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Abstract

The optimal camera placement problem (OCP) aims to ac-
complish surveillance tasks with the minimum number of
cameras, which is one of the topics in the GECCO 2020 Com-
petition and can be modeled as the unicost set covering prob-
lem (USCP). This paper presents a weighting-based variable
neighborhood search (WVNS) algorithm for solving OCP.
First, it simplifies the problem instances with four reduction
rules based on dominance and independence. Then, WVNS
converts the simplified OCP into a series of decision unicost
set covering subproblems and tackles them with a fast lo-
cal search procedure featured by a swap-based neighborhood
structure. WVNS employs an efficient incremental evaluation
technique and further boosts the neighborhood evaluation by
exploiting the dominance and independence features among
neighborhood moves. Computational experiments on the 69
benchmark instances introduced in the GECCO 2020 Com-
petition on OCP and USCP show that WVNS is extremely
competitive comparing to the state-of-the-art methods. It out-
performs or matches several best performing competitors on
all instances in both the OCP and USCP tracks of the compe-
tition, and its advantage on 15 large-scale instances are over
10%. In addition, WVNS improves the previous best known
results for 12 classical benchmark instances in the literature.

Introduction
The optimal camera placement problem (OCP) aims to min-
imize the cost for performing surveillance tasks, which can
be modeled as the unicost set covering problem (USCP).
Each sample point (element) in the target area (universal set)
is covered by several candidate camera positions (subsets)
and we need to cover all samples (elements) by picking the
minimum number of candidates (subsets) to place cameras.

The optimal camera placement problem is one of the top-
ics of the GECCO 2020 Competition, which consists of
two tracks: OCP track and USCP track. The difference be-
tween them lies in the fact that the geometric information
of samples and candidates are available in the OCP track,
while it is modeled as a general unicost set covering prob-
lem in the USCP track. Although the early researches on
OCP start from the surveillance of continuous space (Kritter
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et al. 2019), which received much attention from the com-
putational geometry community, recent advances usually fo-
cus on the combinatorial models (Liu, Sridharan, and Fookes
2016). By properly discretizing the target space into a set of
sample points, we can represent the sight of each candidate
camera position by a subset of sample points. Therefore, the
problem of filling the target space with geometric shapes be-
comes finding a union of subsets to cover all sample points.

Due to the close relation between the optimal camera
placement and the set covering problem (SCP), the compu-
tational experiments for OCP were usually performed on the
SCP instances in the OR-Library (Beasley 1990). However,
most of these instances are randomly generated and do not
respect the specific geometric properties in the context of
OCP, which are not very objective for evaluating OCP solu-
tion methods. Recently, Brévilliers et al. (2018) proposed
a dedicated benchmark dataset for OCP and tested their
hybrid differential evolution algorithm on these instances.
Their experimental results show that their algorithm outper-
forms the state-of-the-art general USCP solvers in the liter-
ature, indicating that there is huge room for improvement to
the dedicated OCP solvers. Furthermore, the GECCO 2020
Competition on OCP and USCP introduces more real-world
datasets and provides an opportunity to make fair compari-
son among various approaches.

The unicost set covering problem is one of the most clas-
sical NP-hard problems (Gao et al. 2015). It can be used
to formulate many real-world optimization problems, such
as logical function minimization (Seda 2007; Steinbach and
Posthoff 2012), sensor placement (Rui et al. 2017), soft-
ware test suite reduction (Chi et al. 2017), team formation
(Demirović et al. 2018), and facility location (Zhang et al.
2020). In addition, several well-known NP-hard problems
can be reduced to USCP, including dominating set (Cai et al.
2020) and vertex cover (Cai, Su, and Sattar 2011). As a
specialization of the set covering problem, USCP can be
tackled by any algorithm for SCP. Caprara, Toth, and Fis-
chetti (2000) presented a comprehensive benchmark on dif-
ferent approaches for SCP. Their computational results indi-
cate that solving the mixed integer programming model by
general solvers like CPLEX is highly competitive compar-
ing to the dedicated exact methods. Moreover, the state-of-
the-art heuristic algorithms are able to effectively tackle the
instances which are too massive for the exact methods.
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Apart from the solution approaches for SCP, many dedi-
cated algorithms for USCP were proposed and competitive
results were obtained by exploiting the specific properties of
USCP (Grossman and Wool 1997). In detail, the early algo-
rithms usually adopt local search to solve the Lagrangian
relaxation of USCP (Musliu 2006; Yagiura, Kishida, and
Ibaraki 2006). Lan, DePuy, and Whitehouse (2007) pro-
pose a large neighborhood search (LNS) which destroys and
repairs the current solution repeatedly. Naji-Azimi, Toth,
and Galli (2010) propose an electromagnetism metaheuristic
based on the LNS algorithm proposed by Lan, DePuy, and
Whitehouse (2007), which iteratively drops a set and solves
the partial USCP to cover the resulting uncovered elements.
More recently, Gao et al. (2015) propose an efficient local
search with row weighting (RWLS) which outperforms the
aforementioned algorithms on most benchmark instances.
Although the row weighting technique and Lagrangian re-
laxation share some common ideas, they are very different.
Instead of considering the original objective function (the
number of picked sets) and the constraint violation (the num-
ber of uncovered elements) together, RWLS forbids worsen-
ing the original objective value, and only improves the orig-
inal objective value when all constraints are satisfied.

