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Abstract

We consider the problem of estimating a spectral risk measure
(SRM) from i.i.d. samples, and propose a novel method that
is based on numerical integration. We show that our SRM
estimate concentrates exponentially when the underlying dis-
tribution has bounded support. Further, we also consider the
case when the underlying distribution satisfies an exponen-
tial moment bound, which includes sub-Gaussian and sub-
exponential distributions. For these distributions, we derive a
concentration bound for our estimation scheme. We validate
the theoretical findings on a synthetic setup, and in a vehicular
traffic routing application.

1 Introduction
Conditional value-at-risk (CVaR) is a popular measure in the
context of risk-sensitive optimization. CVaR is the expecta-
tion of a random variable (r.v.) (usually the loss in a financial
application) conditioned on the r.v. exceeding the value-at-
risk (VaR). The latter is a high-probability upper bound on
the random loss that could be incurred. The advantage of em-
ploying CVaR instead of VaR in a risk-sensitive optimization
setting is that CVaR is a coherent risk measure (Artzner et al.
1999), while VaR is not.

Spectral risk measures (SRM), proposed in (Acerbi 2002),
generalize VaR and CVaR. SRM uses a ‘risk-aversion’ func-
tion to assign a weight to each loss. Note that VaR gives
a zero weight for each loss beyond a given quantile, while
CVaR assigns a constant weight in the tail region beyond
VaR. In contrast, SRMs can assign larger weights to higher
losses, and thus model a user’s risk attitude better. Moreover,
SRMs satisfy coherency provided the risk-aversion function
is positive, increasing and integrates to one.

In this paper, we consider the problem of estimating the
SRM of a r.v., given independent and identically distributed
(i.i.d.) samples from the underlying distribution. In this con-
text, our contributions are as follows: First, we provide a
natural estimation scheme for SRM that uses the empirical
distribution function (EDF) to estimate quantiles, together
with a trapezoidal rule-based approximation to the integral in
the definition of the SRM. Second, we provide concentration
bounds for our proposed SRM estimate for the following two
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cases: first, when the underlying distribution is assumed to
have bounded support; and second, when the distribution sat-
isfies an exponential moment bound. The latter class includes
sub-Gaussian and sub-exponential distributions (Wainwright
2019). Third, we perform simulation experiments to show the
efficacy of our proposed SRM estimation scheme. In particu-
lar, we consider a synthetic setup, and show that our scheme
provides accurate estimates of SRM. Next, we incorporate
our SRM estimation scheme in the inner loop of the succes-
sive rejects (SR) algorithm (Audibert, Bubeck, and Munos
2010), which is a popular algorithm in the best arm identifica-
tion framework for multi-armed bandits. We test the resulting
SR algorithm variant in a vehicular traffic routing application
using SUMO traffic simulator (Behrisch et al. 2011). The
application is motivated by the fact that, in practice, human
road users may not always prefer the route with lowest mean
delay. Instead, a route that minimizes worst-case delay, while
doing reasonably well on the average, is preferable, and such
a preference can be encoded into the risk aversion function
employed in SRMs.

Related work. In (Brown 2007; Wang and Gao 2010) con-
centration bounds for the classic CVaR estimator are derived
assuming that the underlying distribution has bounded sup-
port. Our bound, using a different estimator, exhibits a similar
rate of exponential convergence around true CVaR. For the
case of distributions with unbounded support, concentration
bounds for empirical CVaR have been derived recently in
(Kolla et al. 2019; Kagrecha, Nair, and Jagannathan 2019;
Bhat and Prashanth 2019; Prashanth, Jagannathan, and Kolla
2020). In (Kolla et al. 2019) (resp. (Bhat and Prashanth 2019;
Prashanth, Jagannathan, and Kolla 2020)), the authors derive
a one-sided concentration bound (resp. two-sided bounds),
when the underlying distributions are either sub-Gaussian
or sub-exponential. In comparison to (Kolla et al. 2019), we
derive two-sided concentration results, and our bounds show
an improved dependence on the number of samples, say n,
and accuracy, say ε. In (Khim et al. 2020), the authors employ
tools from statistical learning theory to derive a concentra-
tion result for a class of risk measures that includes CVaR
under the assumption that the underlying loss distribution has
bounded support.

The closest related work is (Bhat and Prashanth 2019),
where the authors employ a Wasserstein distance approach to
provide concentration bounds for SRM estimation. In com-
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parison to (Bhat and Prashanth 2019), our bounds have a
similar dependence on n and ε for the sub-Gaussian case, and
a much improved dependence on ε for the sub-exponential
case. Further, unlike (Bhat and Prashanth 2019), we specify
all the constants in our bounds.

