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Abstract

Outliers negatively affect the accuracy of data analysis. In this
paper we are concerned with their influence on the accuracy
of Principal Component Analysis (PCA). Algorithms that at-
tempt to detect outliers and remove them from the data prior
to applying PCA are sometimes called Robust PCA, or Ro-
bust Subspace Recovery algorithms. We propose a new algo-
rithm for outlier detection that combines two ideas. The first
is “chunk recursive elimination” that was used effectively to
accelerate feature selection, and the second is combinatorial
search, in a setting similar to A*. Our main result is showing
how to combine these two ideas. One variant of our algo-
rithm is guaranteed to compute an optimal solution according
to some natural criteria, but its running time makes it imprac-
tical for large datasets. Other variants are much faster and
come with provable bounds on sub-optimality. Experimental
results show the effectiveness of the proposed approach.

1 Introduction
An important challenge in the analysis of data is the design
of a simple model that fits the data. In practical situations
this requires handling data outliers. Typically, the data model
can be made significantly more accurate if it is allowed to ig-
nore a small fraction of the data items, considered to be out-
liers. See, e.g., (Aggarwal 2016; Hodge and Austin 2004).

The particular data model that we discuss in this paper is
the one produced by Principal Component Analysis (PCA).
Consider for example the data shown in Figure 1, consisting
of 9 points. In this case, rank-1 PCA gives a bad model for
all 9 points, but a good model for the 8 non-outliers. Observe
the huge effect of a single outlier.

PCA is arguably the most widely used dimension reduc-
tion technique, with a variety of applications. See, e.g., (Jol-
liffe 2002; Burges 2010; Cabral et al. 2013; Vidal, Ma, and
Sastry 2016; Boutsidis, Woodruff, and Zhong 2016; Gray
2017). Recent algorithmic approaches that use randomiza-
tion give algorithms that can easily handle large datasets
(e.g., (Halko, Martinsson, and Tropp 2011; Halko et al.
2011; Musco and Musco 2015; Li et al. 2017)). However,
computing robust variants that ignore outliers is still a big
challenge.
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Figure 1: The direction of the dominant principal compo-
nent computed from 9 points with one outlier. The direction
labeled PCA (green arrow) was computed from the entire
data (9 points). The direction labeled RPCA (blue arrow)
was computed from the 8 non-outliers.

There is a large number of studies on outlier detection
and removal specifically for computing robust PCA. The al-
gorithms are sometimes called “Robust Principal Compo-
nent Analysis” (RPCA), or, alternatively, “Robust Subspace
Recovery” (RSR). A recent review paper is (Lerman and
Maunu 2018b).

One way to solve the RPCA problem is to first filter out-
liers and then fit a subspace to the remaining data by us-
ing classical PCA. Many studies view the data as coming
from a fixed distribution, and attempt to detect outliers as
data points at the margins of the distribution (e.g., (Roberts
1999; Scheirer et al. 2011; Hubert and Engelen 2004; Xu,
Caramanis, and Sanghavi 2010; Zhang et al. 2015)). Another
common approach is to rank the data points based on some
criterion, and detect outliers as points with low scores. See,
e.g., (Chen and Lerman 2009; Soltanolkotabi, Candes et al.
2012; Rahmani and Atia 2017; You, Robinson, and Vidal
2017; Rahmani and Li 2019). For example, the “Cop” algo-
rithm (Rahmani and Atia 2017) computes the scores from
the Gram matrix of the normalized data. The score for a
data point is the norm of the corresponding row in the Gram
matrix. The resulting algorithm runs very fast but requires
a large amount of memory. The “R-graph” algorithm (You,
Robinson, and Vidal 2017) measures the points based on the
self-expressiveness property. The scores are computed by
solving an elastic net minimization problem. The “Innova-
tion” of each point is used to rank the points in (Rahmani and
Li 2019). The authors refer to the algorithm as “iSearch”.
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Algorithm time memory
Cop (Rahmani and Atia 2017) O(mn2) O(n2+mn)
R-graph (You et al. 2017) O(mn2+n3) O(n2+mn)
iSearch (Rahmani and Li 2019) O(mn2) O(mn)
FMS (Lerman and Maunu 2018a) O(T ⋅ rmn) O(mn)
fastest Shah (Shah et al. 2018) O(krmn) O(mn)
fastest Chunk-A∗ (this paper) O(rmn) O(mn)

Table 1: Complexity of various algorithms. n is the number
of data items.m is the dimension of each item. r is the num-
ber of principal components. k is the number of outliers. T
is the number of iterations.

