Submodular Span, with Applications to Conditional Data Summarization

Lilly Kumari, Jeff Bilmes
Department of Electrical & Computer Engineering, University of Washington, Seattle
{lkmari, bilmes}@uw.edu

Abstract
As an extension to the matroid span problem, we propose the submodular span problem that involves finding a large set of elements with small gain relative to a given query set. We then propose a two-stage Submodular Span Summarization (S3) framework to achieve a form of conditional or query-focused data summarization. The first stage encourages the summary to be relevant to a given query set, and the second stage encourages the final summary to be diverse, thus achieving two important necessities for a good query-focused summary. Unlike previous methods, our framework uses only a single submodular function defined over both data and query. We analyze theoretical properties in the context of both matroids and polymatroids that elucidate when our methods should work well. We find that a scalable approximation algorithm to the polymatroid submodular span problem has good theoretical and empirical properties. We provide empirical and qualitative results on three real-world tasks: conditional multi-document summarization on the DUC 2005-2007 datasets, conditional video summarization on the UT-Egocentric dataset, and conditional image corpus summarization on the ImageNet dataset. We use deep neural networks, specifically a BERT model for text, AlexNet for video frames, and Bi-directional Generative Adversarial Networks (BiGAN) for ImageNet images to help instantiate the submodular functions. The result is a minimally supervised form of conditional summarization that matches or improves over the previous state-of-the-art.

1 Introduction
Conditional data summarization involves extracting, from a large dataset, a subset that is both relevant to a given query set and representative of the large dataset. Multiple applications in machine learning and information retrieval are related to this task. For example, in query based extractive Multi-Document Summarization (MDS), given a large collection of text documents, the aim is to produce a short human-readable summary that is not only relevant to the query, but also representative of the information in the full suite of documents. Similarly, query based image summarization aims at retrieving a subset of diverse images which are similar to the query images, given a large image dataset. In fact, general web search can be cast in this framework, where the end result is a succinct summary of the web that is relevant to the user query(s).

Conditional data summarization is related to generic summarization (where there is no query to which relevance is preferred), and is formulated as selecting a representative subset of a large dataset, often based on maximizing a utility function. The utility function captures properties such as informativeness, diversity, and coverage and often satisfies a submodularity property. Submodular functions possess a natural diminishing returns property i.e., the incremental value of a new element is less in a larger than in a smaller context. Mathematically, a set function \(f : 2^V \rightarrow \mathbb{R} \) is submodular (Fujishige 2005) if for subsets \(S, T \subseteq V \) such that \(S \subseteq T \) and \(j \notin T \), \(f(j|S) \geq f(j|T) \) where \(f(j|S) = f(S \cup j) - f(S) \) is the marginal gain of adding \(j \) to \(S \). Given a submodular function \(f \), generic summarization can be addressed via cardinality constrained submodular maximization \(\max_{A \subseteq V : |A| \leq k} f(A) \), which is solvable with a constant factor i.e., \((1 - 1/e)\) guarantee using the simple greedy algorithm (Nemhauser, Wolsey, and Fisher 1978).

In machine learning, and fields such as natural language processing (NLP) and information retrieval (IR), various approaches have been used to solve this problem. Query-based MDS can be in either supervised where labels are available and a training phase occurs, for example (Lin and Bilmes 2011, 2012) or unsupervised where there are no target labels to train on as in (He et al. 2012; Yao, Wan, and Xiao 2015; Feigenblat et al. 2017). In query-based extractive video summarization, recent methods include snippet selection using sequential and hierarchical Determinantal Point Processes (DPP) (Sharifi, Gong, and Shah 2016; Sharifi, Laurel, and Gong 2017). Although applicable, these methods are supervised and consider the query to be extraneous to the data/corpus. Given the tremendous growth in data and expensive task-based data annotation, there is a pressing need for an unifying conditional data summarization framework that (a) generalizes to different queries i.e., query independent function formulation, (b) supports multiple query summarization i.e., does not limit the query size to one, (c) considers the query to be intrinsic to the data/corpus, and (d) is minimally supervised i.e., uses pre-existing summarization labels only on a limited validation set for hyperparameter tuning.

On this last point, extractive summarization labeling tasks are much harder than standard machine learning labeling.
and/or annotation tasks — the reason is that a training “set” must be of the form $D = \{(V_i, A_i)\}_{i=1}^{\ell}$ where V_i is the i^{th} dataset and $A_i \subseteq V_i$ is a summary of that dataset. For a human annotator, creating this is extremely difficult; imagine, for example, the task of selecting a size-1000 representative subset from 100,000 images, i.e., where $|V_i| = 100,000$ and $|A_i| = 1000$. Hence, minimal supervision (if any at all) is not only desirable but necessary for the general task of training or tuning big data summarization processes.

