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Abstract

This paper deals with the identification problem of causal
effects in randomized trials with noncompliance. In this
problem, generally, causal effects are not identifiable and
thus have been evaluated under some strict assumptions, or
through the bounds. Different from existing studies, we pro-
pose a novel identification condition of joint probabilities
of potential outcomes, which allows us to derive a consis-
tent estimator of the causal effect. Regarding the identifica-
tion conditions of joint probabilities of potential outcomes,
the assumptions of monotonicity (Pearl 2009), independence
between potential outcomes (Robins and Richardson 2011),
gain equality (Li and Pearl 2019) and specific functional re-
lationships between cause and effect (Pearl 2009) have been
utilized. In contrast, without such assumptions, the proposed
condition enables us to evaluate joint probabilities of poten-
tial outcomes using an instrumental variable and a proxy vari-
able of potential outcomes. The result of the present paper ex-
tends the range of solvable identification problems in causal
inference.

Introduction
Practical Background
Evaluation of causal effects from randomized trials is a cen-
tral aim in practical sciences. Randomized trials have been
regarded as a more reliable and powerful tool for evaluating
causal effects, compared with observational studies, where
confounding, information bias and selection bias all hin-
der the evaluation of causal effects from observational data.
When compliance with treatment assignment is perfect, the
standard intention-to-treat (ITT) analysis provides valid es-
timation of the causal effect, by simply computing the effect
of assignment on the outcome. However, it is well known
that noncompliance is often present in randomized trials. In
such cases, ITT analysis may introduce a biased causal ef-
fect (Sheiner and Rubin 1995).

The limitation of an analysis which ignores noncompli-
ance has received growing concern in the practical sciences,
and many researchers and practitioners have proposed var-
ious approaches for dealing with noncompliance. Some of
these include point estimators for the causal effect (Mark
and Robins 1993; Angrist, Imbens, and Rubin 1996; Wang
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Fig. 1: Graphical representation of causal dependencies in a
randomized trial with noncompliance

and Tchetgen 2018). However, these approaches generally
require various strict assumptions. An alternative approach
is to construct nonparametric bounds for the causal effect
(Robins 1989; Manski 1990; Balke and Pearl 1997). Since
this approach is based on the simple assumptions of the
instrumental variable (Greenland 2000), it is applicable to
most randomized trials where the treatment assignment can
serve as a perfect instrumental variable. However, such par-
simonious assumptions may sometimes result in rather wide
bounds, which might be useless for decision making. One
reason may be that these bounds are calculated using only
the information on the randomized assignment, the treat-
ment received and the outcome. When we examine most
randomized trials in the practical sciences, we notice that
not only the measurements of the randomized assignment,
the treatment received and the outcome are available, but
also some measurements of covariates such as age, gender
and race (Cai, Kuroki, and Sato 2007; Lui 2011). When we
are in possession of such covariate measurements, our pur-
pose is to find out when and how we can use this informa-
tion to identify causal effects in randomized trials with non-
compliance.

Problem Description
To motivate our dicussion, we consider randomized clinical
trials with the purpose to examine causal effects of an ex-
perimental treatment in comparison with a controlled treat-
ment. We describe the problem with the graph shown in Fig.
1. For the graph-theoretic terminology and basic theory of
the structural causal models used in the present paper, we
refer readers to Pearl (2009).

Intuitively, in Fig. 1, a directed edge from X to Y indi-
cates that X could have a direct effect on Y . In addition, the
absence of a directed edge from Y toX indicates that Y can-
not be a direct cause of X , and a directed path from C to Y
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through X indicates that some elements of C could have an
effect on Y mediated by X . This situation often appears in
the medical and statistical literature, for example, (Multiple
Risk Factor Intervention Trial Research Group 1982), (Cai,
Kuroki, and Sato 2007), (Yan et al. 2011) and (Lui 2011).

Following Balke and Pearl (1997), for the case shown in
Fig. 1, we assume that Z, X , and Y are observed dichoto-
mous variables, where Z represents the randomized treat-
ment assignment, X represents the treatment actually re-
ceived, and Y represents the observed outcome. In addition,
we let z, x, and y represent the values taken by the variables
Z, X , and Y , with the following meanings: z ∈ {z0, z1},
z1 indicates subjects randomized to the experimental treat-
ment, while z0 indicates subjects randomized to the con-
trolled treatment; x ∈ {x0, x1}, x1 indicates taking the
experimental treatment, while x0 indicates taking the con-
trolled treatment; y ∈ {y0, y1}, y0 indicates disease, while
y1 indicates non-disease. C represents the set of all discrete
and continuous variables, both observed and unobserved,
that are not affected by X or Y . In this situation, the ran-
domized assignment Z satisfies the instrumental variable as-
sumptions: (i) Z is associated with X; (ii) Z is independent
of C; and (iii) Z is conditionally independent of Y given
C and {X} (Greenland 2000). Here, regardingX , Y and Z,
it is straightforward to extend our results from the case of
dichotomous observed variables to the case of multivalued
observed variables. In particular, as Balke and Pearl (1997)
stated, multivalued or continuous outcome can be accom-
modated in the model using the event Y < y as an outcome
variable.