A different approach was taken in (Shah et al. 2018). The
authors view outlier detection as a graph search problem,
and apply the weighted A∗ algorithm to solve it. The goal
of the search is to minimize the PCA error. As reported
in (Shah et al. 2018) the algorithm comes with an accuracy
parameter called ε. With ε = 0 the algorithm is guaranteed
to terminate with an optimal outlier selection. With larger ε
values the algorithm terminates with outliers that are typi-
cally less accurate than the optimal, but the running time is
much faster. Unfortunately, as we show in Section 7, even
with ε = ∞ the algorithm is slow, and cannot be applied to
large datasets.

As we show experimentally in Section 7, current state-of-
the-art algorithms that compute outliers encounter difficul-
ties when applied to large datasets with hundreds of thou-
sands/millions of data points. Most algorithms run too slow
or require an unacceptably large amount of memory. Table 1
shows the complexity of some recent algorithms. We im-
prove on previously proposed algorithms in terms of both
runtime and accuracy. The time complexity of the fastest
variant of our proposed Chunk-A∗ is O(k/c ⋅rmn), where c
is the chunk size (introduced later). The memory complexity
is O(mn). The approach we take is outlined below.

Our Approach
Our goal is to design a scalable algorithm capable of de-
tecting outliers in large datasets. A useful algorithm for the
closely related feature selection problem (Guyon and Elisse-
eff 2003) is “backward elimination”, that requires a measure
of the importance of each individual feature. Such a measure
is typically called a “filter”. Using filters, a typical imple-
mentation of backward elimination for selecting k features
to be eliminated from among n features is as follows:

Run k iterations. In the jth iteration, rank all remaining
features (n−j+1 features left) according to their filter
values and eliminate the least important feature.

Observe that this requires roughly nk filter evaluations
which may be impractical. Instead, classical implementa-
tions of this approach (for example the well known SVM-
RFE algorithm (Guyon et al. 2002)) eliminate a chunk of
multiple features in each iteration. A chunk consists of a
fraction of the features that are ranked as the least impor-
tant. For sufficiently big chunks this reduces the number of
filter evaluations to O(n). We refer to this approach as the
“Chunk-RFE”, for “Chunk Recursive Feature Elimination”.

Our main result is showing how to wrap a combinatorial
search framework around the Chunk-RFE. This com-
bines the speed of Chunk-RFE with the accuracy of the
combinatorial search approach. The resulting algorithm
that we call “Chunk-A∗” has two parameters that control the
balance between speed and accuracy: the chunk size that we
denote by c, and the ε parameter of the weighted A∗.

Our Results
We describe an outlier detection algorithm for detecting k
outliers. (k is assumed to be known.) The algorithm error is
defined as the PCA error of modeling the data without the
outliers (see Section 2). The algorithm accuracy and run-
ning time are controlled by the two parameters ε, c, where
0 ≤ ε ≤ ∞ is the optimality parameter, and 1 ≤ c ≤ k is
the chunk size. In general, larger values of ε and c result in
a faster running time, and smaller values give more accurate
results.

In addition to identifying outliers, the algorithm computes
sub-optimality bounds on how close the results are to the op-
tima. We are not aware of any other outlier detection algo-
rithm that computes such bounds on sub-optimality.

The following are special cases that we prove:
• If ε = 0 the algorithm terminates with an optimal outlier

selection regardless of the value of the chunk size c.
• If c = 1 the algorithm is identical to (Shah et al. 2018).

Still, even in this case, our algorithm has the advantage of
producing sub-optimality bounds which are not computed
by (Shah et al. 2018).