From an application viewpoint, CVaR-based models have
been explored in different contexts, for instance, in a bandit
application (Galichet, Sebag, and Teytaud 2013), in a portfo-
lio optimization problem (Krokhmal, Palmquist, and Uryasev
2002), and in a general risk management setting (Mulvey
and Erkan 2006). In the simulation experiments, we consider
a bandit application in the context of vehicular traffic rout-
ing, with SRM as the performance objective, and show the
efficacy of our proposed estimation scheme.

2 Preliminaries
For a r.v. X , VaR Vβ(X) and CVaR Cβ(X) at the level β,
β ∈ (0, 1), are defined as follows:

Vβ(X) := inf{c : P (X ≤ c) ≥ β}, (1)

Cβ(X) := Vβ(X) +
1

1− β
E[X −Vβ(X)]+, (2)

where [x]+ = max(0, x) for a real number x. Vβ(X) can be
interpreted as the smallest loss that will not be exceeded with
probability β. Note that, if X has a continuous and strictly
increasing cumulative distribution function (CDF) F , then
Vβ(X) = F−1(β). Further, Cβ(X) can be interpreted as
the expected loss, conditional on the event that the loss ex-
ceeds Vβ(X), i.e., Cβ(X) = E[X|X ≥ Vβ(X)]. Acerbi’s
formula (Acerbi and Tasche 2002), an alternative form for
Cα(X) defined in (2), is as follows:

Cα(X) =
1

1− α

∫ 1

α

Vβ(X) dβ. (3)

Let Xi, i = 1, . . . , n denote i.i.d. samples from the distri-
bution of X . Then, the estimate of Vβ(X), denoted by V̂n,β ,
is formed as follows (Serfling 2009):

V̂n,β = F̂−1n (β) = inf{x : F̂n(x) ≥ β}, (4)

where F̂n(x) = 1
n

∑n
i=1 I[Xi ≤ x] is the EDF of X . Here

I {·} denotes the indicator function, i.e., for an event A,
I {A} = 1 if A happens, and I {A} = 0 otherwise. Let-
ting X(1), . . . , X(n) denote the order statistics, i.e., X(1) ≤
X(2) ≤ · · · ≤ X(n), we have V̂n,β = X(dnβe).

3 Spectral Risk Measure (SRM)
Let L1 ([0, 1]) denote the space of equivalence classes of
Lebesgue-integrable functions on [0, 1], where two func-
tions are considered equivalent if they agree everywhere
except possibly on a set of zero Lebesgue measure. For
any f ∈ L1 ([0, 1]), we define the following norm: ‖f‖ =∫ 1

0
|f(p)|dp.

The definition of SRM requires a risk-aversion function
ϕ ∈ L1 ([0, 1]), which is said to be admissible if it satisfies
the following properties (see Definition 2.4 in (Acerbi 2002)):
(i) ϕ is positive; (ii) ϕ is increasing; and (iii) ‖ϕ‖ = 1.

The SRM of a r.v. X is defined by

S(X) =

∫ 1

0

ϕ(β)Vβ(X) dβ, (5)

where Vβ is as defined in (1), and ϕ ∈ L1 ([0, 1]) is admissi-
ble. In Theorem 4.1 of (Acerbi 2002), the author establishes
that admissibility of ϕ is both necessary and sufficient for
ensuring coherency of S(X).

Note that by virtue of working with the Lebesgue space
L1 ([0, 1]), our conclusions remain unaffected if Vβ is arbi-
trarily defined at β = 0 and β = 1. On the other hand, using
the Riemann integral in (5) would have required us to restrict
our attention to the open interval (0, 1) to get around the fact
that limβ→0 Vβ = −∞.

We choose to focus on the family of r.v.s for which S(X)
is well-defined, i.e., {X | ϕ(·)V(·)(X) ∈ L1 ([0, 1])}. As
noted in (Acerbi 2002), if ϕ is bounded, and X is integrable,
then S(X) is well-defined.

SRM can be seen as a weighted average of the quantiles
(VaR) of the underlying distribution, with the risk-aversion
function ϕ used to define the weights. Moreover, CVaR can
be recovered by using the following risk-aversion function:

ϕ(β) =
1

1− α
I {β > α} , α ∈ (0, 1). (6)

In particular, using (6) in (5) leads to (3). Notice that CVaR
uses the same weight for all tail-loss VaR values. In contrast,
the risk-aversion function ϕ can be chosen such that higher
losses receive a higher weight or at least, the same weight as
lower losses (Dowd and Blake 2006). Thus, SRM can model
a user’s risk aversion better.