Let pr(x, y) be the joint probability of (X,Y ) = (x, y),
pr(y |x) be the conditional probability of Y = y given
X = x, and pr(x) be the marginal probability of X = x.
Similar notation is used for other probabilities. Then, ac-
cording to (Pearl 2009), the causal effect of X = x on
Y = y is represented as

pr(Yx = y) =
∑
c

pr(y|x, c)pr(c), (1)

where Yx = y denotes “Y takes the value y when X is ex-
perimentally set to x”, or the counterfactual sentence: “Y
would be y, had X been x.” Here, summation signs are re-
placed by integrals whenever the summed variables are con-
tinuous. Equation (1) would be obtained if an ideal random-
ized trial with X were feasible. Contrarily, even when such
a randomized trial is not successful, if a set of observed co-
variates satisfies the back-door criterion relative to (X,Y )
(Pearl 2009), the causal effect is identifiable.

When compliance is not perfect and a set of observed co-
variates is insufficient for identification, the causal effect is
not identifiable without any further assumption. To solve this
problem, using the data about the randomized assignment,
the treatment received, and the outcome from a randomized
trial, Balke and Pearl (1997) provided the sharp bounds for
causal effects. Balke & Pearl’s bounds provide the range
within which the causal effect must lie. In addition, not-
ing that a set C of covariates includes observed variables,
(Cai, Kuroki, and Sato 2007) derived narrower bounds than
Balke & Pearl’s bounds using the information on observed

(a) Unobserved covariates (b) Potential outcomes

Fig. 2: Graphical representation of causal dependencies in a
randomized trial with a proxy variable

covariates. According to (Cai, Kuroki, and Sato 2007), co-
variate information need not include confounding factors in
order to narrow the bounds. This observation motivates the
present paper, which provides a new look on how to use an
instrumental variable Z together with a proxy variable W ,
depicted in Fig. 2 (a), to identify causal effects from studies
with non-compliance.

Theoretical Background
Different from existing studies, our solution of the prob-
lem is to provide an identification condition of “joint prob-
abilities of potential outcomes”, which also allows us to
identify causal effects. One of representative examples of
“joint probabilities of potential outcomes” is “probabilities
of causation”. Tian and Pearl (2000) and Pearl (2009) devel-
oped formal semantics for probabilities of causation based
on structural models of counterfactuals. The probabilities of
causation are formulated based on the joint probabilities of
two potential outcomes. Since one cannot simultaneously
observe the results of the same subjects receiving the ex-
perimental treatment and the controlled treatment in reality,
these quantities are not identifiable even for successful ran-
domized experiments (Pearl 2009, pp.284–285). To solve
the problem, Tian and Pearl (2000) showed how to bound
these quantities from data obtained in experimental and ob-
servational studies. Tian & Pearl’s bounds also provide the
range within which the probabilities of causation must lie.
In addition, Kuroki and Cai (2011) derived narrower bounds
of probabilities of causation than Tian & Pearl’s bounds us-
ing covariate information. However, it has been pointed out
that these bounds are too wide to evaluate the probabilities
of causation.

To overcome this difficulty, Tian and Pearl (2000) also
noted that the probabilities of causation are identifiable if
the monotonicity can be assumed and the causal effects are
identifiable, and Pearl (2009) showed that specific func-
tional relationships between cause and effect lead to the
identification of the probabilities of causation. In the con-
text of natural direct and indirect effects (Pearl 2001), un-
der the assumption of no unmeasured confounding, Robins
and Richardson (2011) stated that the joint probabilities of
potential outcomes are identifiable if (i) two potential out-
comes are independent or (ii) one potential outcome can be
deterministically formulated as a function of the other poten-
tial outcome. In addition, in the context of the unit selection
problems, Li and Pearl (2019) showed that a linear combi-
nation of joint probabilities of potential outcomes is identi-
fiable under gain equality. These prior research studies show
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that the joint probabilities of potential outcomes play an im-
portant role in solving various problems of causal inference.
However, when the present assumptions are violated, there
has been much less discussion of how to identify the joint
probabilities of potential outcomes.