Paper Organization
The paper is organized as follows. The PCA error of model-
ing the data is defined in Section 2. The proposed algorithm
is described in Section 3. The three variants of the algorithm
along with a correctness proof are given in Section 4. An
intuitive algorithm is introduced to further improve the re-
sults in Section 5. The sub-optimality bound is discussed in
Section 6. Experimental results are shown in Section 7.

2 The Error of Modeling Data by PCA
Let X = (x1 . . . xn) be the data matrix of size m×n, where
n is the number of data items andm is the dimension of each
item. The PCA computes a linear mapping from the m di-
mensional xi to the r dimensional yi, where r≤min(m,n).
The inverse of this mapping gives an approximate recon-
struction of xi from yi. We denote the reconstruction error
of xi by ei. As in the classical development of PCA (e.g.,
(Jolliffe 2002)) the quality of the mapping can be measured
by the sum of reconstruction errors as follows:

ei(r) = ∥xi − V V
Txi∥

2, E(r) =
n

∑
i=1
ei(r).

It is known (e.g., (Jolliffe 2002)) that the columns of V can
be computed as the r eigenvectors of the matrix B = XXT

corresponding to its r largest eigenvalues. A known result
about matrix eigenvalues gives an explicit expression to this
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Algorithm 1: The Chunk-A∗ algorithm.
Input:
X , a data matrix of n columns.
r, the desired number of principal components.
k, the desired number of outliers.
f(S), a “filter” function. Here S is an outlier subset,
and f(S) is an estimate to the PCA error if the
outliers in S are included in the solution subset.
c(S), a criterion for determining the chunk size.
rd (optional), the rank for dimensionality reduction.
Default: rd = min(m,n).
Output: a subset S of k outliers.
Preprocessing: dimensionality reduction (if desired).
Data Structures: Two global lists of subsets: the

fringe list F , and the closed list C.
Initialization: Put the empty subset into F .

1 while F is nonempty do
2 Pick Si with the smallest f(Si) value from F .

Ties are resolved in favor of the larger size(Si).
3 if Si contains k outliers then
4 Stop and return Si as the solution subset.
5 else
6 Create Ui as the list of all subsets that can be

obtained by adding a single column to Si.
7 Remove from Ui all the subsets that are in C.
8 Compute f(Sj) for each subset Sj ∈ Ui.
9 Select chunk size c(Si) satisfying:

1 ≤ c(Si) ≤ k−size(Si).

10 Compute the subset Sj as the union of the
c(Si) subsets in Ui with the smallest f(Sj).

11 Add Sj to F and C.
12 Add to F and C all the subsets Sj ∈ Ui that

are not used in the creation of Sj .
13 end
14 end

error in terms of the eigenvalues of B. Suppose λ1 ≥ λ2 ≥
. . . ≥ λm are the eigenvalues of B, and V is m × r then:

E(r) =
m

∑
j=r+1

λj = trace(B) −
r

∑
j=1

λj .

Suppose X is partitioned into a subset of outliers S and the
reminder inliers subset X̃ = X∖S. The desired rank-r PCA
is computed from the inliers. Accordingly, the PCA error is
computed from the inliers subset:

ei(S, r)=∥xi − Ṽ Ṽ
Txi)∥

2,

E(S, r)=∑
i/∈S
ei(S, r) =

m

∑
j=r+1

λ̃j = trace(B̃) −
r

∑
j=1

λ̃j ,
(1)

where λ̃j and Ṽ are computed from B̃=X̃X̃T .

3 The Chunk-A∗ Algorithm
In this section we describe our algorithm in terms of a gen-
eral filter function that will be defined later. We refer to it

as the Chunk-A∗. It is closely related to standard combina-
torial search algorithms such as the A∗ (Pearl 1984; Russell
and Norvig 2010; He et al. 2019). The major difference is
that previous studies do not have the Chunk-RFE part, as
shown in lines 9-11 of Algorithm 1.

The goal of the algorithm is to compute a subset of k out-
liers, minimizing the “filter” function f . It maintains in F a
list of subsets that need to be further evaluated and in C a
list of visited subsets that need not to be added into F again.
In the standard “best first” strategy, the algorithm selects the
subset from F with the smallest f value to be expanded.
However, unlike standard combinatorial search algorithms
in our variant not all of the direct expansions of the selected
subset are treated equally. Instead, the algorithm “guesses”
that the best c among them are part of the solution, and pack-
ages them together in a “chunk”. We refer to the “chunk” as
the “super child”, and the children created by adding a new
column as “direct children”.