4 SRM Estimation: Bounded Case
Estimation Scheme
We estimate S(X), given i.i.d. samples X1, . . . , Xn from
the distribution of X , by approximating the integral in SRM
definition (5). Notice that the integrand Vβ(X) in (5) has
to be estimated using the samples. Recall that V̂n,β is the
estimate of Vβ(X), given by (4). We use the weighted VaR
estimate to form a discrete sum to approximate the integral,
an idea motivated by the trapezoidal rule (Talvila 2016). The
estimate Ŝn,m of S(X) is formed as follows:

Ŝn,m =
m∑
k=1

ϕ(βk−1)V̂n,βk−1
+ ϕ(βk)V̂n,βk

2
∆β. (7)

In the equation above, {βk}mk=0 is a partition of [0, 1] such
that β0 = 0 and βk = βk−1 + ∆β, where ∆β = 1/m is the
length of each sub-interval.

For the special case of ϕ(·) as defined in (6), we obtain an
estimate of CVaR from (7) as follows:

Ĉn,m,α =
∆β

2(1− α)

m∑
k=1

(
I {βk−1 > α} V̂n,βk−1

+ I {βk > α} V̂n,βk

)
. (8)
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In the next section, we present concentration bounds for
the SRM estimator in (7), assuming that the underlying dis-
tribution has bounded support, and subsequently, specialize
the bound to handle the case of CVaR.

Concentration Bounds

For notational convenience, we shall use Vβ and S to denote
Vβ(X) and S(X), for any β ∈ (0, 1).

For all the results presented below, we let Ŝn,m denote
the SRM estimate formed using (7). Let F and f denote the
distribution and density of X , respectively.

For the sake of analysis, we make the following assump-
tions on the risk-aversion function and the underlying distri-
bution:
(A1) The function ϕ(·) is differentiable in int(suppϕ),
where int(suppϕ) denotes the interior of the support of
the function ϕ. Further, ϕ satisfies the following conditions:
|ϕ(β)| ≤ C1 and |ϕ′(β)| ≤ C2, ∀β ∈ int(suppϕ).
(A2) The r.v. X is continuous, with a CDF F that is differen-
tiable on the interior of the support of X , and |X| ≤ B a.s.
Further, the density f of X satisfies f(x) ≥ 1/δ1 > 0, for
|x| ≤ B.

In (Dowd and Blake 2006), the authors recommend the
exponential risk-aversion function, defined by ϕ(β) =
κ e−κ(1−β)

1−e−κ , β ∈ [0, 1], for some κ > 0. This choice for risk-
aversion satisfies (A1). Next, in (A2), we assumed that the
density f of X is bounded below by 1

δ1
> 0. A similar

assumption is used for analyzing the classic CVaR estima-
tion scheme, cf. (Kagrecha, Nair, and Jagannathan 2019;
Prashanth, Jagannathan, and Kolla 2020; Sun and Hong
2010). Further, one could argue that an assumption like (A2)
is necessary to get a meaningful VaR concentration result,
since the underlying distribution could be arbitrarily flat —
see Remark 3.5 in (Prashanth, Jagannathan, and Kolla 2020).
Truncated normal and exponential distributions are examples
that satisfy (A2).

The bounds on the error in a trapezoidal approximation of
any integral usually assume the derivative of the integrand
to be bounded (cf. Corollary 2.2 in (Talvila 2016)). In the
context of SRM estimation, this condition translates to a
bound on the derivatives of ϕ and VaR. (A1) ensures ϕ′(·) is
bounded, while the condition f(x) ≥ 1/δ1 > 0 in (A2) to-
gether with V

′

β = 1
f(Vβ)

, ∀β ∈ (0, 1), ensures the derivative
of VaR is bounded. Note that (A2) imposes a boundedness as-
sumption on the r.v. X . If the random variable is unbounded,
then for every ε > 0, there is an x such that 0 < f(x) < ε.
This implies 1/f cannot be bounded above uniformly w.r.t x,
and hence the derivative of VaR cannot be bounded either.

We now present the main result that establishes an expo-
nential tail bound for the SRM estimator in (7).

Theorem 4.1 (SRM concentration: bounded case). As-
sume (A1) and (A2). Choose K1 ≥ BC2 + δ1 C1, where
B, δ1, C1, C2 are specified in (A1) and (A2). Fix ε > 0. Set
the number of sub-intervals m =

⌈
K1

2ε

⌉
in (7). Then, we have

the following bound:

P
(∣∣∣S− Ŝn,m

∣∣∣ > ε
)
≤ 4

⌈
K1

2ε

⌉
exp

(
−n ε2

2δ21C
2
1

)
, (9)

where δ1 is as specified in (A2).

Proof. See Section 7.

Next, we present a specialization of the tail bound above,
to handle the case of CVaR.