In the present paper, we provide a novel identification
condition of joint probabilities of potential outcomes us-
ing an instrumental variable and a proxy variable. The pro-
posed condition enables us to derive consistent estimators of
joint probabilities of potential outcomes, without relying on
the previously used assumptions. Thus, the proposed condi-
tion also allows us to identify the causal effects. Here, dif-
ferent from the effect restoration proposed by Kuroki and
Pearl (2014), the proposed condition does not require that
the number of categories of an unmeasured confounder is
known. In addition, in some situations, the present result
is applicable to the identification of probabilities of cau-
sation (Tian and Pearl 2000), the unit selection problems
(Li and Pearl 2019), the impact evaluation problem of so-
cial programs (Heckman, Smith, and Clements 1997), the
non-compliance problem of causal effects (Angrist, Imbens,
and Rubin 1996; Balke and Pearl 1997), the identification
problems of natural direct and indirect effects (Pearl 2001),
prevented and preventable proportions (Yamada and Kuroki
2017) and counterfactual based traffic conflicts (Yamada and
Kuroki 2019). Thus, the results of the present paper extend
the range of solvable identification problems in causal infer-
ence.

Preliminaries
This section introduces the potential outcomes used to dis-
cuss our problems. In the present paper, we will assume that
readers are familiar with the basic theory of causal inference
(Pearl 2009; Imbens and Rubin 2015).

In principle, for x ∈ {x0, x1}, the i-th of the N subjects
has a potential outcome Yx(i) that would have resulted if X
had been x, denoted as X(i) = x. Here, note that the sub-
ject ensures a deterministic relationship between two vari-
ables X and Y in the semantics of structural causal mod-
els (Pearl 2009). To address the problem, the present paper
assumes the stable unit treatment value assumption, which
can be summarized as follows: (i) the treatment status of
any subject does not affect the outcomes of the other sub-
jects (no interference) and (ii) the treatments of all subjects
are comparable (no variation in treatment). Thus, when the
N subjects in the study are considered as random samples
from the population of interest, X(i) and Yx(i) are referred
to as the values of random variables X and Yx respectively,
and thus the causal effect of X = x on Y = y is defined
as pr(Yx = y). Similar notation is used for other potential
outcomes.

For the i-th subject, the potential outcome Yx is observed
only if X is x . This property is called the consistency
(Robins 1989; Pearl 2009), which is formulated as

X(i) = x=⇒Yx(i) = Y (i)

. When a randomized experiment is conducted and compli-
ance is perfect, since X is independent of (Yx0

, Yx1
), the

causal effect is identifiable and is given by

pr(Yx = y) = pr(y |x).

Here, “identifiable” means that the causal quantities, such
as pr(Yx = y), can be estimated consistently from a joint
probability of observed variables. In contrast, when it is
difficult to conduct a randomized experiment and only ob-
servational data are available, we can evaluate the causal
effects according to the conditionally-ignorable-treatment-
assignment condition (Rosenbaum and Rubin 1983), or
graphically, the back-door criterion (Pearl 2009). In other
words, for the treatment X , if there exists such a set S of
observed covariates that X is conditionally independent of
(Yx0

, Yx1
) given S, we can say that treatment assignment is

conditionally ignorable given S. Then, the causal effects are
estimable using S as

pr(Yx = y) = Es[pr(y |x,S)].

Here, Es[pr(y |x,S)] is the expectation of pr(y |x,S) re-
gardingS. Although there are other identification conditions
that can be used to solve our problem (e.g., Tian and Pearl
2002; Pearl 2009), the present paper does not cover them
due to space constraints.

Main Result
Identification
According to Fig. 2 (a), letting U be a subset of variables
from the set C in Fig. 1, consider the problem of evaluat-
ing the joint probabilities of potential outcomes. Here, W
(possibly, a subset of C) in Fig. 2 (a) is assumed to be mea-
sured as a proxy variable of U . Fig. 2 (a) also provides the
graphical representation of the data generating process

Y = gy(X,U , εy), X = gx(U , Z, εx),

W = gw(U , εw), Z = gz(εz), U = gu(εu),

where εx, εy , εz , εw, and εu are independent random distur-
bances, and gu(εu) is a set of functions of εu. Such a situ-
ation is also discussed in Pearl (2010) and Kuroki and Pearl
(2014). However, different from Kuroki and Pearl (2014),U
can include an arbitrary number of variables in the present
paper. In addition, according to the previous section, we
also consider a situation where U is the set of all discrete
and continuous variables that influence the way a subject
responds to treatments. Thus, in many situations, it is rea-
sonable to assume the existence of a proxy variable W that
is independent of {X,Y, Z} givenU , and thus, it would not
be difficult to observe such a proxy variable that satisfies
the condition. Here, note that the independence assumptions
between two observed variables would be affected by parti-
tioning the states of U ∪ {εx, εy}.