In this paper, we develop a new minimally supervised conditional summarization framework based on a method that we call the submodular span problem. This method produces a conditional summary, i.e., a summary that is relevant to a given query set $Q \subseteq V$. We formulate this as an optimization problem over a submodular function $f : 2^V \to R$ where the ground set V involves both the query set Q and the data items being summarized $V \setminus Q$. The utility function f is expected to capture the same fundamental properties that a utility function would capture for a generic summary (i.e., diversity, representativeness, etc.). Also the utility function does not need to be reformulated as the query set Q changes.

Our conditional summarization framework, called S3, is formulated as a two-stage submodular optimization problem where the first stage aims to select a large subset that is relevant to the query set. Specifically, we minimize a monotone, non-decreasing conditional submodular function $f(A|Q)$ (representing the conditional redundancy) subject to a cardinality lower-bound constraint. Here $f(A|Q) = f(A \cup Q) - f(Q)$. This first stage retrieves all data points relevant to the query, but that might be redundant, as follows:

\[
\text{Stage 1: } \min_{A \subseteq V \setminus \{Q, |A| \geq k_1}} f(A|Q). \tag{1}
\]

The second stage is a standard cardinality constrained submodular maximization problem starting from the solution of stage one as follows:

\[
\text{Stage 2: } \max_{A^* \subseteq A_Q^*, |A| \leq k_2} f(A) \tag{2}
\]

where A_Q^* is the solution of stage one. This second stage summarizes the redundant output of stage one, and therefore produces a diverse and succinct summary of the data that is still relevant to Q (i.e., stage two filters out the redundancy in A_Q^*). To solve stage two, we use the standard greedy algorithm (Nemhauser, Wolsey, and Fisher 1978).

Our main contributions are summarized as follows:

- We demonstrate that the S3 framework leads to either competitive or state-of-the-art results when applied to three conditional data summarization problems: conditional multi-document, video, and image corpus summarization.

The remainder of the paper is organized as follows. In Section 2, we first discuss related work about existing unsupervised and supervised methods for conditional data summarization of different modalities. In Section 3, we discuss the submodular span problem, where less is known. In particular, we offer a scalable approximation algorithm for stage one based on various modular approximations that we motivate via an analysis of a version of the problem applied to matroids, where the problem (as we show) is equivalent to computing the matroid span. In Section 3.2, we generalize this analysis to the submodular case where we show a constant factor approximation for the submodular span problem based on the curvature of f. Finally, we set forth to demonstrate the application of our proposed S3 framework on different conditional summarization tasks in Section 4. We leverage unsupervised representation learning methods such as a pre-trained BERT model (Devlin et al. 2018) for encoding textual data in Section 4.1, AlexNet trained on SentiBank (Chen et al. 2014) dataset for encoding video snippets in Section 4.2, and BiGAN (Donahue, Krähenbühl, and Darrell 2016) for encoding the ImageNet data in Section 4.3.

2 Related Work

Conditional Document Summarization: The majority of existing extractive MDS methods are based on two tasks: query based relevance ranking and sentence saliency score based selection. One of the earlier standard methods is maximum marginal relevance (MMR) (Carbonell and Goldstein 1998) which uses a greedy approach to select the most relevant sentences while considering the trade-off between relevance and redundancy. (McDonald 2007; Gillick and Favre 2009) propose an optimal reformulation to the MMR framework in the form of an integer linear programming problem.

The methods based on data reconstruction, for example DSDR (He et al. 2012) reconstructs each sentence by a non-negative linear combination of summary sentences and then uses sparse coding to select summary sentences that minimize the document reconstruction error. SpOpt (Yao, Wan, and Xiao 2015) adds a sentence dissimilarity term to the objective to maximize diversity. DocRebuild (Ma, Deng, and Yang 2016) further builds upon the DSDR framework using a neural document model. CTSUM (Wan and Zhang 2014) utilizes several hand-crafted features to predict sentence uncertainty scores and then uses them in a graph-based ranking scheme. More recently, deep learning based techniques such as DocEmb (Kobayashi, Noguchi, and Yatsuka 2015) and the vector space model (Kägøbekk et al. 2014) utilize the sum of trained word embeddings to represent sentences or documents and formalize the task as maximizing a submodular function defined on the similarity of embeddings. The state-of-the-art unsupervised method called Dual-CES (Roitman et al. 2020) proposes a two-step dual-cascade optimization framework, where both steps utilize the cross-entropy method to handle trade-offs between
sentence saliency and focus. Among the supervised methods, the state-of-the-art method SRSum (Ren et al. 2018) uses a deep neural network based model which comprises five sub-models, PriorSum, CSRSum, TSRSum, QSRSum, and SFSum. The individual models encode surface features and latent semantic sentence meaning, and use attention to simulate the context aware reading of a human.