Corollary 4.2 (CVaR concentration: bounded case). As-
sume (A2). Fix α ∈ [0, 1], and form the CVaR estimate
Ĉn,m,α using (8), with m =

⌈
K1

2ε

⌉
, where K1 ≥ δ1

1−α . Then,
for any ε > 0, we have

P[|Cα(X)− Ĉn,m,α |> ε]≤4

⌈
K1

2ε

⌉
exp

[
−n (1− α)2ε2

2δ21

]
.

Proof. Follows from Theorem 4.1 after observing that the
risk-aversion function ϕ(·) defined in (6) is continuous and
differentiable in the interior of its support, i.e., on (α, 1).

Under stronger conditions on the risk-aversion function
and the underlying density, we can obtain an improved con-
centration result. These conditions are variants of (A1) and
(A2), and are formalized below.
(A1’) (A1) holds. In addition, ϕ(·) is a twice differentiable
function satisfying |ϕ′′(β)| ≤ C3, ∀β ∈ int(suppϕ).
(A2’) (A2) holds. In addition, the density f(·) is a differen-
tiable function satisfying |f ′(x)|/f(x)3 ≤ δ2, for |x| ≤ B.

As before, the exponential risk-aversion function satisfies
(A1’). Next, the stronger condition |f ′(x)|/f(x)3 ≤ δ2 used

in (A2’), in conjunction with V
′′

β = − f
′
(Vβ)

f(Vβ)
3 , implies that

the second derivative of VaR is bounded. Now, as before, a
bounded second derivative implies that the underlying r.v.
X is bounded. To see this, the expression for the second
derivative of VaR involves a f ′/f3 term, and if the r.v. X
is unbounded, then a uniform bound on f ′/f3 would mean
that, as x → ∞, f decays too slowly to integrate to some-
thing finite, leading to a contradiction. More precisely, the
differential inequality |f ′|/f3 < K can be “solved” to get
f(x) > C/

√
a+ bx for large x and suitable constants a, b,

and C. However, the expression on the RHS integrates to
infinity, and hence, no density f with unbounded support can
have f ′/f3 bounded.

Theorem 4.3 (SRM concentration: bounded case (vari-
ant)). Assume (A1’) and (A2’). Choose K2 such that
|BC3 +2 δ1 C2 +δ2 C1| ≤ K2, whereB, δ1, C1, C2, C3 are
specified in (A1’) and (A2’). Fix ε > 0. Set the number of sub-

intervals m =

⌈√
K2

6ε

⌉
in (7). Then, we have the following

bound:

P
(∣∣∣S− Ŝn,m

∣∣∣ > ε
)
≤ 4

⌈√
K2

6ε

⌉
exp

(
−n ε2

2δ21C
2
1

)
. (10)

Proof. See Section 7.

12168



For small values of ε, the bound in (10) is better than that
in (9). However, the bound in (9) is derived under weaker
assumptions on the r.v. X and the risk-aversion function ϕ,
as compared to the bound in (10).

A corollary of the result in Theorem 4.3 can be derived
for the case of CVaR, and the reader is referred to (Pandey,
Prashanth, and Bhat 2019) for further details.

5 SRM Estimation: Unbounded Case
In this section, we focus on distributions that satisfy an expo-
nential moment bound — an assumption made precise below.
(A3) The r.v. X is continuous, with a differentiable CDF F .
Further, there exist ρ ≥ 1, ξ > 0, and χ < ∞ such that
E (exp (ξ|X|ρ)) < χ.
Sub-Gaussian and sub-exponential distributions with a differ-
entiable CDF satisfy the assumption above (Vershynin 2018).
In particular, a sub-Gaussian r.v. X satisfies (A3) with ρ = 2,
while a sub-exponential r.v. X satisfies (A3) with ρ = 1.

Estimation Scheme
The bounds for the trapezoidal-rule-based approximation of
SRM in the section above required the underlying r.v. X to
be bounded. Using these bounds together with a truncation-
based estimation approach, we control the trapezoidal error
approximation for the case of distributions with unbounded
support.

Let X1, . . . , Xn denote i.i.d. samples from the distribution
of X . We form a truncated set of samples as follows: for each
i = 1, . . . , n, define

X̄i=XiI {Xi ≤ Bn} , with Bn=


[
ρ log log n
ξ(ρ−1)

] 1
ρ

, ρ > 1,
log log n

ξ , ρ = 1.

(11)

Let F̃n(x) = 1
n

∑n
i=1 I[X̄i ≤ x], x ∈ R, denote the EDF

of the truncated r.v. X̃ = XI {X ≤ Bn}. Let F̃−1n denote
the inverse of F̃n as defined by (4).