The weighting technique is widely used in local search
algorithms to solve challenging combinatorial optimization
problems, by guiding the search to escape from the local op-
tima. Its basic idea is similar to the Lagrangian relaxation in
that it permits constraint violation and adds corresponding
penalties to the objective function. The penalty of violating
each constraint is associated with a specific weight which
is adjusted according to the constraint violation of the ex-
plored solutions. The weighting technique is very successful
on the satisfiability problem (Selman and Kautz 1993; Luo,
Su, and Cai 2012), constraint satisfaction problem (Morris
1993), unicost set covering problem (Gao et al. 2015), and
minimum vertex cover problem (Cai, Su, and Sattar 2011),
because it diversifies the search in an adaptive way.

In this paper, we present a weighting-based variable
neighborhood search (WVNS) algorithm for solving OCP
and USCP. First, WVNS reduces the problem instances by
rules of dominance and independence. Then, WVNS con-
verts USCP into a series of decision subproblems and tack-
les them with a fast local search procedure which employs
a swap-based neighborhood structure and an efficient incre-
mental evaluation technique. Furthermore, by exploiting the
dominance and independence among neighborhood moves,
we propose a neighborhood reduction technique which dra-
matically boosts the neighborhood evaluation. The computa-
tional results on the 69 benchmark instances used in GECCO
2020 Competition on OCP and USCP demonstrate the ef-
fectiveness of our proposed algorithm. It outperforms or
matches several best performing competitors on all the in-
stances in both the OCP and USCP tracks of the competi-
tion, and its advantage on 15 large instances is over 10%.
In addition, WVNS improves the best known results for 12
classical benchmark instances in the literature. Finally, we
analyze the impact of the proposed reduction techniques and
justify their contribution to the effectiveness of WVNS.
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Figure 1: Bipartite graph representation of an USCP instance
where E = {e1, e2, e3, e4, e5} and S = {s1, s2, s3, s4}. Set
si and element ej are adjacent if set si covers element ej .

Preliminaries
Given a set of elementsE and a set of subsets S, each subset
s ∈ S covers a set of elements Cs ⊂ E and each element
e ∈ E is covered by a set of subsets Be ⊂ S. The unicost
set covering problem aims to cover all elements in E with
the minimum number of subsets in S. In other words, if we
denote the selected subsets with X ⊂ S, we need to min-
imize |X| while satisfying the constraints

⋃
s∈X Cs = E,

i.e., Be ∩ X 6= ∅, ∀e ∈ E. In the sequel, we will mention
the “subset” as “set” for short.

Generally, we can represent USCP instances as bipartite
graphs. Each set or element corresponds to a node in the
bipartite graph. If set s covers element e, i.e., e ∈ Cs, there
is an edge between the corresponding pair of nodes. Figure
1 gives an example of representing a small USCP instance
by a bipartite graph. With this graph representation, we can
define the neighborhood Nk

e of each element e ∈ E as the
elements or sets that element e can reach within k hops. For
example, in Figure 1, N1

e1 = Be1 = {s1}, N2
e1 = N1

e1 ∪
{e2, e3}, N3

e1 = N2
e1 ∪ {s2, s3}.

Solution Approach
We propose a weighting-based variable neighborhood
search (WVNS) for solving OCP and USCP as presented in
Algorithm 1. First, it adopts reduction rules to simplify the
problem instances. Then, the proposed algorithm employs
a PageRank-like constructive heuristic to generate an initial
feasible solution. Next, WVNS transforms USCP into a se-
ries of k-set covering decision subproblems, which aims to
cover all elements using exact k sets. Starting from the ini-
tial feasible solution, once the current solution covers all el-
ements by k+1 sets, WVNS randomly drops a set and turns
to tackle the resulting k-set covering problem. Finally, we
tackle each subproblem with a fast local search procedure.

Reduction Rules
We adopt four reduction rules to eliminate some elements
and sets, and deduce that some sets must be included in the
optimal solution. We repeatedly apply them in turn until no
more elements or sets can be eliminated or fixed. Note that
rules RD, CD, and UC are classical reduction rules proposed
by Beasley (1987), while rule CC is first proposed in this
study to the best of our knowledge.
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Algorithm 1 The main framework of the WVNS algorithm

Input: A set of elements E, a set of subsets S
Output: The best solution found so far X∗

1: Reduce instance size
2: Initial solution X ← Init(E,S)
3: X∗ ← X
4: Element weights we ← 1, ∀e ∈ E
5: while Time limit is not reached do
6: Randomly select a set q from X , X ← X \ {q}
7: while Time limit is not reached do
8: Find best swap move (p, q)
9: X ← X ∪ {p} \ {q} /* Make move */

10: /* U(X) = E \
⋃

s∈X Cs is a function which */
11: /* returns the set of uncovered elements by X */
12: if |U(X)| = 0 then
13: X∗ ← X
14: break
15: else if |U(X)| ≥ |U(X ∪ {q} \ {p})| then
16: we ← we + 1, ∀e ∈ U(X)
17: end if
18: if maxe∈E we > 216 then
19: we ← we/2, ∀e ∈ E /* Smooth weights */
20: end if
21: end while
22: end while

• Row dominance (RD). For each pair of elements e, e′ ∈
E, if all the sets covering element e also cover element
e′, i.e., Be ⊆ Be′ , then covering element e by any set
s ∈ Be will also make element e′ be covered. We say that
element e dominates element e′ in such case, and we can
safely eliminate element e′.