Conditional Video Summarization: Existing methods for this task are supervised in terms of using the summarization labels. (Sharghi, Gong, and Shah 2016; Sharghi, Laurel, and Gong 2017) proposed a sequential and hierarchical DPP to model a shot’s relevance to the given query and representativeness in the video. In (Jiang and Han 2019), the authors have proposed a Hierarchical Variational Network (HVN) consisting of a query-focused attention module and a multi-level self-attention variational block that captures the multilevel visual content of the scenes and adds to the user-oriented diversity as well. (Xiao et al. 2020) trains a Query-biased Self-Attentive Network (QSAN) which learns the mapping between the visual content and textual captions. It is then augmented with a query-aware scoring MLP to generate a query-focused summary.

Conditional Image Corpus Summarization: This domain is relatively new and the existing work does not meet all requirements of a conditional image summarization system. For example, (Tsviatetschek et al. 2014) proposes learning a mixture of submodular functions for generic image collection summarization. (Arandjelovic and Zisserman 2012) focuses on image retrieval given multiple queries of the same object, resulting in improved recall of the system when compared to a single query.

Although the existing methods perform well in their respective domains, there is no simple, effective, and unifying framework for conditional data summarization that requires minimal learning and that can be used irrespective of the data modality. We believe the submodular span approach we present in this work fits this bill.

3 Submodular Span

A given set function $f : 2^V \to \mathbb{R}_+$ is non-negative, monotone, non-decreasing, and submodular if $f(j|A) \geq f(j|B) \geq 0$ for all $A \subseteq B \subseteq V$ and $j \in V$. Such a function is often called a **polymatroid function** (Cunningham 1983). Given a polymatroid function $f : 2^V \to \mathbb{R}_+$, and a query set $Q \subseteq V$ and defining $V_Q = V \setminus Q$, we define the **submodular span problem** as

$$\text{maximize } \{|A| \text{ s.t. } A \subseteq V_Q, f(A|Q) \leq \epsilon\},$$

(3)

where $\epsilon \geq 0$ is small. W.l.o.g., we assume all polymatroid functions are normalized so that not only $f(\emptyset) = 0$ but $f(V) = 1$. Dual to the submodular span problem is Eq. 1. We see that these problems are related, in that they generally ask for large sets A that have low f-valuation when conditioned on the query set Q. We also see that the dual form is cardinality constrained submodular minimization, a problem that is known to have no constant factor approximation algorithm in general (Svitkina and Fleischer 2008), although in the limited curvature case, it is constant-factor approximable (see Theorem 4 analogous to Theorem 5.4 in (Iyer, Jegelka, and Bilmes 2013)).

Submodular span is used as the first step in our conditional summarization strategy, i.e., given a domain V over which a submodular function f is defined, and given a query set $Q \subseteq V$, the objective is to produce a Q-related summary of the remainder $V \setminus Q$. Submodular span produces a large set A that is related to Q, but to be a good summary, it should also be non-redundant. Hence, given a solution A_Q^* to either Eq. (1) or (3), one can apply standard submodular maximization (via the greedy algorithm), approximately solving Eq. 2.

The resulting solution is both related to Q and non-redundant. Conditional summarization uses only one submodular function f defined both on Q and everything else $V \setminus Q$.

3.1 Matroids, Span, and Redundancy

The reason we call the above the **submodular span problem** is that for a matroid rank function, it is identical to the matroid span. A matroid $\mathcal{M} = (V, I)$ is an algebraic system consisting of a pair (V, I), where V is a ground set, and $I = \{I_1, I_2, \ldots\}$ is a non-empty set of independent subsets $I_i \subseteq V$ satisfying the two properties: (1) down-closed, if $I \in I$ then $A \in I$ for any $A \subseteq I$, and (2) exchangeable, for all $I_1, I_2 \in I$ with $|I_1| < |I_2|$, then $\exists j \in I_2 \setminus I_1$ such that $I_1 \cup \{j\} \in I$. The rank function $r_M : 2^V \to \mathbb{R}$ of a matroid is defined as $r_M(A) = \max_{I \in \mathcal{I}} |A \cap I|$, i.e., the maximum independent subset of A which is an integer valued unit-increment polymatroid function. The rank function also defines the matroid so we can refer to the matroid simply as r_M. Given r_M and a query set Q, the span function (Oxley 2011) is defined as:

$$\text{span}_{r_M,0}(Q) = \{v \in V : r_M(Q \cup \{v\}) = r_M(Q)\}$$

(4)

