 0 to 1 23.89 19.71
+ GAN 1 24.12 19.87
+ GAN 0.01 22.12 18.05
+ GAN 0.1 22.95 18.31
+ GAN 0.5 23.87 19.66
+ GAN 2 23.51 19.85
+ GAN 5 22.30 18.87

Table 5: Effect of λ for UNMT with UBWE pre-training and
4-layer transformer.

Model Token feeding/s Degradation

baseline 1 ×
+ Naive 0.99 × -1%
+ Auto-encoder 0.95 × -8%
+ GAN 0.92× -8%
+ BOW 0.94 × -6%

Table 6: Training efficiency.

Result In Table 5, λ influences the performance of the reg-
ularization over the course of training. A large λ forces train-
ing to pay more attention to the regularization objective than
to the UNMT objective. A small λ degrades the significance
of the regularization. Although all the choices of λ generally
improve the UNMT performance, a balance value of λ = 1
gains the best performance.

Training Efficiency
UNMT Configuration & Pre-training Configuration
All the configurations are identical to the configurations
in the Random Initialization experiment. We measure the
performance of token feeding per second based on vanilla
UNMT without any regularization.

Result To interact with UNMT training, some parameters
are added to UNMT. However, we do not observe any signif-
icant degradation in the training efficiency. Within our set-
tings, the training efficiency is only degraded by 1% ∼ 8%,
presented in Table 6, that the additional cost is acceptable.

Conclusion
To further improve the performance of UNMT, we empiri-
cally study the core training procedure of UNMT that gen-
erates the synthetic sentence pairs. We assume that regular-
izing synthetic sentence pairs can improve the performance
without any additional data or cross-lingual signal. Based on
our assumption, we present four simple but effective regu-
larization methods, and we observe significant improvement
from our experiments, regardless of pre-training methods
and tokenization methods. Meanwhile, our methods do not
hurt the training efficiency severely. However, in the sce-
nario of UNMT, compared to similar pairs, dissimilar pairs
are still a challenge, which needs future work, and the regu-
larization is only a complementary method of pre-training.
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