• Column dominance (CD). For each pair of distinct sets
s, s′ ∈ S, if all elements covered by set s are also covered
by set s′, i.e., Cs ⊆ Cs′ , then we say that set s′ dominates
set s, and we can safely eliminate set s.

• Unit clause (UC). If an element e is only covered by a
single set s, then we must pick set s in order to cover
element e. Apparently, all elements covered by set s can
be eliminated consequently.

• Connected component (CC). In the bipartite graph rep-
resentation, we may discover that an instanceG can be di-
vided into several connected components G′1, G

′
2, ..., G

′
n

by breadth first search. Let X ′i be the optimal solution to
instance G′i, the optimum for the original instance G can
be composed by

⋃n
i=1X

′
i . If the size of a subgraph G′i is

small enough, we can solve it with exact algorithms, fix
the sets in X ′i , and eliminate all the elements in G′i.

Initial Solution Generation
The proposed algorithm employs a constructive heuristic
to generate an initial feasible solution. This procedure it-
eratively picks the most important set until all elements
are covered. The importance of each set is evaluated by a
PageRank-like strategy (Page et al. 1999). If an element is
covered by few sets, i.e., |Be| is small, it may be hard to

be covered. If a set covers many hard-to-cover elements, it
could be very important. Based on these assumptions, we
calculate the importance αs of each set s by Equation (1),
where we denote the importance of element e by αe. Since
each element is equally important in USCP, we adoptαe = 1
for the uncovered elements and αe = 0 for the already cov-
ered ones during the construction.

αs =
∑
e∈Cs

αe

|Be|
, ∀s ∈ S (1)

The above general-purpose heuristic is applied to the in-
stances in the USCP track. Moreover, for the OCP track, in
addition to this heuristic, we adopt a tiling method which
utilizes the geometric information for massive regular in-
stances. This method is especially effective for cuboid space
such as warehouses or public squares. In such cases, the
monitored space is discretized by a regular grid of sample
points (Brévilliers et al. 2018). Thus, we can generate high-
quality solutions by exploiting the subgraph isomorphism in
the bipartite graph of the monitored space, since the isomor-
phic substructures usually induce repeating patterns in the
solution vectors. Without loss of generality, we will discuss
the two-dimensional scenario in the sequel in order to sim-
plify the description and illustration.

The proposed tiling method first builds a pool of rectan-
gular tiles with distinct widths or heights, then it tries to fill
the target area with these tiles. For each tile with a specific
size, it covers the sample points in the corresponding rect-
angular area, and the camera placement for this limited area
can be regarded as the decorative pattern of the tile. We call
the procedure of determining the pattern of a tile as tile-
building. One thing to notice is that, this tiling method is
different from the block-building technique for the packing
problems or the agglomeration approaches for the clustering
problems. Each tile is not required to fully cover its contain-
ing sample points, instead, the adjacent tiles cooperate with
each other to achieve seamless tiling.

In detail, the main idea of the tile-building procedure is
illustrated in Figure 2. Given a tile whose width is w and
height is h, if we pick a candidate camera at (x, y), the
candidate cameras located at (x, y ± h), (x ± w, y), and
(x± w, y ± h) and heading to the same direction should be
picked together. This requirement guarantees that the pattern
of the cooperating tiles is the same as the must-cover tile.
Furthermore, if we combine the tied sets into a single larger
set, the tile-building procedure itself becomes a unicost set
covering problem which minimizes the number of picked
combined sets to cover all the elements in the must-cover
tile. However, comparing to the original USCP instance, the
ones for the tile-building procedure are much smaller.

For each built tile with specific size, we try to tile the tar-
get area with it starting from different positions (x, y) and
only consider placing tiles at (x±i×w, y±j×h), ∀i, j ∈ Z.
Since the edge of the target area is irregular and the tiles
may go beyond the boundary, we need to remove the non-
existing sets and use the general-purpose heuristic to repair
the incomplete solution. Finally, we randomly choose one of
the top 64 solutions over the ones produced by different size
and offset configurations as the initial solution.
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Figure 2: Key idea of the tile-building and tiling procedures.