We form an SRM estimate along the lines of (7), except
that the samples used are truncated, i.e.,

S̃n,m =
m∑
k=1

ϕ(βk−1)Ṽn,βk−1
+ ϕ(βk)Ṽn,βk

2
∆β, (12)

where Ṽn,β = F̃−1n (β), ∀β ∈ (0, 1).

Concentration Bounds
For the concentration bound presented below, we require the
following assumption:
(A4) There exists a positive sequence {ψ(n), n ≥ 1} such
that, for all n ≥ 1, ψ(n) = o(

√
n)1, and the density f

underlying the r.v. X satisfies f(x) ≥ 1
ψ(n) for all |x| ≤ Bn,

where Bn is defined in (11).
It is apparent that a Gaussian r.v. with variance σ2 satisfies

(A3) with ρ = 2, and (A4) with ψ(n) =
√

2πσ (log n)
1
ξσ2 .

1f(n) = o(g(n)) if f(n)
g(n)

→ 0, as n → ∞.

Further, an exponential r.v. with parameter λ satisfies (A3)
with ρ = 1, and (A4) with ψ(n) = 1

λ (log n)
λ
ξ .

Theorem 5.1 (SRM concentration: Exponential moment
bounded case).
Assume (A1). Suppose the r.v. X with CDF F satisfies (A3)
and (A4). Let

c̃ =


ρχC1

(eξ)
1
ρ (ρ−1)

, ρ > 1,

C1χ
ξ

(
1 + χ

(1−F (Bn))e

)
, ρ = 1.

Fix n ≥ 1 and ε > c̃
logn . Let the number m of sub-intervals

satisfy m ≥ (Bn C2+ψ(n)C1)

(ε− c̃
log n )

, where Bn is given by (11). Let

S̃n,m be formed using (12). Then, we have

P
[∣∣∣S− S̃n,m

∣∣∣ > ε
]
≤ [Bn C2 + ψ(n)C1](

ε− c̃
logn

)
× exp

−n
[
ε− c̃

logn

]2
2ψ(n)2C2

1

.
Proof. See Section 7.

The bound in the theorem above can be interpreted as
follows: For every ε > 0, there exists an n0 such that the tail
bound for SRM estimation is applicable for all n ≥ n0. It is
easy to see that n0 is the smallest natural number satisfying
n > exp

(
c̃
ε

)
. We believe that a bound for any estimator

based on truncation will involve such a minimum number of
samples constraint (cf. Proposition 4 in (Bhat and Prashanth
2019).

For the sub-exponential case, i.e., ρ = 1, the tail bound
above exhibits exponential decay, while the corresponding
bound in (Bhat and Prashanth 2019) shows exponential decay
for ε ≤ 1, and power law decay for ε > 1. Further, unlike
(Bhat and Prashanth 2019), our bounds make all the constants
explicit.

A specialization of the result in 5.1 for the case of CVaR
is provided in (Pandey, Prashanth, and Bhat 2019).

6 Simulation Experiments
In this section, we demonstrate the efficacy of our proposed
method for SRM estimation (7), which we shall refer to as
SRM-Trapz. In our experiments, we use the risk aversion
function ϕ(β) = 5 e−5(1−β)

1−e−5 , β ∈ [0, 1]. In the following
sub-section, we consider a synthetic experimental setting to
compare the accuracy of SRM estimators. Subsequently, we
use SRM-Trapz as a subroutine in a vehicular traffic routing
application (see section 6).

Synthetic Setup
Figure 1 presents the estimation error as a function of the
sample size for SRM-Trapz. The algorithm is run with two
different sub-divisions. The samples are generated using a
Gaussian distribution with mean 0.5 and variance 25. We
observe that SRM-Trapz with 500 subdivisions performs on
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par with SRM-Trapz with 150 subdivisions for every sample
size. Further, as expected, increasing sample size leads to
lower estimation error, while also increasing the confidence
(demonstrated by the shrinkage in standard error).

Figure 1: Error in SRM estimation (|SRM-True - Empiri-
cal SRM|) for different sample sizes. SRM-True is approx-
imated using (7) with a large number of samples. Empir-
ical SRM is calculated by two methods, (i) SRM-Trapz
method with m = 150 subdivisions (SRM-Trapz 150),
and (ii) SRM-Trapz method with m = 500 subdivisions
(SRM-Trapz 500). In both methods, SRM is estimated using
(7). The underlying distribution considered for this simula-
tion is X ∼ N

(
0.5, 52

)
. The bars in the plot shows standard

error averaged over 103 trials.