In the situation shown in Fig. 2 (a), irrespective of the
complexity ofU ∪{εx, εy}, the impact ofU ∪{εx, εy} on Y
cannot amount to more than a modification of the functional
relationship between X and Y . Thus, there are exactly four
functions regarding two dichotomous variables X and Y , so
the values taken by U ∪ {εx, εy} select one of these four
functions (Pearl 2009). Considering these observations, ac-
cording to Rothman, Greenland, and Lash (2008, p.59), the
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states of U ∪ {εx, εy} are divided into the following four
potential outcome types:

u1 = (Yx0
= y0, Yx1

= y0) represents the ‘doomed’ sit-
uation where the treatment received is irrelevant because
disease occurs with the experimental or controlled treat-
ment.
u2 = (Yx0 = y0, Yx1 = y1) represents the ‘causative’ sit-
uation where disease occurs if and only if subjects receive
the controlled treatment.
u3 = (Yx0

= y1, Yx1
= y0) represents the ‘preventive’

situation where disease occurs if and only if subjects re-
ceive the experimental treatment.
u4 = (Yx0

= y1, Yx1
= y1) represents the ‘immune’

situation where the treatment received is again irrelevant
because disease does not occur, with the experimental or
controlled treatment.

According to this partition of the states of U ∪ {εx, εy},
U ∪ {εx, εy} is re-defined as a variable U that takes a value
u (u ∈ {u1, u2, u3, u4}). Here, counterfactually, an instru-
mental variable Z satisfies (i) Xz is a non-trivial function
of z, (ii) Yx,z = Yx holds for any x and z (exclusion re-
striction), and (iii)Z is independent of (Xz0 , Xz1 , Yx0

, Yx1
).

Then, similarly to the setting of the non-compliance prob-
lem by Pearl (2009, ch.8), throughout the paper, for any x,
y, z and w, we assume that Fig. 2 (a) can be re-described
as in Fig. 2 (b) and the corresponding recursive factoriza-
tion of the conditional probabilities of Y , Z and W given
X , pr(y, z, w|x), is given as

pr(y, z, w | x)

=

4∑
i=1

pr(y | x, ui) pr(z | x, ui) pr(w | ui) pr(ui | x)

according to Fig. 2 (b). Here, note that the association be-
tween X and (Yx0

, Yx1
) is generated through (Xz0 , Xz1)

(i.e.,the states of U ∪ {εx, εy} are divided into sixteen po-
tential outcome types in Balke and Pearl (1997)), but we do
not describe (Xz0 , Xz1) in Fig. 2 (b), because the result of
this paper can be derived by marginalizing over (Xz0 , Xz1).

From the consistency property, we have

pr(y0, z, w, ui | x0) = pr(z, w, ui | x0), i = 1, 2,

pr(y0, z, w, ui | x1) = pr(z, w, ui | x1), i = 1, 3,

pr(y0, z, w, ui | x0) = 0, i = 3, 4,

pr(y0, z, w, ui | x1) = 0, i = 2, 4.

From these equations, pr(y, z, w | x) and pr(z, w | x) can
be rewritten as

pr(y0, z, w | x0)

=
∑
i=1,2

pr(w | ui) pr(z | x0, ui) pr(ui | x0),

pr(y0, z, w | x1)

=
∑
i=1,3

pr(w | ui) pr(z | x1, ui) pr(ui | x1),

pr(z, w | x0) =
4∑

i=1

pr(z | x0, ui) pr(w | ui) pr(ui | x0),

pr(z, w | x1) =
4∑

i=1

pr(z | x1, ui) pr(w | ui) pr(ui | x1),

and other joint and marginal probabilities of Y , Z and
W can be rewritten in a similar way. In addition, when
W is a variable with the number of values k ≥ 4, say
w1, w2, w3, w4, for x ∈ {x0, x1}, let

Px =

 1 pr(z0 | x)
pr(w1 | x) pr(w1, z0 | x)
pr(w2 | x) pr(w2, z0 | x)
pr(w3 | x) pr(w3, z0 | x)

 ,

Qx =

 pr(y0 | x) pr(y0, z0 | x)
pr(y0, w1 | x) pr(y0, w1, z0 | x)
pr(y0, w2 | x) pr(y0, w2, z0 | x)
pr(y0, w3 | x) pr(y0, w3, z0 | x)

 ,

Ax0 =

 1 pr(w1 | u1) pr(w2 | u1) pr(w3 | u1)
1 pr(w1 | u2) pr(w2 | u2) pr(w3 | u2)
1 pr(w1 | u3) pr(w2 | u3) pr(w3 | u3)
1 pr(w1 | u4) pr(w2 | u4) pr(w3 | u4)