Reformulation and Weighting Technique
It is a common technique to convert an optimization problem
into a series of decision sub-problems and conquer them in
sequence or even concurrently (Lü and Hao 2010; Gao et al.
2015; Zhang et al. 2020). Regarding OCP, it can be trans-
formed into a series of k-set covering problems, denoted by
OCPk, which determines whether all elements can be cov-
ered by exact k sets. Once the proposed algorithm obtains a
solution which covers all elements by k+1 sets, it randomly
drops a set and moves on to OCPk.

In order to effectively solve each subproblem, we relax
the coverage constraints and impose penalty for each uncov-
ered element to the objective function. Specifically, let We

be the weight of element e, the objective function f(X) can
be defined as Equation (2), which is the sum of the weights
of each uncovered element.

min f(X) =
∑

e∈E,Be∩X=∅
We (2)

Initially, the weight of each element is We = 1. The ob-
jective is equivalent to minimizing the number of uncovered
elements. When the algorithm encounters stagnation, i.e., it
failed to improve the objective value, we increase the weight
of each uncovered element by one.

As the search progresses, the weights of some elements
will become very large. It may misguide the search or cause
integer overflow. Therefore, we introduce a smoothing pro-
cedure to overcome these issues. If the weight of any ele-
ment exceeds a given threshold, the proposed algorithm will
divide the weight of each element by two. Specifically, the
threshold is set to 216 in WVNS.

Neighborhood Structure and Evaluation
The neighborhood structure describes the adjacency relation
between solutions in the solution space. Given the incum-
bent solution X , performing neighborhood move m pro-
duces a neighboring solution X ⊕ m. The improvement of
move m, denoted by ∆(m), is the difference of objective
values between the two solutions, so that f(X ⊕ m) =
f(X) + ∆(m).

In order to tackle each k-set covering sub-problem, the
proposed local search procedure adopts a swap-based neigh-
borhood structure. At each iteration, it tries to improve the

current solution X by picking a set p ∈ S \X and dropping
a set q ∈ X to obtain a neighboring solution X ∪ {p} \ {q}.
The proposed algorithm follows the best-improvement pol-
icy, i.e., it evaluates all neighborhood moves and performs
the one which leads to the best neighboring solution. In order
to avoid re-evaluating the just-visited solutions, we employ
a simple tabu strategy to diversify the search. Specifically,
the sets which are just dropped or picked will not be taken
into account at the next iteration.

Instead of naively evaluating each neighboring solution
by Equation (2), WVNS adopts an incremental evaluation
technique inspired by Zhang et al. (2020). In other words,
we maintain the improvement ∆(p) of picking a set p ∈
S \ X so that we can evaluate the neighboring solution by
f(X⊕p) = f(X) + ∆(p). The corresponding notations for
dropping a set q ∈ X can fit into the above ones without
ambiguity. In the current solution, the elements can be parti-
tioned into three groups, which are uncovered (G0), covered
by exact one set (G1), and covered by more than one sets
(G2), respectively. Apparently, picking a set p will make all
elements in Cp∩G0 covered, and dropping a set q will make
all elements in Cq ∩ G1 uncovered. Therefore, we can cal-
culate the incremental values as Equations (3) and (4). Note
that performing a neighborhood move will change the be-
longing groups of some elements, so we need to track these
elements and update the incremental values accordingly.

∆(p) =−
∑

e∈Cp∩G0

We, ∀p ∈ S \X (3)

∆(q) =
∑

e∈Cq∩G1

We, ∀q ∈ X (4)

Neighborhood Reduction
Empirically, larger neighborhood leads to better solution
quality. Unfortunately, it usually results in poor performance
because larger neighborhood requires more time-consuming
evaluation. Therefore, a balanced neighborhood structure is
critical to the performance of local search algorithms.

In the classical solution methods for USCP like RWLS
(Gao et al. 2015), the picking and dropping moves are
evaluated separately. That is, they perform the best pick-
ing move out of O(|S \ X|) ones and the best dropping
move out of O(|X|) ones in turn. As a result, there are to-
tally O(|S \ X| + |X|) evaluated moves at each iteration.
However, WVNS considers the pick-drop pair as a whole,
which dramatically expand the size of the neighborhood to
O(|S\X|×|X|). Regarding the large scale instances in real-
world applications where there are millions of sets and thou-
sands of picked sets, evaluating all valid moves is impracti-
cal. Thus, we need to reduce the neighborhood to reach a
trade-off between the computational efficiency and solution
quality. For convenience, we denote the set of swap moves
which consists of picking a set in P and dropping a set in
Q by M(P,Q). For example, we can represent the moves in
the complete swap neighborhood by M(S \X,X).

On the one hand, we restrict the candidate sets to pick by
focusing on a single uncovered element at a time. In detail,
at each iteration, WVNS selects an uncovered element e∗
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uniformly at random, and only considers picking each set
p ∈ Be∗ which covers element e∗. This technique reduces
the complete neighborhood to M(Be∗ , X), which improves
both the efficiency and diversification of the search.