The subscript “$r_M,0$” notation will become apparent below. The span is also called the “closure” of Q, and the span of Q produces a “flat” (or a “subspace”) that contains Q. We also define a Q-specific “redundancy” function $\text{redn}_{r_M,0}$ for a matroid as follows:

$$\text{redn}_{r_M,0}(Q) = \arg\max\{|A| : A \subseteq V_Q, r_M(A|Q) = 0\}$$

(5)

We see that Eq. (3) with $f = r_M$ being a matroid rank function and $\epsilon = 0$ computes $\text{redn}_{r_M,0}(Q)$. By simple inspection, we see that computing $\text{span}_{r_M,0}(Q)$ is much more straightforward via a simple $O(n)$ process than computing $\text{redn}_{r_M,0}(Q)$ which appears to be a form of constrained submodular minimization. Therefore, in the next several sections, we study $\text{span}_{r_M,0}(Q)$ as a surrogate for $\text{redn}_{r_M,0}(Q)$, starting with the case of pure matroids, where there is good news.

Specifically:

Lemma 1. $\text{redn}_{r_M,0}(Q)$ is unique when r_M is a matroid rank function.

Theorem 1. $\text{span}_{r_M,0}(Q) = \text{redn}_{r_M,0}(Q)$ when r_M is a matroid rank function.

3.2 Polymatroids, Span, and Redundancy

We can easily generalize span and redn to polymatroids. Given a polymatroid function f, a set Q such that $Q \subseteq V$,
and $\epsilon \geq 0$, the ϵ-span function $\text{span}_{f,\epsilon}(Q)$ is defined as:

$$\text{span}_{f,\epsilon}(Q) = \{v \in V_Q \mid f(v|Q) \leq \epsilon\}. \quad (6)$$

We also define a Q-specific ϵ-redundancy function $\text{redn}_{f,\epsilon}$ for a polymatroid function f as:

$$\text{redn}_{f,\epsilon}(Q) \in \text{argmax}\{|A| : A \subseteq V_Q, f(A|Q) \leq \epsilon\}. \quad (7)$$

We see that $\text{redn}_{f,\epsilon}(Q)$ computes the submodular span defined in Eq. (3), and hence involves constrained submodular minimization. The question we wish to address is the extent to which $\text{span}_{f,\epsilon}(Q)$ can be used as a surrogate function for $\text{redn}_{f,\epsilon}(Q)$. Analysis comparing the above for the cases when $\epsilon = 0$ and $\epsilon > 0$ follows.

Theorem 2. For a polymatroid $f : 2^V \rightarrow \mathbb{R}_+$, $\text{span}_{f,0}(Q) = \text{redn}_{f,0}(Q)$.

For $\epsilon = 0$, we observe that computing submodular span and redundancy lead to the same result, analogous to the matroid case. When $\epsilon > 0$, however, this is not the case.

Lemma 2. $\text{redn}_{f,\epsilon}(Q)$ is not always unique for $\epsilon > 0$.

Theorem 3. For a polymatroid $f : 2^V \rightarrow \mathbb{R}_+$ such that $n = |V|$, $\text{redn}_{f,\epsilon}(Q) \subseteq \text{span}_{f,\epsilon}(Q) \subseteq \text{redn}_{f,n\epsilon}(Q)$ when $\epsilon \geq 0$.

For a given ϵ, since $\text{span}_{f,\epsilon}(Q)$ covers all the elements of $\text{redn}_{f,\epsilon}(Q)$, we can compute the $\text{span}_{f,\epsilon}(Q)$ as a surrogate function for $\text{redn}_{f,\epsilon}(Q)$ and then summarize it. But first we ask if for some value of $\epsilon' \leq \epsilon$, their f-valuations are equal. Unfortunately, this is also not the case.

Lemma 3. There does not, in general, exist an $\epsilon' \leq \epsilon$ such that $f(\text{span}_{f,\epsilon'}(Q)) = f(\text{redn}_{f,\epsilon'}(Q))$ for all Q and $\epsilon > 0$.

Since there does not exist an $\epsilon' \leq \epsilon$ for which $f(\text{span}_{f,\epsilon'}(Q)) = f(\text{redn}_{f,\epsilon'}(Q))$ when $\epsilon > 0$, we can form an upper bound on $f(\text{span}_{f,\epsilon}(Q))$ as follows.

Lemma 4. $f(\text{span}_{f,\epsilon}(Q)|Q) \leq (k_s - k_r + 1)\epsilon$ where $k_s = |\text{span}_{f,\epsilon}(Q)|$ and $k_r = |\text{redn}_{f,\epsilon}(Q)|$.