 ,

Ax1 =

 1 pr(w1 | u1) pr(w2 | u1) pr(w3 | u1)
1 pr(w1 | u3) pr(w2 | u3) pr(w3 | u3)
1 pr(w1 | u2) pr(w2 | u2) pr(w3 | u2)
1 pr(w1 | u4) pr(w2 | u4) pr(w3 | u4)



Bx0 =

 1 pr(z0 | x0, u1)
1 pr(z0 | x0, u2)
1 pr(z0 | x0, u3)
1 pr(z0 | x0, u4)

 , Bx1 =

 1 pr(z0 | x1, u1)
1 pr(z0 | x1, u3)
1 pr(z0 | x1, u2)
1 pr(z0 | x1, u4)

 ,

∆ =

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

Mx0 =

 pr(u1 | x0) 0 0 0
0 pr(u2 | x0) 0 0
0 0 pr(u3 | x0) 0
0 0 0 pr(u4 | x0)

 ,

Mx1 =

 pr(u1 | x1) 0 0 0
0 pr(u3 | x1) 0 0
0 0 pr(u2 | x1) 0
0 0 0 pr(u4 | x1)

 .

Then, for x ∈ {x0, x1}, we have

Px = AT
xMxBx, Qx = AT

x ∆MxBx, (2)

where the notation “T” indicates a transposed vector/matrix.
Here, for x ∈ {x0, x1}, let. P1,x and Q1,x be 2 × 2 ma-

trices constructed from the first two rows of Px and Qx, re-
spectively. In addition, letting A11,x be a 2 × 2 block ma-
trix which is constructed by the first and second rows and
columns of AT

x , and A22,x be a 2 × 2 block matrix which
is constructed by the third and fourth rows and columns of
AT

x , suppose that A11,x, A22,x and Ax are invertible for
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x ∈ {x0, x1}. Although they include the probabilities of
“observed” variable W given “unobserved” potential out-
comes U , the violation of the assumptions is testable by
checking whether Q1,x and P1,x − Q1,x are invertible or
not in some situations. Then, we can derive the following
theorem:
Theorem 1 When Z is an instrumental variable relative
to (X,Y ) and statistical dependencies among X , Y , Z,
W and U are as described by Fig. 2 (b) and the corre-
sponding recursive factorization of pr(x, y, z, w, u), if (i)
A11,x, A22,x, Ax, Q1,x and P1,x − Q1,x are invertible for
any x, (ii) the second column vectors of Q2,xQ

−1
1,x and

(P2,x − Q2,x)(P1,x − Q1,x)−1 are different from those of
Q2,x′Q−11,x′ and (P2,x′−Q2,x′)(P1,x′−Q1,x′)−1 for x 6= x′,
and (iii) both Yx,z,w = Yx and Xz,w = Xz hold for any x,
z and w, the joint probabilities of potential outcomes pr(ui)
are identifiable (i = 1, 2, 3, 4).

The proof of Theorem 1 is given in Appendix. Condition
(ii), which is testable, is used to provide the unique solution
of the simultaneous linear equation. From Theorem 1, the
causal effects are identifiable for any x and y and are given
by, e.g.,

pr(Yx0 = y0) =
∑
i=1,2

pr(ui), pr(Yx1 = y0) =
∑
i=1,3

pr(ui).

Here, in the context of “probabilities of causation” (e.g.,
Tian and Pearl 2002; Cai and Kuroki 2005; Pearl 2009),
pr(u2) is called a “probability of necessity and sufficiency”.
In addition, for x ∈ {x0, x1}, pr(u2|x) are used to evaluate
“probability of necessity” and “probability of sufficiency”.

Some Remarks
Here, we would like to state some remarks. First, note
that Theorem 1 provides no guarantee of identifying the
joint probabilities of the four-dimensional potential out-
comes, i.e., pr(Yx0

= yi, Yx1
= yj , Xz0 = xk, Xz1 =

xl) (i, j, k, l = 0, 1). Second, different from the effect
restoration method based on the eigenvalue decomposition
(Kuroki and Pearl 2014), note that the proof of Theorem
1 comes down to solving the simultaneous linear equa-
tion of pr(u1 |x), pr(u2 |x), pr(u3 |x), pr(u4 |x) for x ∈
{x0, x1}. Third, violation of the assumptions is testable: if
at least one of Q1,x and P1,x − Q1,x is not invertible, W
may not be appropriate for identifying the causal effects or
there may be certain functional relationships between poten-
tial outcomes. Note especially, Theorem 1 implies that (a) all
potential outcome types exist and thus the monotonicity as-
sumption (e.g., no-prevention assumption; pr(u3) = 0) does
not hold, and (b) X is not independent of U , and thus X
is not randomly assigned. Here, when both an instrumental
variable and a proxy variable are available, under similar as-
sumptions, the identification under such monotonicity can
be achieved through a slight revision of the proof of Theo-
rem 1.