On the other hand, we require that the sets to drop are
closely related to element e∗. This idea is based on the con-
jecture that, it is usually hard to improve the current solu-
tion by swapping a pair of distant sets, especially when the
current solution is almost a feasible cover and the picked
sets rarely overlap. Specifically, the proposed algorithm only
considers dropping set s ∈ X ∩N3

e∗ , i.e., the neighborhood
becomesM(Be∗ , X∩N3

e∗). Recall thatN3
e∗ contains all the

sets which are at most three hops to element e∗ in the bi-
partite graph representation, which means ∀s ∈ N3

e∗ , ∃s′ ∈
Be∗ , Cs ∩ Cs′ 6= ∅. The performance gain brought by this
reduction technique is especially significant when the cover-
age of each set is much smaller than the universal set, at the
price of neglecting some potential promising moves.

The above reduction technique improves the performance
by ignoring the moves in M(Be∗ , X \ N3

e∗). However, we
are able to efficiently find the best move amongM(Be∗ , X \
N3

e∗) by utilizing the concept of independent moves.
Definition 1. A pair of neighborhood moves m1 and m2 to
be performed on the incumbent solution X are independent
if f(X ⊕m1 ⊕m2) = f(X) + ∆(m1) + ∆(m2).

Definition 1 describes a common phenomenon in local
search algorithms that, after performing a move, the im-
provements of some other moves may not change.
Proposition 1. In USCP, a pair of moves is independent if
the involved sets do not cover any common elements.

Proof. Let the involved sets be p and q. According to Equa-
tions (3) and (4), the value of ∆(p) only depends on the cov-
ering states of elements in Cp. Since X ⊕ q only affects the
covering states of elements in Cq and Cp ∩ Cq = ∅, ∆(p)
is the same for both X and X ⊕ q. Thus, f(X ⊕ p ⊕ q) =
f(X ⊕ q) + ∆(p) = f(X) + ∆(p) + ∆(q).

Proposition 2. In USCP, picking a set p ∈ Be∗ is indepen-
dent of dropping a set q ∈ X \N3

e∗ .

Proof. Assume that sets p and q cover some common ele-
ments, i.e., Cp ∩ Cq 6= ∅. Then, these two sets can reach
each other within two hops in the bipartite graph represen-
tation. Meanwhile, set p ∈ Be∗ means set p is adjacent to
element e∗, so element e∗ can reach set q within three hops
by e∗ → p (one hop) and p → q (two hops). That is to say,
q ∈ N3

e∗ is true, which contradicts q ∈ X \ N3
e∗ . So, sets

p and q do not cover any common elements. According to
Proposition 1, these two moves are independent.

Recall the toy instance illustrated in Figure 1, according to
Propositions 1 or 2, the objective value increments of pick-
ing/dropping set s1 is independent of picking/dropping set
s4, no matter what the picking states of other sets are.
Corollary 1. In USCP, if p∗ = argminp∈Be∗

∆(p) and
q∗ = argminq∈X\N3

e∗
∆(q), then ∆(p∗ ⊕ q∗) = ∆(p∗) +

∆(q∗) ≤ ∆(p)+∆(q) ≤ ∆(p⊕q), ∀p ∈ Be∗ , ∀q ∈ X\N3
e∗ .

Corollary 1 is a natural extension of Proposition 2. It
points out that we do not need to enumerate all O(|Be∗ | ×
|X \N3

e∗ |) pick-drop pairs in M(Be∗ , X \N3
e∗) to find the

best swap move. Instead, it can be done in O(|Be∗ | + |X \
N3

e∗ |) time by directly combining the best picking move and
the best dropping move. Since M(Be∗ , X) = M(Be∗ , X ∩
N3

e∗) ∪M(Be∗ , X \N3
e∗), we can find out the best move in

M(Be∗ , X) in O(|Be∗ | × |X ∩N3
e∗ |+ |Be∗ |+ |X \N3

e∗ |)
time if evaluating each move takes constant time.

Although the aforementioned acceleration technique sig-
nificantly reduces the time complexity for evaluating
M(Be∗ , X), it is still slower than M(Be∗ , X ∩ N3

e∗). In
order to balance between the effectiveness and efficiency,
WVNS evaluates M(Be∗ , X \ N3

e∗) only if M(Be∗ , X ∩
N3

e∗) contains no improving move to the current solution.
That is to say, our algorithm actually explores two neighbor-
hoodsM(Be∗ , X∩N3

e∗) andM(Be∗ , X) alternatively. This
is the reason we call our algorithm weighting-based variable
neighborhood search.

Experiments and Analysis
Experimental Protocol
In order to assess the effectiveness of the proposed WVNS
algorithm, we conduct extensive experiments on 69 in-
stances used in GECCO 2020 Competition on OCP and
USCP, and compare our outcomes with the state-of-the-art
algorithms in the literature and the participating solvers in
the competition. There are 32 academic instances (AC) and
37 real-world ones (RW) in the GECCO dataset1. In addi-
tion, 18 out of the 32 AC instances were tested by Brévilliers
et al. (2018), and the RW instances are similar to those tack-
led in Kritter et al. (2019). There are up to four million sets
and one million elements in each instance. Moreover, there
are two tracks in the competition. In the USCP track, the op-
timal camera placement problem is modeled into pure uni-
cost set covering problem. In the OCP track, additional ge-
ometric information about the sample points and candidate
camera positions is provided.