The Subset Graph
The algorithm can be viewed as searching on a graph cre-
ated with nodes corresponding to outlier subsets, similar to
the subset graph proposed in (Arai, Maung, and Schweitzer
2015; Arai et al. 2016). With the chunk size c = 1, there
is an edge from the subset Si to the subset Sj if adding
one column to Si creates Sj . When c > 1, super children
are created for each node. Two subset graphs for the matrix
X = (x1, . . . , x5) and k = 3 are shown in Figure 2.

Note that all paths leading from the root to a node can
be considered equivalent, since the order of outliers in
a subset does not matter. For example, if the goal node
{x1, x2, x4} in the right graph is found, it is irrelevant if
it is reached by the path {}→{x1, x2}→{x1, x2, x4} or by
the path {}→{x4}→{x1, x2, x4}. This property makes the
chunking meaningful.

The Chunk Size
The chunk size is used in Line 9 of the algorithm. The ex-
pectation is that using big chunks would result in fast con-
vergence of the algorithm, while small chunks would give
more accurate results. As we show, our theory requires that
the chunk size should satisfy the following condition:

1 ≤ c(Si) ≤ k−size(Si).

The right part k−size(Si) is the remaining number of out-
liers that still have to be selected. With chunk size c = 1,
there is no acceleration at all.

The Filter Function
From Equation (1) it is clear that the subset with the smallest
error can be found by exhaustively evaluating all the subsets
of size k, but this is clearly impractical. Instead, we use fil-
ters within a search algorithm that evaluates only some of
these subsets.

Suppose we are given a subset Si of size ki < k. We con-
sider the error that can be obtained by completing it to size
k. The best error that an outlier subset Si can achieve is:

d(Si, r, k) = min
size(Si∪T )=k

E(Si ∪ T, r). (2)
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Figure 2: Examples of subset graphs with n = 5. The left graph is for c=1; the right graph is for c=2. For instance, when the root
node is expanded, in the left graph all direct children are added into F ; in the right graph, the super child {x1, x2} is created by
taking the union of {x1} and {x2}. This allows the algorithm to quickly evaluate nodes in deeper levels.

Ideally, we may wish to use d(Si, r, k) as the filter function,
but computing it is inefficient since it involves going over all
subsets of size k−ki. Instead, we approximate it using lower
and upper bounds defined as follows. Let λ1 ≥ λ2 ≥ . . . ≥ λm
be the eigenvalues of the matrix B̃ computed from the inliers
at a graph node. Define:

l(Si, r, k) = E(Si, r + k − ki) =
m

∑
j=r+k−ki+1

λj ,

u(Si, r, k) = E(Si, r) =
m

∑
j=r+1

λj .

(3)

These are similar to the functions defined in (He et al. 2019).

Lemma 1. For any subset Si satisfying size(Si) ≤ k:

l(Si, r, k) ≤ d(Si, r, k) ≤ u(Si, r, k)

when size(Si) = k both inequalities become equalities.
The proof is based on the interlacing property of eigenvalues
(e.g., (Hill and Parlett 1992; Golub and Van-Loan 2013)).
Details will be given in the full version of this paper.

4 Three Variants of the Algorithm
To simplify notations we write li = l(Si, r, k) and ui =
u(Si, r, k). Lemma 1 shows that the best choice for a filter is
“sandwiched” between li and ui. Following (He et al. 2019)
we express the filter function fi as a linear combination of li
and ui, with three distinct options: 1. fi = li; 2. fi = ui; and
3. fi = li + εui, where ε ≥ 0. In each case the Chunk-A∗ has
distinct characteristics as stated in the theorems below:
Theorem 1. (Optimal variant) If fi = li, then the Chunk-
A∗ terminates with an optimal solution.
Theorem 2. (Greedy variant) If fi = ui, then the Chunk-
A∗ is greedy and terminates after at most k node expansions.
Theorem 3. (Suboptimal variant) If fi = li + εui, then
the Chunk-A∗ guarantees a solution “close” to the optimum.