Finally, to derive narrower bounds than Balke & Pearl’s
bounds, Cai, Kuroki, and Sato (2007) divided the observed
variable W into the six cases shown in Fig. 3. Fig. 3 (a) rep-
resents the case that W is a confounder, where W has an

(a) Confounder (b) Instrumental variable

(c) Prognostic factor (d) M structure

(e) No-association (f) Intermediate variable

Fig. 3: Graphical representation of causal dependencies in
a randomized trial with observed and unobserved covariates
(Cai, Kuroki, and Sato 2007)

effect on both X and Y ; Fig. 3 (b) represents the case that
W satisfies the instrumental variable conditions, where W
has an effect on X; Fig. 3 (c) represents the case that W
is a prognostic factor, where W has an effect on Y ; Fig. 3
(d) represents the case that W is in an “M” structure, where
W is a proxy variable of U and associated with X; Fig. 3
(e) represents the case that W is associated with neither X
nor Y ; finally, Fig. 3 (f) represents the case that W is an in-
termediate variable between X and Y . Based on Fig. 3, for
the case that some minimal causal knowledge is available
regarding the relationship between the measured covariates
and other variables, for example, when we know that W
occurs before X , Cai, Kuroki, and Sato (2007) stated that
narrower bounds could be obtained using covariate infor-
mation. However, they did not take the relationship in Fig.
2 (a) into account when deriving narrower bounds. The re-
sults of the present paper demonstrate that, when we observe
one proxy variable associated with potential outcomes in the
instrumental variable framework, the joint probabilities of
potential outcomes can be constructed from the proxy and
instrumental variable without the monotonicity assumption,
far from bounding the causal quantities, in some situations.

Discussion
Joint probabilities of potential outcomes are of interest in
epidemiology, risk analysis, legal reasoning, artificial intel-
ligence, and policy analysis. Therefore, the identification
problem of these probabilities has been an important topic
in causal inference. To solve the problem, the paper pro-
vided a novel identification condition for the probabilities
of potential outcomes by using an instrumental variable and
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a proxy variable. The proposed condition also enables us to
derive consistent estimators of causal effects. To the best of
our knowledge, the possibility of using proxies to evaluate
the joint probability of potential outcomes in nonparametric
systems has not previously appeared in the literature.

Finally, we conducted an asymptotic analysis of bias re-
moval, but inferential aspects were not discussed. When the
joint probabilities of potential outcomes are identifiable, al-
though the present paper implicitly assumes that the method
of moments is utilized to estimate these quantities, it would
be necessary to develop a more efficient estimation method
based on singular models. We also assumed that observed
variables are dichotomous in the present paper. This assump-
tion can be relaxed by allowing them to have more than two
categories, and thus, we can easily extend our results to mul-
ticategorical variables, which makes our results applicable to
broader variety of situations. However, in such cases, it may
be difficult to obtain reliable statistics of the recovered prob-
abilities, due to data sparseness. This is left as future work.
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Appendix: Proof of Theorem 1
For x ∈ {x0, x1}, from equation (2) and the assumption,
note that we can derive

Qx = AT
x ∆AT−1

x Px.

Here, for x ∈ {x0, x1}, we let

AT
x =

(
A11,x A12,x

A21,x A22,x

)
,

Px =

(
P1,x

P2,x

)
, Qx =

(
Q1,x

Q2,x

)
,

where

P1,x =

(
1 pr(z0 | x)

pr(w1 | x) pr(w1, z0 | x)

)
,

P2,x =

(
pr(w2 | x) pr(w2, z0 | x)
pr(w3 | x) pr(w3, z0 | x)

)
,

Q1,x =

(
pr(y0 | x) pr(y0, z0 | x)

pr(y0, w1 | x) pr(y0, w1, z0 | x)

)
,

Q2,x =

(
pr(y0, w2 | x) pr(y0, w2, z0 | x)
pr(y0, w3 | x) pr(y0, w3, z0 | x)

)
.

In addition,

A11,x0 =

(
1 1

pr(w1 | u1) pr(w1 | u2)

)
,

A12,x0 =

(
1 1

pr(w1 | u3) pr(w1 | u4)

)
,

A21,x0 =

(
pr(w2 | u1) pr(w2 | u2)
pr(w3 | u1) pr(w3 | u2)

)
,

A22,x0
=

(
pr(w2 | u3) pr(w2 | u4)
pr(w3 | u3) pr(w3 | u4)

)
,

A11,x1
=

(
1 1

pr(w1 | u1) pr(w1 | u3)

)
,

A12,x1
=

(
1 1

pr(w1 | u2) pr(w1 | u4)

)
,

A21,x1 =

(
pr(w2 | u1) pr(w2 | u3)
pr(w3 | u1) pr(w3 | u3)

)
,

A22,x1
=

(
pr(w2 | u2) pr(w2 | u4)
pr(w3 | u2) pr(w3 | u4)

)
.