The experiments are run on a server equipped with
2.6GHz CPU and 128GB RAM. We perform four indepen-
dent runs under 1,000-second time limit on a single CPU
core, which is the same as adopted in Brévilliers et al.
(2018). The connected component reduction rule is imple-
mented by running exact mixed-integer linear programming
(MILP) solver Gurobi 9.0.1 (Gurobi Optimization, LLC
2019) on each subproblem under one-second time limit and
fixing the solutions of the subproblems which are solved to
optimal. In addition, since the instances used in the GECCO
2020 Competition on OCP and USCP are really large and
hard, there is no limit on hardware and computational time
in the competition, in order to allow the competitors to fully
exploit their potentials. So, we also run WVNS with the time
limit of six hours for each RW instance, and with the time
limit of one day and up to 16 cores along with GPU to accel-
erate the neighborhood evaluation for each AC instance. The
experimental results obtained by WVNS under the extended

1http://www.mage.fst.uha.fr/brevilliers/gecco-2020-ocp-uscp-
competition/
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resource conditions are denoted by WVNS-e. Furthermore,
we also report the computational results of WVNS on the
AC instances when the geometric information is available.
These results are denoted by WVNS-g and obtained by per-
forming 64 independent runs under six-hour time limit.

The characteristics of the reference algorithms are listed
in Table 1. DEsim in Brévilliers et al. (2018) is the best al-
gorithm for OCP in the literature to the best of our knowl-
edge. MILP+LNS, MSEC, SSHH, and ACO are the the most
competitive participants in the GECCO 2020 Competition
on OCP and USCP. From Table 1 we can observe that, state-
of-the-art algorithms usually use metaheuristics or the hy-
bridation of mathematical programming and metaheuristics
to solve OCP and USCP.

Computational Results
Tables 2 and 3 report the computational results obtained by
the proposed algorithm. Columns LB and UB present the
objective values, i.e., the number of sets to pick to cover
all elements. In detail, column LB gives the lower bound of
each instance calculated by the MILP solver Gurobi 9.0.1
(Gurobi Optimization, LLC 2019) in two hours, and the
numbers in bold indicate the optimal objective value, i.e.,
the lower bound matches the best known upper bound. Col-
umn DEsim reports the results obtained by Brévilliers et al.
(2018) executed with a time limit of 1,000 seconds on In-
tel Core i5-3330 3.00GHz CPU and 4GB RAM. Columns
MILP+LNS, MSEC, SSHH, and ACO present the results of
the corresponding algorithms reported in the GECCO 2020
Competition on OCP and USCP, respectively. As there is
no time limit in the competition, the competitors are able
to submit the best solutions they can obtain ever. That is to
say, they are free to keep running their algorithms until they
think more CPU time will not help improving the results.
Column UB represents the best upper bound obtained by
WVNS, and the numbers in bold stand for the best known re-
sults. Column CPU reports the shortest computational time
in seconds to hit the best upper bounds. Column Hit shows
the hit rate of the presented results by corresponding algo-
rithms. Row #best gives the number of instances for which
the corresponding algorithm obtains the best results among
all algorithms. Row Gap shows the average gap between the
best results obtained by each algorithm and the best results.

From Table 2 we can observe that, the MILP solver only
proves the optimality for the five smallest instances, and
fails to solve the linear relaxation to obtain the initial lower
bounds on 21 instances. These results indicate that the AC
instances are very challenging. The proposed WVNS algo-
rithm matches or outperforms DEsim on every public in-
stance in the literature within 1,000 seconds and the im-
provements can be 10% on some instances. Moreover, when
the time limit is extended, the advantage of WVNS expands
to 17% on the largest instance tested by DEsim. Regarding
the participants in the competition, although most of them
also outperform the best results in the literature, WVNS-e
still keeps over 7% advantage on average. In addition, the
gaps become larger as the scale of the instances grows.
These results indicate that WVNS is not only efficient to ob-
tain good solutions quickly, but also very effective and scal-

able to search for high-quality solutions. Moreover, when
the geometric information is available, WVNS is able to fur-
ther improve the best known upper bounds on 18 instances,
which justifies the effectiveness of the tiling method.

Table 3 reports the results on RW instances. There are
six instances whose best known solutions are proven to be
optimal, and the proposed algorithm is able to obtain such
results within 300 seconds. For the remaining instances, the
lower bounds are very close to the best known upper bounds,
which means that the room for improvement is relatively
small, and even a tiny advance may require huge efforts. As
we can see from the table, WVNS keeps its advantage on
these real-world datasets. In detail, WVNS obtains the best
known results on every RW instance, and it still dominates
the reference algorithms even if the time limit is restricted to
1,000 seconds. Again, these results justify the efficiency and
effectiveness of WVNS.