Let S∗ be an optimal solution subset of outliers. Let e∗ =
E(S∗, r) be the corresponding error. Let S∗∗ be the solution
subset of outliers found by the algorithm. Let e∗∗ be the error
for S∗∗. Let l∗∗ be the value of l(S∗∗, r, k). Let umax be the
largest value of u(Si, r, k) for the subsets Si remaining in
the fringe list F after the goal node is reached. Then:

e∗∗ ≤ e∗ + ε(umax − l∗∗). (4)

Proof of Theorems
In this section we give the technical proofs of the theorems
stated in Section 4. Similar theorems were stated and proved
in (He et al. 2019) for feature selection. However, their proof
strategy cannot be directly applied to the outlier detection
case that we study here. Our proofs use several lemmas that
are not fully proved. Complete proof details will be given in
the full version of this paper.

Lemma 2. The value of li is monotonically increasing along
any path.
(The proof follows from the interlacing property of eigen-
values.)

Lemma 3. The value of ui is monotonically decreasing
along any path.
(The proof follows from the interlacing property of eigen-
values.)

Lemma 4. Consider the choice fi = ui. The f value of the
super child is smaller than the f value of any of its siblings.

Lemma 5. Consider the choice fi = ui. Let ni be the node
picked at Line 2 of the algorithm. Let nj be a child of ni.
The following three properties hold:
a. The size of Sj associated with node nj is larger than the

size of all other nodes currently in the fringe list.
b. The next node to be picked is a child of ni.
c. If the chunk size c > 1, the next node to be picked is the

super child of ni.
(The proof is by induction.)
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Lemma 6. Suppose Theorem 3 is false. Then for any node
nz on the path from the root to an optimal node n∗ (cor-
responding to an optimal outlier subset S∗), the following
condition holds: fz < f∗∗.
(The proof is similar to the corresponding lemma in (He
et al. 2019).)
Lemma 7. Let S∗ be an optimal outlier subset of size k. If
the algorithm always uses chunk size c(Si) satisfying: 1 ≤
c(Si) ≤ k−size(Si), then during the run of the algorithm the
fringe list F always contains a subset of S∗.
(The proof is by induction.)

Proof of Theorem 1: The proof follows as a corollary of
Theorem 3 with ε = 0. ∎

Proof of Theorem 2: From Lemma 5 when a node ni is
picked in Line 2 of the algorithm, one of its children will
be examined next. If the chunk size c > 1, then the super
child will be examined next. This shows that the algorithm is
greedy. It detects c outliers in each iteration, and terminates
after ⌈k

c
⌉ iterations. ∎

Proof of Theorem 3: The proof is by contradiction. Sup-
pose the theorem is false. From Lemma 6 it follows that
all subsets on the path from the root to an optimal subset
S∗ have smaller f values than f∗∗. Since from Lemma 7 at
any given time at least one of them is in the fringe list, they
should be selected before S∗∗ is selected. But this means
that S∗ is selected as the solution and not S∗∗. ∎

Bounds
Both the Greedy variant and the Suboptimal variant are not
guaranteed to produce an optimal solution. We proceed to
show how to obtain a bound on how close their solution is to
the optimum. The technique we use was originally proposed
by (Hansen and Zhou 2007).

Consider a run of a non-optimal variant, producing the
non-optimal subset S∗∗. Then size(S∗∗) = k, and from
Lemma 1 it follows that l∗∗ = u∗∗ = E(S∗∗, r). The value
of l∗∗ is related to the optimal value l∗ by: l∗ ≤ l∗∗. Let B
be a value satisfying: l∗∗− l∗ ≤ B. We refer to B as a bound,
where a smallerB indicates a better bound, and in particular,
B=0 implies an optimal solution. An important observation
is that in many combinatorial search techniques it is possible
to compute such values.