Then, for x ∈ {x0, x1}, noting thatAT−1
x can be represented

as

AT−1
x =

(
A11

x −A11
x A12,xA

−1
22,x

−A−122,xA21,xA
11
x A22

x

)
,

where

A11
x = (A11,x −A12,xA

−1
22,xA21,x)−1,

A22
x = (A22,x −A21,xA

−1
11,xA12,x)−1,

we can derive

AT
x ∆AT−1

x =

(
A11,xA

11
x

A21,xA
11
x

)(
I2,2;−A12,xA

−1
22,x

)
,

where I2,2 is a 2× 2 identity matrix. Thus, we can derive

Q1,x = A11,xA
11
x (P1,x −A12,xA

−1
22,xP2,x),

Q2,x = A21,xA
11
x (P1,x −A12,xA

−1
22,xP2,x).

From these equations, we have Q2,x = A21,xA
−1
11,x ×Q1,x,

i.e.,
A21,x = Q2,xQ

−1
1,xA11,x (3)

and

A11,−1
x A−111,xQ1,x = Q1,x −A12,xA

−1
22,xA21,xA

−1
11,xQ1,x

= P1,x −A12,xA
−1
22,xP2,x,

which gives

Q1,x − P1,x = A12,xA
−1
22,x(A21,xA

−1
11,xQ1,x − P2,x)

= A12,xA
−1
22,x(Q2,x − P2,x),

i.e.,

A22,x = (Q2,x − P2,x)(Q1,x − P1,x)−1A12,x. (4)

Here, for x ∈ {x0, x1}, letting axij and bxij be the (i, j)

elements of observed matrices Q2,xQ
−1
1,x and (Q2,x −

P2,x)(Q1,x−P1,x)−1, respectively (i, j = 1, 2), from equa-
tion (3), we have

Q2,x0Q
−1
1,x0

A11,x0

=

(
ax0
11 + ax0

12pr(w1 | u1) ax0
11 + ax0

12pr(w1 | u2)
ax0
21 + ax0

22pr(w1 | u1) ax0
21 + ax0

22pr(w1 | u2)

)
= A21,x0 =

(
pr(w2 | u1) pr(w2 | u2)
pr(w3 | u1) pr(w3 | u2)

)
,
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Q2,x1Q
−1
1,x1

A11,x1

=

(
ax1
11 + ax1

12pr(w1 | u1) ax1
11 + ax1

12pr(w1 | u3)
ax1
21 + ax1

22pr(w1 | u1) ax1
21 + ax1

22pr(w1 | u3)

)
= A21,x1

=

(
pr(w2 | u1) pr(w2 | u3)
pr(w3 | u1) pr(w3 | u3)

)
,

A22,x0
=

(
pr(w2 | u3) pr(w2 | u4)
pr(w3 | u3) pr(w3 | u4)

)
= (Q2,x0 − P2,x0)(Q1,x − P1,x0)−1A12,x0

=

(
bx0
11 + bx0

12pr(w1 | u3) bx0
11 + bx0

12pr(w1 | u4)
bx0
21 + bx0

22pr(w1 | u3) bx0
21 + bx0

22pr(w1 | u4).

)

A22,x1 =

(
pr(w2 | u2) pr(w2 | u4)
pr(w3 | u2) pr(w3 | u4)

)
= (Q2,x1

− P2,x1
)(Q1,x1

− P1,x1
)−1A12,x1

=

(
bx1
11 + bx1

12pr(w1 | u2) bx1
11 + bx1

12pr(w1 | u4)
bx1
21 + bx1

22pr(w1 | u2) bx1
21 + bx1

22pr(w1 | u4)

)
From these equations, pr(w|u) is identifiable. In addition,
for x ∈ {x0, x1}, since Ax is identifiable, comparing the
first columns of the left- and right-hand sides of

AT−1
x Px = MxBx,

both Mx0
and Mx1

are identifiable. Furthermore, since both
pr(x0) and pr(x1) are estimable from observed probabilities,
the joint probabilities of potential outcomes are identifiable
and the causal effects are also identifiable.

References
Angrist, J. D.; Imbens, G. W.; and Rubin, D. B. 1996. Iden-
tification of Causal Effects Using Instrumental Variables.
Journal of the American Statistical Association 91(434):
444–455.

Balke, A.; and Pearl, J. 1997. Bounds on Treatment Effects
From Studies With Imperfect Compliance. Journal of the
American Statistical Association 92(439): 1171–1176.