Analysis on Neighborhood Evaluation
In this section, we investigate how different neighborhood
evaluation strategies influence the performance of WVNS.
We include four configurations in this comparison.
• RN: Only evaluate M(Be∗ , X ∩N3

e∗).
• VN: Evaluate M(Be∗ , X \N3

e∗) when M(Be∗ , X ∩N3
e∗)

contains no improving move to the current solution.
• LS: Same as VN but the weighting technique is disabled.
• NE: Evaluate M(Be∗ , X) in the naive way.
In detail, RN only evaluates the reduced neighborhood,
which is fast but shortsighted. VN is the variable neighbor-
hood in the final version of WVNS which adaptively eval-
uates the larger neighborhood in an effective manner. LS
modifies the objective function that the quality of a solu-
tion is evaluated by the number of uncovered elements in-
stead of Equation (2). NE evaluates the swap neighborhood
without utilizing the dominance and independence proper-
ties. In order to make the comparison clearer, we conduct
experiments on three hard RW instances (RW13, RW25, and
RW31) which are not solved to the best known results within
1,000 seconds. Figure 3 shows the evolution of the objective
value gaps by integrating different neighborhood evaluation
strategies into WVNS. Each point (x, y) on the curves rep-
resents that the gap between the set number of the current
solution and the best known one is y at x seconds.

Figure 3 shows that VN is able to obtain better results
in shorter time on the tested representative instances com-
paring to other implementations. Although initializing the
data structures for the reduction takes some time, VN can
overtake the naive implementation NE within 20 seconds.
In addition, by comparing VN and RN we observe that, the
benefit of evaluating larger neighborhood is able to compen-
sate for the performance loss. These phenomena indicate
that variable neighborhood is quite effective and the pro-
posed acceleration technique significantly improves the per-
formance of WVNS. Furthermore, we can observe that the
weighting technique is essential to WVNS that the configu-
ration LS quickly converges to low-quality solutions. Thus,
the weighting technique is a very successful diversification
strategy to guide the search to escape from the local optima.
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Algorithm Characteristic

DEsim Hybrid differential evolution algorithm (Brévilliers et al. 2018)
MILP+LNS Hybridization of a MILP solver and a large neighborhood search
MSEC Local search
SSHH Sequence-based selection hyper-heuristic
ACO Ant colony optimization

Table 1: Characteristics of reference algorithms.

Inst. LB MILP
+LNS MSEC SSHH ACO DEsim

WVNS WVNS-e WVNS-g

UB CPU Hit UB CPU Hit UB CPU Hit

AC01 7 7 7 7 7 7 7 1 4/4 7 1 4/4 7 1 64/64
AC02 4 4 4 4 4 4 4 1 4/4 4 1 4/4 4 1 64/64
AC03 3 3 3 3 3 3 3 1 4/4 3 1 4/4 3 1 64/64
AC04 5 5 5 5 5 5 5 1 4/4 5 1 4/4 5 1 64/64
AC05 7 7 7 7 8 7 7 1 4/4 7 1 4/4 7 1 64/64
AC06 6 10 10 11 15 10 10 1 4/4 10 1 4/4 10 1 64/64
AC07 9 17 17 17 28 19 17 1 4/4 17 1 4/4 17 1 64/64
AC08 13 26 26 27 - 30 25 106 4/4 25 109 4/4 25 111 64/64
AC09 - 38 38 41 - - 36 123 4/4 36 133 4/4 36 128 64/64
AC10 18 20 20 20 22 21 20 1 4/4 20 1 4/4 20 1 64/64
AC11 54 66 65 66 73 70 64 338 4/4 64 392 4/4 64 484 64/64
AC12 111 145 138 142 168 149 138 432 4/4 136 68169 2/4 136 13648 58/64
AC13 - 249 233 249 358 262 241 866 2/4 232 6539 4/4 232 3002 64/64
AC14 - 379 357 409 573 414 375 693 3/4 354 83490 1/4 353 6636 53/64
AC15 - 542 505 598 830 600 540 998 1/4 502 78655 1/4 501 2409 49/64
AC16 - 948 875 1059 1484 1043 966 989 1/4 869 82296 1/4 868 5793 45/64
AC17 - 1486 1348 1651 2295 1601 1523 999 1/4 1334 80392 1/4 1334 5361 52/64
AC18 - 2122 2055 2373 3315 2277 2228 974 1/4 1907 82042 1/4 1906 14546 37/64
AC19 - 2862 2869 3178 4478 3104 3097 990 1/4 2573 83025 1/4 2571 377 23/64
AC20 - 3745 3772 4109 5854 - 4061 977 1/4 3336 84176 1/4 3335 4302 34/64
AC21 - 4718 4801 5263 - - 5103 966 1/4 4212 85292 1/4 4211 2682 16/64
AC22 - 5828 5986 6397 - - 6300 974 1/4 5176 77848 1/4 5175 5106 11/64
AC23 - 7022 7303 7757 - - 7636 965 1/4 6239 85307 1/4 6237 6841 8/64
AC24 - 8346 8783 9216 - - 9109 972 1/4 7421 79020 1/4 7415 4294 3/64
AC25 - 9820 10385 10775 - - 10706 968 1/4 8686 79032 1/4 8686 5223 1/64
AC26 - 11372 12125 12465 - - 12441 928 1/4 10041 83915 1/4 10039 3235 2/64
AC27 - 13041 13943 14378 - - 14316 940 1/4 11533 77154 1/4 11520 8893 3/64
AC28 - 14803 16019 16277 - - 16283 983 1/4 13106 77266 1/4 13096 11818 1/64
AC29 - 16734 18150 18407 - - 18396 972 1/4 14752 82248 1/4 14740 6460 1/64
AC30 - 18768 20356 20649 - - 20678 912 1/4 16534 80042 1/4 16524 17121 1/64
AC31 - 20917 22790 22892 - - 23053 821 1/4 18405 77228 1/4 18400 16537 1/64
AC32 - 23162 25239 25243 - - 25532 903 1/4 20358 85231 1/4 20342 6057 2/64