Lemma 5. With the conditional submodular curvature with respect to Q defined as

$$\kappa_{fQ}(A) = 1 - \min_{a \in A} \frac{f((a)(A \setminus a)), Q)}{f(a|Q)}, \quad (8)$$

$$f(\text{span}_{f,\kappa}(Q)|Q) \leq \epsilon - \frac{1}{n} (k_s - k_r)(1 - \kappa_{fQ}(\text{redn}_{f,\epsilon}(Q)))$$

where $k_s = |\text{span}_{f,\epsilon}(Q)|$ and $k_r = |\text{redn}_{f,\epsilon}(Q)|$.

To solve Eq. (1) or (3), a modular approximation of $f(A|Q)$ is used, where $m_Q(A) = \sum_{a \in A} f(a|Q)$ can be optimized. The Majorization-Minimization algorithm based on submodular semi-differentials, as proposed in (Iyer, Jegelka, and Bilmes 2013) can also be used for the constrained submodular minimization. The approximation factor for these algorithms is expressed in terms of conditional submodular curvature with respect to Q as proved in Theorem 4 and has a worst-case upper bound of $O(n)$ where $n = |V \setminus Q|$.

Theorem 4. Let A^* be the optimal solution to Eq. (1), then A returned by the modular approximation of $f(A|Q)$ such that $A = \argmin_{A \subseteq V_Q, |A| \geq k} h_{fQ}(A)$ satisfies

$$f(A|Q) \leq \frac{|A^*|}{1 + (|A^*| - 1)(1 - \kappa_{fQ}(A^*))} f(A^*|Q)$$

Proof. (Iyer, Jegelka, and Bilmes 2013) show a bound for submodular function minimization in terms of generic submodular curvature and our proof follows theirs.

4 Experiments

In this section, using optimization procedures based on the analysis given in Section 3.2, we evaluate the S3 framework on three conditional summarization tasks: (1) conditional multi-document summarization (2) conditional video summarization (3) conditional image corpus summarization.

4.1 Conditional Multi-Document Summarization

Dataset: We use DUC 2005-2007 datasets which are the benchmark datasets for query-focused MDS, made available by the Document Understanding Conference \(^3\). DUC 2005-2006 and DUC 2007 contain 50 and 45 document clusters respectively, with each cluster containing 25 news articles (32 in case of DUC 2005) related to the same topic, and the task is to generate a query-focused summary of at most 250 words for each document cluster. As a pre-processing step, we remove special characters from the sentences and we augment the query set for each document cluster with its topic as well as concatenate each query sentence with the cluster topic.

Feature Representation: In order to obtain sentence representations, we use the English uncased variant of the BERT-base model (Devlin et al. 2018) and fine-tune it for the Rouge-2 recall score prediction task using two years of DUC 2005-2007 as the training set. For example, we fine-tune the network on the DUC 2005-2006 datasets in order to extract fixed-size sentence representations for DUC 2007 (which is the test set in this example). We do not use any oracle summarization labels for the test set. In addition to using fine-tuned BERT models, we also try a minimally supervised approach where we use the pre-trained BERT model for computing sentence representations.

Since BERT’s encoder has 12 transformer layers, each of which outputs contextualized WordPiece representations, the most transferable layer \(l\) (Ethayarajh 2019) for the MDS task is a hyperparameter which is tuned on the development set. Given \(l\), we take a smoothed inverse frequency (SIF) based weighted average of hidden activations of each wordpiece (Peters, Ruder, and Smith 2019; Arora, Liang, and Ma 2017) from layer \(l\) to construct 768-dimensional sentence embeddings \(v_s\) for the sentences \(s_i\) in the test set i.e.,

$$v_s = \frac{1}{|s_i|} \sum_{w \in s_i} \frac{a}{a + p(w)} h_i(w)$$

where \(h_i(w)\) is the hidden layer representation of wordpiece \(w\) corresponding to layer \(l\), \(p(w)\) is probability of wordpiece \(w\) estimated from the entire DUC corpus, and \(a\) is a weighting parameter fixed at 10^{-3}.

Summary Generation: We use facility location (Mirchandani and Francis 1990) as the objective function for stage one.

\(^3\)https://duc.nist.gov
and two of the S3 framework. The facility location function is defined as $f(X) = \sum_{x_i \in X} \max_{s_j \in X} \text{sim}(s_i, s_j)$ where $\text{sim}(s_i, s_j)$ is the similarity between sentence embeddings v_i and v_j, of sentences s_i and s_j. We compute the similarity matrix using a Gaussian kernel of width σ which is tuned on the development set in each case.