Distribution SRM-True SRM 1000

Exp(0.2) 10.99±0.01 11.02±1.21
N(0, 102) 107.36±0.01 107.80±1.32
Exp(0.01) 221.30±0.01 221.39±2.47
U(−103, 103) 612.47±0.02 612.65±4.91

Table 1: The results for SRM estimation, on four distributions,
using two methods. Distributions are (a) Exponential distri-
bution with mean 1/0.2 (Exp(0.2)), (b) Normal distribution
with mean zero and variance 102 (N (0, 102)), (c) Exponen-
tial distribution with mean 1/0.01 (Exp(0.01)), (d) Uniform
distribution with range −103 to 103 (U(−103, 103)). Meth-
ods are (i) Calculation of SRM (SRM-True) using (7) with
m = 105 subdivisions, (ii) SRM-Trapz method (SRM-Trapz
1000) using (7) with m = 103 subdivisions. In method (i),
1012 and in method (ii), 104 i.i.d. samples are used for esti-
mating SRM on each distribution, and the standard error is
averaged over 106 and 103 iterations respectively.

Table 1 presents the results obtained by SRM-Trapz with
1000 subdivisions, for four different input distributions, three
of which have unbounded support. SRM-Trapz, which is the
un-truncated estimator, is found to exhibit low estimation
error even for distributions with unbounded support. In Table
1, SRM-True is used as a proxy for the true SRM value in
the experiments, and is set using (7) with a large number

(approximately, 1012) of samples. Given the lack of a closed
form expression for SRM, the estimation scheme that we
propose is a viable alternative to form a proxy SRM-True for
the true SRM value.

Vehicular Traffic Routing

Figure 2: Area of an urban city map, used for SUMO network.

In the vehicular routing application, the traditional objec-
tive is to find a route with the lowest expected delay. However,
such an objective ignores risk factors. An alternative is to con-
sider the weighted-sum delay of each route, and we use SRM
to quantify this objective. Thus, given a set of routes, the aim
is to find the route (by adaptive sampling) with the lowest
SRM of the delay. Simulation of Urban MObility (SUMO)
(Behrisch et al. 2011) is an open source, highly portable, mi-
croscopic road traffic simulation package designed to handle
large road networks. Traffic Control Interface (TraCI) (We-
gener et al. 2008) is a library, providing extensive commands
to control the behavior of the simulation online, including
vehicle state, road configuration, and traffic lights. We imple-
ment our routing algorithm using SUMO and TRACI.

For the experiments, we use the street map of the area
around IIT Madras, Chennai, India (see Figure 2) obtained
from OpenStreetMap (OSM) (Haklay and Weber 2008), and
then used Netconvert tool to load the map in SUMO. The
network has 426 junctions and a total edge length of 123
km. We ran SUMO on this network for 30, 000 time-steps,
in which 7000 cars, 500 buses, 2000 bikes, 1000 cycles, and
1000 pedestrians were added at different time-steps and in
different lanes uniformly. We choose K = 5 routes between
two fixed points, marked as S and D in Figure 2. On these
selected routes, we added n = 1000 cars and tracked them.
In Table 2, X̂n,i is the estimated average delay of the ith
route, and Ŝn,m,i is the SRM estimate for the ith route, i =
1, . . . ,K, using (7), and with n samples. The estimates are
averages over 1000 independent trials. We set the number of
subdivisions m = 100.

From Table 2 it is apparent that ROUTE4 has the lowest ex-
pected delay, and ROUTE2 has the lowest SRM. We consider
a best-arm identification (BAI) bandit framework (Audibert,
Bubeck, and Munos 2010), where an algorithm is given a
fixed budget. Here, the budget refers to the total number of
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ROUTE1 ROUTE2 ROUTE3 ROUTE4 ROUTE5

X̂n,i 283.81 287.15 306.80 266.85 325.86
Ŝ n,m,i 431.28 361.81 455.83 378.68 390.95

Table 2: Results for the estimated average delay (X̂n,i) and
estimated SRM (Ŝn,m,i), for ith route, where i = 1, . . . ,K .

samples across routes. After the sampling budget, the algo-
rithm is expected to recommend a route, and is judged by
the probability that the recommended route is correct (i.e.
the best route). We ran successive rejects (SR) (Audibert,
Bubeck, and Munos 2010), which is a popular BAI algo-
rithm, except that SR is modified to find the route with lowest
SRM. Note that the regular SR algorithm finds the route with
the lowest expected delay. The setting of SUMO is as noted
above. We set the budget n = 1000, number of routesK = 5,
andm = 100 subdivisions for SRM-Trapz. We observed that
SR algorithm picks ROUTE2 with probability 0.91.