Cai, Z.; and Kuroki, M. 2005. Variance Estimators for Three
“Probabilities of Causation”. Risk Analysis 25(6): 1611–
1620.

Cai, Z.; Kuroki, M.; and Sato, T. 2007. Non-parametric
bounds on treatment effects with non-compliance by covari-
ate adjustment. Statistics in Medicine 26(16): 3188–3204.

Greenland, S. 2000. An introduction to instrumental vari-
ables for epidemiologists. International Journal of Epidemi-
ology 29(4): 722–729.

Heckman, J. J.; Smith, J.; and Clements, N. 1997. Mak-
ing the Most Out of Programme Evaluations and Social Ex-
periments: Accounting for Heterogeneity in Programme Im-
pacts. The Review of Economic Studies 64(4): 487–535.

Imbens, G. W.; and Rubin, D. B. 2015. Causal Inference
in Statistics, Social, and Biomedical Sciences. Cambridge
University Press.

Kuroki, M.; and Cai, Z. 2011. Statistical analysis of ‘prob-
abilities of causation’ Using covariate information. Scandi-
navian Journal of Statistics 38(3): 564–577.

Kuroki, M.; and Pearl, J. 2014. Measurement bias and effect
restoration in causal inference. Biometrika 101(2): 423–437.

Li, A.; and Pearl, J. 2019. Unit Selection Based on Coun-
terfactual Logic. Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence 1793–
1799.

Lui, K.-J. 2011. Binary Data Analysis of Randomized Clin-
ical Trials with Noncompliance. John Wiley & Sons 1–20.

Manski, C. F. 1990. Nonparametric bounds on treatment ef-
fects. American Economic Review, Papers and Proceedings
80(2): 319–323.

Mark, S. D.; and Robins, J. M. 1993. A method for the anal-
ysis of randomized trials with compliance information; An
application to the Multiple Risk Factor Intervention Trial.
Controlled Clinical Trials 14(1): 79–97.

Multiple Risk Factor Intervention Trial Research Group.
1982. Multiple Risk Factor Intervention Trial: risk factor
changes and mortality results. Journal of the American Med-
ical Association 248: 1465–1477.

Pearl, J. 2001. Direct and Indirect Effects. Proceedings of
the 17th Conference on Uncertainty in Artificial Intelligence
411–420.

Pearl, J. 2009. Causality: Models, Reasoning and Inference.
Cambridge University Press 283–308.

Pearl, J. 2010. On Measurement Bias in Causal Inference.
Proceedings of the 26th Conference on Uncertainty in Arti-
ficial Intelligence 425–432.

Robins, J. 1989. The analysis of randomized and non-
randomized AIDS treatment trials using a new approach to
causal inference in longitudinal studies. Health Service Re-
search Methodology: A Focus on AIDS 113–159.

Robins, J.; and Richardson, T. S. 2011. Alternative graph-
ical causal models and the identification of direct effects.
Causality and Psychopathology: Finding the Determinants
of Disorders and Their Cures 103–158.

Rosenbaum, P. R.; and Rubin, D. B. 1983. The central role
of the propensity score in observational studies for causal
effects. Biometrika 70(1): 41–55.

Rothman, K.; Greenland, S.; and Lash, T. 2008. Modern
Epidemiology. Lippincott Williams & Wilkins 59.

Sheiner, L. B.; and Rubin, D. B. 1995. Intention-to-treat
analysis and the goals of clinical trials. Clinical Pharmacol-
ogy and Therapeutics 57(1): 6–15.

Tian, J.; and Pearl, J. 2000. Probabilities of causation:
Bounds and identification. Annals of Mathematics and Arti-
ficial Intelligence 28(1): 287–313.

Tian, J.; and Pearl, J. 2002. A General Identification Con-
dition for Causal Effects. Proceedings of the 18th National
Conference on Artificial Intelligence 567–573.

12137



Wang, L.; and Tchetgen, E. T. 2018. Bounded, efficient and
multiply robust estimation of average treatment effects us-
ing instrumental variables. Journal of the Royal Statistical
Society. Series B, Statistical methodology 80(3): 531.
Yamada, K.; and Kuroki, M. 2017. Counterfactual-Based
Prevented and Preventable Proportions. Journal of Causal
Inference 5: 20160020, eISSN 2193–3685.
Yamada, K.; and Kuroki, M. 2019. New Traffic Conflict
Measure Based on a Potential Outcome Model. Journal of
Causal Inference 7: 20180001, eISSN 2193–3685.
Yan, W.; Ding, P.; Geng, Z.; and Zhou, X. 2011. Identifia-
bility of causal effects on a binary outcome within principal
strata. Frontiers of Mathematics in China 6(6): 1249–1263.

12138