Stage one of the S3 framework caters to finding relevant sentences A_0 from a document set which answer given queries. In order to filter irrelevant noisy sentences which are either too small or too long, we prune the candidate set by considering sentences whose length ranges between 11 and 80 and are a subset of the top 30% nearest neighbors set of the query sentences. Once we obtain the relevant answers (A_Q) using the majorization-minimization (MMMin) (Iyer, Jegelka, and Bilmes 2013; Iyer and Bilmes 2013) algorithm for solving Eq. (3), stage two removes the redundant answers and produces a succinct relevant summary for that document set via constrained submodular maximization using the greedy algorithm (Nemhauser, Wolsey, and Fisher 1978). The algorithm at iteration i selects the sentence s_i such that $s_i = \text{argmax}_{s \in A_Q} f(A_{i-1} \cup \{s\}) - f(A_{i-1})$ if $c(A_{i-1} \cup \{s\}) \leq B$. $c(s)$ denotes the sentence length, $r > 0$ is the scaling factor, and B represents the overall budget which is 250 words for DUC 2005-2007. For DUC-2005, we use DUC-2006 to tune the hyperparameters which include $\{l, \sigma, \epsilon, r\}$. Similarly, for DUC-2006 and DUC-2007, we use DUC-2005 as the development set.

Evaluation: We use the ROUGE toolkit (Lin 2004)2 which assesses the summary quality by counting the overlapping units such as n-grams, word sequences, and word-pairs between the candidate summary and the reference summaries. We report recall and F-measure corresponding to Rouge-1, Rouge-2, and Rouge-SU4.

Since our approach requires minimal learning of hyperparameters, we compare against other state-of-the-art unsupervised and supervised approaches. In addition to existing supervised methods, we also design another strong supervised baseline method called MixModSub which utilizes a submodular function $f' : 2^V \rightarrow \mathbb{R}_+$, i.e., the query set Q is extrinsic to the submodular function f' i.e., $V' \cap Q = \emptyset$ and it only considers V' which contains sentences s_i where $i \in \{1, 2, \ldots |V'|\}$ that are to be summarized. Here, f' is a facility location function defined using the fine-tuned BERT-based feature vectors v_{s_i} for each $s_i \in V'$. We define a relevance based modular function $m_Q : 2^V \rightarrow \mathbb{R}_+$, where for any $A \subseteq V'$, $m_Q(A) = \sum_{s_j \in A} m_Q(s_j)$. Since m captures the relevance of each sentence s_i to the query set Q, $m_Q(s_i) = \frac{1}{|Q|} \sum_{s_j \in Q} \text{sim}(s_q, s_i)$. Finally, we define a submodular function $g : 2^V \rightarrow \mathbb{R}_+$ as $g(A) = \lambda f'(A) + (1 - \lambda) m_Q(A)$ which is a convex mixture of submodular f' and modular m_Q. We use a Gaussian kernel of width σ to define a relevance based modular function $m_Q(s_i)$ for each query q. We use the ROUGE version 1.5.5 used with option -n 2 -x -m -2 -u -c 95 -r 1000 -f A -p 0.5 -t 0 -d 1250.

Table 1 shows the average recall and F-measure with respect to Rouge-1 (R1), Rouge-2 (R2) and Rouge-SU4 (RSU4) scores on DUC 2005-2007 datasets against different methods. The performance of S3 framework is competitive with the current unsupervised state-of-the-art method, Dual-CES (Roitman et al. 2020) on each of the Rouge-1, Rouge-2, and Rouge-SU4 F-measure.

4.2 Conditional Video Summarization

Dataset: We use the query-focused video summarization dataset from (Sharghi, Laurel, and Gong 2017) which is compiled using the UT Egocentric dataset (Lee, Ghosh, and Grauman 2012). The UTE dataset consists of four daily life egocentric videos of 3-5 hours duration. Based on the overlap of the video-shot captions (Yeung, Fathi, and Fei-Fei 2014) with SentiBank (Borth et al. 2013), a lexicon of 48 concepts such as street, tree, phone etc. is constructed that denotes the basis for encoding the semantic information in each video shot. For each video, there are 46 different sets of queries, with each query set covering two or three concepts. We use the oracle summaries released by (Sharghi, Laurel, and Gong 2017) and follow their video summarization evaluation strategy based on the user-annotated semantic vectors of the video shots.

Feature Representation: We uniformly partition each video into five seconds long shots. For each frame belonging to a shot, we construct a 2089-dimensional feature vector using an off-the-shelf deep model called DeepSentiBank (Chen et al. 2014) for fair comparison to existing methods. The network has an architecture similar to the AlexNet (Krizhevsky, Sutskever, and Hinton 2012) which was pre-trained on the ImageNet classification task and for the SentiBank classification task, the last fully connected layer is replaced to produce a softmax distribution across 2089 class labels. Then for each shot, we average its frame-level feature representations to obtain a shot-level feature representation. The SentiBank classes consist of ANP (Adjective Noun Pairs), for instance *beautiful sky*, *clear sky*, *sunny sky* are different ANPs corresponding to the concept *sky*. We max-pool their shot-level detection scores to get one detection score for each concept belonging to the lexicon consisting of 48 concepts. This results into a 48-dimensional feature representation for each video-shot with detection scores ranging between 0 and 1.