Let F be the fringe list after the algorithm terminates.
Going over all the remaining nodes in F we can compute:
lmin = minSi∈F li. Then from Lemma 2 it follows that:
l∗ ≥ lmin. Therefore we can take:

B = l∗∗ − lmin, where: lmin = min
Si∈F

li. (5)

5 Improving the Accuracy
We propose a simple algorithm that can improve the accu-
racy of the results obtained by the Chunk-A∗ algorithm. The
idea is similar to the well known k-means technique, and we
refer to it as Algorithm 2. Running it on the results obtained
by the Chunk-A∗ will always decrease (never increase) the
PCA error, but it typically gets “stuck” in a local minimum
after a small number of iterations.

Algorithm 2: Improving Outliers
Input: X: a matrix of n columns. r: the PCA rank.

S: a subset of current outlier selection.
Tmax: the maximum number of iterations.

Output: a subset R of X satisfying: ∣R∣ = ∣S∣ and
E(R, r) ≤ E(S, r).

1 Set k = ∣S∣.
2 repeat
3 Set old error = the current error.
4 Compute V as the rank-r PCA of X∖S.
5 Compute ei = ∥xi∥2 − ∥V Txi∥

2 for all columns
xi of X .

6 Replace the k outliers of S by the k columns of
X with the largest ei.

7 Set new error = ∑xi/∈S ei.
8 until new error = old error or reach Tmax;
9 Set R = S and return.

The algorithm is motivated by the observation that the
PCA error can be evaluated separately for each column of
X . As in Equation (1), let V be a matrix with r orthog-
onal columns. The reconstruction error of xi is given by:
ei = ∥xi−V V

Txi∥
2 = ∥xi∥

2 − ∥V Txi∥
2, and the PCA error

can be computed as: E(S, r)=∑i/∈S ei.
The idea of Algorithm 2 is that if we know S we can cal-

culate V using PCA, which gives optimal reduction to the re-
construction error of the columns not in S. Once V is known
the best selection of k outliers from X is the columns with
the k largest reconstruction errors. The PCA error reduction
by this process improves the outlier selection. The complex-
ity of the algorithm isO(Tmaxrmn), where Tmax is the maxi-
mum number of iterations to convergence. Our experimental
results show that the number of iterations is typically at most
3, and thus can be effectively viewed as a constant. Correct-
ness proof will be given in the full version of this paper.

6 Fractional Bounds on Sub-Optimality
The bounds that we derive in this section measure how close
the computed result is relative to the optimal result. For ex-
ample, it may be interesting to know that the error of the
computed outlier set is within 10% of the optimal selection.
LetEk be the PCA error of the outlier set Sk produced by the
Chunk-A∗ algorithm for input size k. Let E∗k be the small-
est possible PCA error of an outlier set of size k. The bound
Bk computed from (5) satisfies: Ek ≤ E

∗
k +Bk. Let b be the

fractional bound: b = (Ek−E
∗
k)/E

∗
k . (It is meaningful only

when E∗k ≠ 0). After each run of the Chunk-A∗ algorithm,
we can compute an upper bound on b as shown in (6):

b =
Ek −E

∗
k

E∗k
≤
Bk

E∗k
≤

Bk

Ek −Bk
= b0. (6)

The value of b0 is a nontrivial bound on b, and can be calcu-
lated since both Bk,Ek are known at termination. Now con-
sider running Algorithm 2 after the Chunk-A∗, which gives
a new outlier subset with the PCA error E1

k ≤ Ek. We show
that the fractional bound b0 can be improved to the fractional
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bound b1 as follow:

b =
E1

k−E
∗
k

E∗k
≤
E1

k − (Ek−Bk)

E∗k
≤
Bk − (Ek−E

1
k)

Ek −Bk
= b1.

(7)
Clearly, b1 can be computed after the run of Algorithm 2 and
it is a sharper bound on b than b0.

7 Experimental Results
We evaluate the performance of the proposed algorithm
on various synthetic and real datasets. The real datasets
are publicly available. The comparison is with various
algorithms that made their code available, including: R-
graph (You, Robinson, and Vidal 2017); iSearch (Rahmani
and Li 2019); GGD (Maunu, Zhang, and Lerman 2019);
FMS (Lerman and Maunu 2018a); Cop (Rahmani and
Atia 2017); RMD (Goes et al. 2014); TME (Zhang 2016);
OP (Xu, Caramanis, and Sanghavi 2012); MKF (Zhang,
Szlam, and Lerman 2009); DHRPCA (Feng, Xu, and Yan
2012); TORP (Cherapanamjeri, Jain, and Netrapalli 2017);
R1PCA (Ding et al. 2006).