7 Convergence Proofs
Proof of Theorem 4.1
We establish two results concerning the error of a trapezoidal-
rule-based approximation, and a concentration bound for the
VaR estimate in (4). These results will be used in the proof
of Theorem 4.1, which is provided subsequently.

Lemma 7.1. Under conditions of Theorem 4.1, we have∣∣∣∣∣∣
1∫

0

ϕ(β)Vβ dβ −
m∑
k=1

ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk

2
∆β

∣∣∣∣∣∣
≤ K1

4m
. (13)

Proof. Let L∞ ([0, 1]) denote the space of essentially
bounded functions on [0, 1]. For any f ∈ L∞ ([0, 1]), let
‖f‖∞ = inf{τ | |f(x)| ≤ τ for almost every x ∈ [0, 1]}
denote the associated norm.

Then, for k = 1, . . . ,m, we have

Ek ,

∣∣∣∣∣
∫ βk+1

βk

ϕ(β)Vβ dβ

−
ϕ(βk−1)Vβk−1

+ ϕ(βk)Vβk

2
∆β

∣∣∣∣
≤ 1

4m2

∥∥∥(ϕ(·)V(·)
)′∥∥∥
∞
≤ K1

4m2
, (14)

where the first inequality in (14) follows from Corollary 2.2
in (Talvila 2016). The latter result provides a bound on the
error in the trapezoidal approximation of a Lebesgue integral.
For the second inequality in (14), we have used (A1), (A2),
and the choice of K1 to infer∥∥∥(ϕ(·)V(·)

)′∥∥∥
∞
≤ BC2 + δ1 C1 ≤ K1.

The main claim can be inferred as follows:∣∣∣∣∣∣
1∫

0

ϕ(β)Vβ dβ −
m∑
k=1

ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk

2
∆β

∣∣∣∣∣∣
≤

m∑
k=1

Ek ≤ m×
K1

4m2
=
K1

4m
.

Lemma 7.2 (VaR concentration). Assume (A2). Then, for
any β ∈ (0, 1) and ε > 0, we have

P
[∣∣∣Vβ − V̂n,β

∣∣∣ ≥ ε] ≤ 2 exp

(
−2nε2

δ21

)
, (15)

where δ1 is specified in (A2).

Proof. Following the proof of Proposition 2 in (Kolla et al.
2019), we obtain

P
(
|V̂n,β −Vβ | ≥ ε

)
≤ 2 exp

(
−2nζ2ε

)
, (16)

where ζε = min{F (Vα+ ε)−F (Vα), F (Vα)−F (Vα− ε)}.
Using (A2), we have F (Vα+ε)−F (Vα) = f(V̄ )ε ≥ ε

δ1
, for

some V̄ ∈ (Vα,min{Vα + ε, B}). Along similar lines, we
have F (Vα)−F (Vα − ε) ≥ ε

δ1
, and we obtain ζε ≥ ε

δ1
. The

main claim follows by using the inequality above in (16).

Proof of Theorem 4.1.. Notice that

P
[∣∣∣S− Ŝn,m

∣∣∣ > ε
]

≤ P

[∣∣∣∣∣
m∑
k=1

ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk

2
∆β

−
m∑
k=1

ϕ(βk−1)V̂n,βk−1
+ ϕ(βk)V̂n,βk

2
∆β

∣∣∣∣∣ > ε

2

]
.

The inequality above follows by using Lemma
7.1 to infer that for m ≥ K1

2ε , we have∣∣∣∫ 1

0
ϕ(β)Vβ dβ −

∑m
k=1

ϕ(βk−1)Vβk−1
+ϕ(βk)Vβk

2 ∆β
∣∣∣ < ε

2 .
Now, we have

P[| S − Ŝn,m |> ε]

≤ P

[∣∣∣∣∣
m∑
k=1

ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk

2
∆β

−
m∑
k=1

ϕ(βk−1)V̂n,βk−1
+ ϕ(βk)V̂n,βk

2
∆β

∣∣∣∣∣ > ε

2

]

≤ P
[∣∣∣ϕ(β0)Vβ0

− ϕ(β0)V̂n,β0

∣∣∣ > ε

2m∆β

]
+ 2P

[∣∣∣ϕ(β1)Vβ1
− ϕ(β1)V̂n,β1

∣∣∣ > ε

2m∆β

]
+ · · ·+

2P
[∣∣∣ϕ(βm−1)Vβm−1 − ϕ(βm−1)V̂n,βm−1

∣∣∣ > ε

2m∆β

]
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+ P
[∣∣∣ϕ(βm)Vβm − ϕ(βm)V̂n,βm

∣∣∣ > ε

2m∆β

]
≤ 2 exp

(
−2n

δ21

(
ε

2mϕ(β0)∆β

)2
)