Summary Generation: Similar to section 4.1, we use facility location as the objective function, but here $\text{sim}(s_i, s_j)$ is the similarity between the DeepSentiBank-based shot-level features for shots s_i and s_j. We compute the similarity matrix using cosine similarity after carefully validating different similarity measures on a development set in terms of F1 score performance. For Video-1, we use Video-3 to tune the hyperparameters which include $\{k_1, k_2\}$; k_1 and k_2 are the cardinality constraints for optimizing stage one and stage two respectively. For Video 2-4, we use Video-1 as the development set.

Evaluation: Similar to (Sharghi, Laurel, and Gong 2017), we use the user-annotated semantic vectors of video shots to quantify the semantic similarity between the oracle summary’s shots and our system generated summary’s shots. A maximum weight based bipartite graph matching between them enables us to compute precision, recall, and F1 score between the matched pairs. Similar to document
summarization, we also compare against the designed minimally supervised baseline MixModSub (not fully supervised as we are not fine-tuning any model using oracle summarization labels). We tune relevant hyperparameters \(\{k, \lambda\} \) on another video as the development set.

Table 2 shows the performance of the S3 framework against other supervised state-of-the-art methods and our designed baseline MixModSub, in terms of precision, recall, and F1 score. In terms of recall and F1 score on Video 1 and 3, our S3 framework (requiring minimal learning) outperforms the current supervised state-of-the-art methods which use the oracle summary labels for learning different deep neural networks; on average, it outperforms the previous supervised methods in terms of F1 score and achieves comparable results in terms of precision and recall.

4.3 Conditional Image Corpus Summarization

Dataset: ImageNet-1k (Deng et al. 2009) is a large scale image database which contains nearly 1.28 million training images and 50,000 validation images. The dataset is organized according to the WordNet (Miller 1995) hierarchy, with each node depicting hundreds and thousands of images. In our experiments, we randomly sample 1,000 images, one from each class, from the dataset to form the development query set and the remaining training images are used as the gallery set that needs to be summarized. We use this set for hyperparameter tuning, and show qualitative results corresponding to test query images having no overlap with the development query set.

Feature Representation: We use a Bidirectional Generative Adversarial Network (BiGAN) (Donahue, Kr¨ahenb¨uhl, and Darrell 2016) for unsupervised learning of feature representations for the ImageNet database. We use the pre-trained encoder weights from (Donahue, Kr¨ahenb¨uhl, and Darrell 2016) learned in an unsupervised fashion to encode the images into a 1024-dimensional latent feature representation. In order to reduce problems arising from the curse of dimensionality, after examining the histogram of pairwise similarities, we use PCA to reduce the features dimensions to 512.

Evaluation: To assess the quality of the query-focused summary, we propose a function, \(\mathcal{R}(A|Q) \) that captures the relevance of the summary images to the query set.

\[
\mathcal{R}(A|Q) = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{|A|} \sum_{a \in A} \mathbb{1}_{y_a = y_q} \tag{9}
\]

Here, \(y_a \) denotes the label/class of the image \(a \). In case of single query image based summarization, \(\mathcal{R}(A|Q) \) is simply the precision of retrieving the query class in the summary. We also assess the diversity of the summary using \(f(A) \) which is the sparse-facility location function valuation of summary \(A \) with respect to the ground set \(V \).

In Table 3, for different query sets, we show the conditional summaries after fitting the two-dimensional tSNE

![Table 1](https://ai.facebook.com/tools/faiss/)
Table 2: Results on the UTE dataset for conditional video summarization. The cited methods given in the first row corresponding to each video are supervised, in terms of using the oracle summarization labels for model training.