Experiments on Synthetic Datasets
We model our experiments after the detailed study described
in a recent survey paper (Lerman and Maunu 2018b). They
use two synthetic data models: the Haystack model and the
Blurryface model. Let U∗ be the ground truth subspace. The
error is computed as the squared principal angles between
U∗ and the recovered U .
The Haystack model: With fixed parameters m = 200,
n = 400, and r = 10, inliers are drawn independently at
random from N(0, U∗UT

∗ /r), and the outliers are drawn in-
dependently at random from N(0, I/D). All points are per-
turbed by adding noise from i.i.d. N(0,10−2I). The entire
dataset is centered at the end. One deficiency of the Haystack
model is that the recovery of subspace can be easy for some
algorithms, as mentioned in (Lerman and Maunu 2018b).
The Blurryface model: The motivation for the Blurryface
dataset is to generate data resembling real data. The Ex-
tended Yale face database B (Kuang-Chih Lee, Ho, and
Kriegman 2005) was used. The first individual’s face is
used to obtain the 9-dimensional subspace U∗. The inliers
are generated i.i.d. N(0, c1U∗UT

∗ /r) where c1 is tuned to
give inliers comparable magnitude. The outliers are sam-
pled from other faces. The resulting dataset is of size
m=400, n=500. See (Lerman and Maunu 2018b) for details.

To investigate the effect of different outlier percentages
on errors, 10 datasets were generated for each percentage
value from 10% to 90%. The Chunk-A∗ uses ε=∞ and sev-
eral chunk sizes. The algorithm is marked as Chunk-A∗ fol-
lowed by the c value. Chunk-A∗-1 is Chunk-A∗ with c=1,
Chunk-A∗-50 is Chunk-A∗ with c=50, and Chunk-A∗-k is
Chunk-A∗ with c=k, which is the largest allowable value
of c. The number of outliers is given as input for the fol-
lowing algorithms: R-graph, iSearch, DHRPCA, Shah, Cop
and Chunk-A∗. Parameters unspecified for other algorithms
are the same as those used in (Lerman and Maunu 2018b).
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Figure 3: Comparison on the Haystack model. The horizon-
tal axis is the boxplot of errors with different outlier percent-
ages. The red vertical line in a box corresponds to the me-
dian of errors. The vertical axis is the average running time.
The dashed vertical line corresponds to the median error of
the ground truth. The closer to the left bottom, the better the
algorithm is.
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Figure 4: Comparison on the Blurryface model.
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dataset r∶k
f = l f = f = f =

f = u
f = l + u f = l + 0.5u iSearch R-graph TME(optimal) l + 0.2u l + 0.5u l + 1.0u bound:b0 bound:b0

spectf
267 × 45

5:5 290,498 290,498 290,498 290,498 290,498 0.29 0.09 293,043 299,100 303,907
7:7 203,556 203,556 203,556 203,556 203,556 0.40 0.19 217,235 212,274 218,210

vehicle
846 × 18

5:5 35,908 35,908 35,908 36,211 36,211 0.39 0.38 52,553 54,686 42,234
10:5 1,212 1,242 1,242 1,242 1,580 0.05 0.05 2,122 4,140 2,354

libras
360 × 90

1:3 591.43 591.43 591.43 591.43 591.43 0.00 0.00 591.43 598.72 591.43
20:7 - - 1.03 1.03 1.07 0.59 0.22 1.13 1.15 1.15

Table 2: Accuracy and bounds with different filter functions. The minimum errors and bounds are highlighted. “-” indicates no
results after running for 5 minutes.