#best - 8 8 7 4 6 11 - - 14 - - 32 - -
Gap (%) - 7.96 9.14 15.37 40.31 10.34 12.15 - - 0.04 - - 0.00 - -

Table 2: Experimental results on AC instances.

Conclusion
We propose an effective weighting-based variable neighbor-
hood search algorithm for solving the optimal camera place-
ment and unicost set covering problem. WVNS adopts sev-
eral reduction techniques which can be applied to simplify
the problem instances and accelerate the neighborhood eval-
uation. The proposed algorithm improves the best known re-

sults for 12 classical instances in the literature and obtains
highly competitive results on the 69 benchmark instances
used in the GECCO 2020 Competition on OCP and USCP.
In the future, we will further explore the dominance and
independence properties in the local search algorithms for
other combinatorial optimization problems to enhance their
search efficiency and effectiveness.
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Inst. LB MILP
+LNS MSEC SSHH ACO

WVNS WVNS-e

UB CPU Hit UB CPU Hit

RW01 660 665 665 676 928 664 764 2/4 664 11634 3/4
RW02 728 738 738 814 1031 737 133 4/4 736 2943 4/4
RW03 744 745 745 751 1021 745 8 4/4 745 3 4/4
RW04 824 833 833 919 1170 832 35 4/4 832 90 4/4
RW05 933 934 934 953 1240 934 12 4/4 934 33 4/4
RW06 926 938 938 1062 1321 938 95 4/4 938 111 4/4
RW07 985 989 989 1043 1365 989 20 4/4 989 5 4/4
RW08 1015 1026 1027 1182 1462 1025 276 4/4 1025 378 4/4
RW09 963 966 966 1009 1316 965 101 4/4 965 28 4/4
RW10 1025 1036 1036 1163 1413 1034 262 4/4 1034 205 4/4
RW11 314 316 316 321 438 316 4 4/4 316 5 4/4
RW12 315 322 321 328 455 320 289 4/4 320 2075 4/4
RW13 1292 1301 1302 1433 1828 1300 148 4/4 1299 11734 1/4
RW14 337 337 337 340 455 337 8 4/4 337 27 4/4
RW15 341 341 342 354 481 341 40 4/4 341 45 4/4
RW16 506 508 508 511 682 508 3 4/4 508 4 4/4
RW17 515 516 517 534 730 516 31 4/4 516 134 4/4
RW18 338 338 338 342 461 338 3 4/4 338 2 4/4
RW19 346 348 348 355 485 347 25 4/4 347 331 4/4
RW20 1458 1466 1466 1582 1971 1466 39 4/4 1466 29 4/4
RW21 1565 1581 1582 1839 - 1581 628 2/4 1580 4673 3/4
RW22 398 398 399 404 531 398 93 4/4 398 281 4/4
RW23 415 417 417 425 588 417 10 4/4 417 19 4/4
RW24 880 886 886 897 1205 886 25 4/4 886 17 4/4
RW25 945 951 952 1064 1328 951 87 4/4 950 3786 3/4
RW26 464 464 464 470 609 464 2 4/4 464 1 4/4
RW27 485 489 489 497 694 489 14 4/4 489 7 4/4
RW28 645 648 648 656 881 648 9 4/4 648 1 4/4
RW29 736 741 743 799 1021 741 185 4/4 741 233 4/4
RW30 1085 1096 1096 1177 1534 1095 92 4/4 1095 375 4/4
RW31 1176 1202 1201 1401 - 1199 426 4/4 1198 6503 3/4
RW32 648 651 651 657 876 651 10 4/4 651 7 4/4
RW33 709 720 721 791 1019 719 280 4/4 719 405 4/4
RW34 606 609 611 618 841 609 45 4/4 609 435 4/4
RW35 656 669 670 710 931 668 85 4/4 668 134 4/4
RW36 609 609 609 615 845 609 16 4/4 609 16 4/4
RW37 633 644 645 702 911 644 406 4/4 644 299 4/4

#best - 22 16 0 0 32 - - 37 - -
Gap (%) - 0.08 0.12 5.66 38.28 0.01 - - 0.00 - -

Table 3: Experimental results on RW instances.
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Figure 3: Evolution of the objective value gaps by integrating different neighborhood reduction policies.
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