<table>
<thead>
<tr>
<th></th>
<th>System</th>
<th>Precision</th>
<th>Recall</th>
<th>F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video-1</td>
<td>Mem-SeqDPP (2017)</td>
<td>49.86</td>
<td>53.38</td>
<td>48.68</td>
</tr>
<tr>
<td></td>
<td>HVN (2019)</td>
<td>52.55</td>
<td>52.91</td>
<td>51.45</td>
</tr>
<tr>
<td></td>
<td>DSAN (2020)</td>
<td>48.41</td>
<td>52.34</td>
<td>48.52</td>
</tr>
<tr>
<td></td>
<td>MixModSub</td>
<td>53.26</td>
<td>51.77</td>
<td>51.20</td>
</tr>
<tr>
<td></td>
<td>S3 (Ours)</td>
<td>51.86</td>
<td>55.24</td>
<td>52.18</td>
</tr>
<tr>
<td>Video-2</td>
<td>Mem-SeqDPP (2017)</td>
<td>33.71</td>
<td>62.09</td>
<td>41.66</td>
</tr>
<tr>
<td></td>
<td>HVN (2019)</td>
<td>38.66</td>
<td>62.70</td>
<td>47.49</td>
</tr>
<tr>
<td></td>
<td>DSAN (2020)</td>
<td>46.51</td>
<td>51.36</td>
<td>46.64</td>
</tr>
<tr>
<td></td>
<td>MixModSub</td>
<td>36.29</td>
<td>62.37</td>
<td>45.56</td>
</tr>
<tr>
<td></td>
<td>S3 (Ours)</td>
<td>37.24</td>
<td>63.88</td>
<td>46.71</td>
</tr>
<tr>
<td>Video-3</td>
<td>Mem-SeqDPP (2017)</td>
<td>55.16</td>
<td>62.40</td>
<td>56.47</td>
</tr>
<tr>
<td></td>
<td>HVN (2019)</td>
<td>60.28</td>
<td>62.58</td>
<td>61.08</td>
</tr>
<tr>
<td></td>
<td>DSAN (2020)</td>
<td>56.78</td>
<td>61.14</td>
<td>56.93</td>
</tr>
<tr>
<td></td>
<td>MixModSub</td>
<td>58.35</td>
<td>63.24</td>
<td>60.36</td>
</tr>
<tr>
<td></td>
<td>S3 (Ours)</td>
<td>60.51</td>
<td>65.72</td>
<td>62.66</td>
</tr>
<tr>
<td>Video-4</td>
<td>Mem-SeqDPP (2017)</td>
<td>21.39</td>
<td>63.12</td>
<td>29.96</td>
</tr>
<tr>
<td></td>
<td>HVN (2019)</td>
<td>26.79</td>
<td>54.21</td>
<td>35.47</td>
</tr>
<tr>
<td></td>
<td>DSAN (2020)</td>
<td>30.54</td>
<td>46.90</td>
<td>34.25</td>
</tr>
<tr>
<td></td>
<td>MixModSub</td>
<td>17.78</td>
<td>53.51</td>
<td>26.44</td>
</tr>
<tr>
<td></td>
<td>S3 (Ours)</td>
<td>26.54</td>
<td>52.94</td>
<td>34.97</td>
</tr>
<tr>
<td>Avg</td>
<td>MixModSub</td>
<td>40.03</td>
<td>60.25</td>
<td>44.19</td>
</tr>
<tr>
<td></td>
<td>S3 (Ours)</td>
<td>40.47</td>
<td>58.10</td>
<td>48.87</td>
</tr>
<tr>
<td></td>
<td>DSAN (2020)</td>
<td>45.56</td>
<td>52.94</td>
<td>46.59</td>
</tr>
<tr>
<td></td>
<td>MixModSub</td>
<td>41.42</td>
<td>57.72</td>
<td>45.89</td>
</tr>
<tr>
<td></td>
<td>S3 (Ours)</td>
<td>44.04</td>
<td>59.44</td>
<td>49.13</td>
</tr>
</tbody>
</table>

Table 3: Qualitative Results on the ImageNet Dataset corresponding to $|Q| > 1$

<table>
<thead>
<tr>
<th>Query</th>
<th>Submodular Span Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(A</td>
<td>Q) = 0.2, f(A) = 4.07 \times 10^{-3}$</td>
</tr>
<tr>
<td>$R(A</td>
<td>Q) = 0.24, f(A) = 4.79 \times 10^{-3}$</td>
</tr>
<tr>
<td>$R(A</td>
<td>Q) = 0.22, f(A) = 4.79 \times 10^{-3}$</td>
</tr>
</tbody>
</table>

5 Conclusion

In this paper, we have proposed and studied the submodular span problem as an extension to the matroid span problem in terms of retrieving elements relevant to a query set. We have designed a minimally supervised two-stage query-focused summarization framework called S3 and showed its applications for conditional data summarization of different data modalities. Our analysis and results also shed light on the feasibility and scalability of the modular approximation algorithm for the polymatroid submodular span problem. Our results on three real-world datasets, DUC 2005-2007, UT-Egocentric video dataset, and ImageNet verify the significance of the two stages (retrieval followed by summarization) of the S3 framework.

Acknowledgments

This work was supported in part by the CONIX Research Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA. We would also like to thank the Melodi lab students: Tianyi Zhou, Shengjie Wang, and Chandrashekhar Lavania for their useful discussions.

References

Arora, S.; Liang, Y.; and Ma, T. 2017. A simple but tough-to-beat baseline for sentence embeddings. 5th International

Jiang, P.; and Han, Y. 2019. Hierarchical Variational Network for User-Diversified & Query-Focused Video Summarization.