dataset rd ∶ r ∶ k c = 1 c = 0.5∗k c = k iSearch R-graph TME
Day1:sparse

20,000 × 3,231,957
100:30:100 error

> 60min 59,976 60,413 - - -
runtime 884s 607s - - -

Sift:dense
128 × 1,000,000 70:15:100 error e1 + 5.95E6 e1 + 5.96E6 e1 + 5.96E6 ArrayLimit > 10min e1 + 6.08E6

runtime 1523s 78s 65s 43s
YPMSD:dense
90 × 515,345 50:10:100 error e2 + 2.79E8 e2 + 2.79E8 e2 + 2.80E8 ArrayLimit > 10min e2 + 3.02E8

runtime 438s 22s 17s 8s
Covtype:dense
54 × 581,012

30:3:30 error e3 + 8.45E7 e3 + 8.45E7 e3 + 8.45E7 ArrayLimit > 10min e3 + 9.84E7
runtime 69s 7s 6s 21s

Table 3: Greedy variant on big datasets. “-” indicates no results since the implementation does not support sparse data format.
The common parts of the errors: e1 = 4.61E10, e2 = 6.2E11, and e3 = 3.1E11.

The results for the Haystack model are shown in Figure 3.
Our Chunk-A∗ is the fastest among those which achieve
high accuracy. The results for the Blurryface model are
shown in Figure 4. Our Chunk-A∗ is both accurate and fast.

Experiments on Real Datasets
We describe experiments with standard datasets that are
commonly used for evaluating machine learning algorithms.
Since the ground truth is unknown, the error is taken to be
the PCA error on the inliers, as defined in Section 2.
Various filter functions: With different selections of filter
functions, our algorithm produces optimal and suboptimal
results. The results of different filter functions for various
datasets with c=1 are shown in Table 2. Observe that: 1. With
ε=0 (optimality guaranteed) the algorithm always produces
the smallest values; 2. Larger ε values give solutions that are
typically less accurate than the optimal; 3. Smaller ε values
yield tighter bounds; 4. Our algorithm is significantly more
accurate than other algorithms.
Bounds on sub-optimality: The suboptimal solutions given
by our algorithm come with guarantees on how close the
solutions are to the optima. Table 4 shows the bounds and
errors with different chunk sizes, where error0 is the error
after running Chunk-A∗; error1 is the error after running Al-
gorithm 2. Observe that: 1. With chunking (c > 1), the algo-
rithm runs faster while the error and bound values become
bigger. 2. Algorithm 2 improves the results when the chunk
size is big (e.g., c ≥ 0.5∗k).
Experiments with big datasets: Experimental results with
the greedy variant applied to big datasets are shown in Ta-
ble 3. Without chunking (c=1), the algorithm is much slower.
R-graph and iSearch cannot work with large datasets.

r ∶ k ∶ ε c=1 c=0.2∗k c=0.5∗k c=k

5:20:0.2

b1 0.12 0.12 0.12 0.14
error0 563,313 563,313 563,313 583,633
error1 563,313 563,313 563,313 577,102

time 67s 21s 18s 17s

5:60:0.2

b1 0.26 0.31 0.31 0.50
error0 110,054 113,716 115,004 133,020
error1 110,054 113,716 113,716 130,433

time 93s 18s 16s 16s

10:70:0.1

b1 0.15 0.17 0.19 0.19
error0 46,461 47,213 48,115 48,148
error1 46,461 47,213 48,115 48,148

time 41s 17s 19s 16s

10:90:0.1

b1 0.18 0.20 0.22 0.21
error0 19,673 19,881 20,314 20,169
error1 19,673 19,881 20,314 20,169

time 417s 18s 17s 17s

Table 4: Experiments with the suboptimal variant with dif-
ferent chunk sizes on TechTC01 dataset (29,261 × 163).

8 Conclusions
Identifying outliers for Principal Component Analysis is an
important problem in data analytics and machine learning.
We propose a new algorithm for outlier detection that com-
bines the “chunk recursive elimination” and the combinato-
rial search, similar to the classical A* search algorithm. We
describe three variants of the algorithm. One variant is guar-
anteed to produce optimal solutions. Other variants are not
optimal, but compare favorably with current alternatives. We
also show how to compute sub-optimality bounds for this
problem. Extensive experiments demonstrate the effective-
ness of the proposed approach.
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