+ 4 exp

(
−2n

δ21

(
ε

2mϕ(β1)∆β

)2
)

+ · · ·+ 4 exp

(
−2n

δ21

(
ε

2mϕ(βm−1)∆β

)2
)

+ 2 exp

(
−2n

δ21

(
ε

2mϕ(βm)∆β

)2
)
,

where we applied Lemma 7.2 to obtain the final inequality.
Thus,

P
[∣∣∣S− Ŝn,m

∣∣∣ > ε
]
≤ 4m exp

(
−2n

δ21

(
ε

2mC1∆β

)2
)

(17)

= 4m exp

(
− n ε2

2δ21C
2
1

)
=

⌈
2K1

ε

⌉
exp

(
− n ε2

2δ21C
2
1

)
.

The claim follows.

Proof of Theorem 4.3.. The proof follows in a similar man-
ner as that of Theorem 4.1, using a variation of the result in
Lemma 7.1. The reader is referred to Section 6 of (Pandey,
Prashanth, and Bhat 2019) for the details.

Proof of Theorem 5.1
Proof. Notice that

P
[
S− S̃n,m > ε

]
= P [I1 + I2 > ε] , where

I1 =

∫ η

0

ϕ(β)Vβ dβ−
m∑
k=1

ϕ[βk−1]Ṽn,βk−1
+ϕ[βk]Ṽn,βk

2
∆β,

and I2 =

∫ 1

η

ϕ(β)Vβ dβ.

In the above, η = F (Bn), with Bn as defined in the theorem
statement. We bound I2 as follows:

1− β = P (X > Vβ) = P
(

exp(ξXρ) > exp(ξVρ
β)
)

≤ χ exp
(
−ξVρ

β

)
, (18)

or equivalently, Vβ ≤
(

1

ξ
log

(
χ

1− β

)) 1
ρ

. (19)

We now handle the case of ρ > 1 and ρ = 1 separately.
Case ρ > 1:

Using log x ≤ x
e ∀x > 0 , we obtain Vβ ≤

(
χ

eξ(1−β)

) 1
ρ

,
leading to∫ 1

η

Vβ dβ ≤
(
χ

eξ

) 1
ρ
∫ 1

η

dβ

(1− β)
1
ρ

=

(
χ

eξ

) 1
ρ ρ(1− η)1−

1
ρ

ρ− 1

≤
(

1

eξ

) 1
ρ ρ

ρ− 1
χ exp

(
−
ξVρ

η(ρ− 1)

ρ

)
(using (18))

=

(
1

eξ

) 1
ρ ρ

ρ− 1
χ exp

(
−ξB

ρ
n(ρ− 1)

ρ

)
(since Vη = Bn)

Hence,

I2 ≤ C1

∫ 1

η

Vβ dβ ≤
ρχC1

(eξ)
1
ρ (ρ− 1) log n

, (20)

where the final inequality uses the definition of Bn in (11).
Case ρ = 1:
Using (19), we have∫ 1

η

Vβ dβ ≤
1

ξ

∫ 1

η

log

(
χ

1− β

)
dβ

≤ (1− η)

ξ

[
1+

χ

(1− η)e

]
≤ χ exp (−ξVη)

ξ

[
1+

χ

(1− η)e

]
=
χ exp (−ξBn)

ξ

(
1 +

χ

(1− η)e

)
. (since Vη = Bn)

Using (A1) and Bn = log log(n)
ξ , we obtain

I2 ≤ C1

∫ 1

η

Vβ dβ ≤
C1χ

ξ log n

(
1 +

χ

(1− η)e

)
(21)

Applying the bound in the Theorem 4.1 to the truncated
r.v. Z = XI {X ≤ Bn}, and using (A4), we obtain

P [I1 > ε] ≤ K1

ε
exp

(
− nε2

2ψ(n)2C2
1

)
. (22)

With c̃ as in the theorem statement, we obtain

P [I1 + I2 > ε]

≤ K1(
ε− c̃

logn

) exp

−n
(
ε− c̃

logn

)2
2ψ(n)2C2

1


(using (20), (21) and (22))

=
(Bn C2 + ψ(n)C1)(

ε− c̃
logn

) exp

−n
(
ε− c̃

logn

)2
2ψ(n)2C2

1

.
By using a parallel argument, a concentration result for

bounding the lower semi-deviations can be derived. We omit
the details.

8 Conclusions
We proposed a novel SRM estimation scheme that is based on
numerical integration, and derived concentration bounds for
our SRM estimator for the case of distributions with bounded
support, as well as distributions satisfying an exponential
moment bound. As future work, it would be interesting to
derive a lower bound for SRM estimation, and close the gap
(if any) w.r.t. the upper bound that we have derived.
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