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Abstract

Robust Markov Decision Processes (MDPs) are a powerful
framework for modeling sequential decision making prob-
lems with model uncertainty. This paper proposes the first
first-order framework for solving robust MDPs. Our algorithm
interleaves primal-dual first-order updates with approximate
Value Iteration updates. By carefully controlling the tradeoff
between the accuracy and cost of Value Iteration updates, we
achieve an ergodic convergence rate that is significantly better
than classical Value Iteration algorithms in terms of the num-
ber of states S and the number of actions A on ellipsoidal and
Kullback-Leibler s-rectangular uncertainty sets. In numerical
experiments on ellipsoidal uncertainty sets we show that our
algorithm is significantly more scalable than state-of-the-art
approaches. Our framework is also the first one to solve robust
MDPs with s-rectangular KL uncertainty sets.

1 Introduction
In this paper we focus on solving robust Markov Deci-
sion Processes (MDPs) with finite set of states and actions.
Markov decision process models are widely used in decision-
making (Bertsekas 2007; Puterman 1994). In the classical
MDP setting, for each state s ∈ S, the decision maker
chooses a probability distribution xs over the set of actions
A. The decision maker incurs a cost

∑|A|
a=1 xsacsa for some

non-negative scalars csa and then randomly enters a new
state, according to transition kernels y = {ysa ∈ ∆(|S|)}sa
over the next state, where ∆(|S|) is the simplex of size |S|.
Given a discount factor λ, the goal of the decision-maker
is to minimize the infinite horizon discounted expected cost

R(x,y) = Ex,y

[∑∞
t=0 λ

tcstat

∣∣∣∣ s0 ∼ p0

]
.

The cost of a policy can be highly sensitive to the exact
kernel parameters y. We consider a robust approach where
the uncertainty in y is adversarially selected from an uncer-
tainty set P centered around a nominal estimation y0 of the
true transition kernel. Our goal is to solve the robust MDP
problem minx∈Π maxy∈P R(x,y) (Iyengar 2005; Nilim
and Ghaoui 2005; Wiesemann, Kuhn, and Rustem 2013; Goh
et al. 2018; Goyal and Grand-Clement 2018), which has
found applications in healthcare (Steimle and Denton 2017;
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Steimle, Kaufman, and Denton 2018; Goh et al. 2018; Grand-
Clement et al. 2020). We focus on s-rectangular uncertainty
sets, where P = ×

s∈S
Ps, for Ps ⊆ R|A|×|S|+ , and solving the

robust MDP problem is equivalent to computing the fixed
point of the Bellman operator, thus allowing a value iteration
(VI) algorithm (Wiesemann, Kuhn, and Rustem 2013).

We focus on two specific classes of s-rectangular uncer-
tainty sets. Kullback-Leibler (KL) uncertainty sets are con-
structed from density estimation and naturally appear as ap-
proximations of the confidence intervals for the maximum
likelihood estimates of y given some historical transition
data (Iyengar 2005). Ellipsoidal uncertainty sets are widely
used because of their tractability and the probabilistic guaran-
tees of the optimal solutions of the robust problems (Ben-Tal
and Nemirovski 2000; Bertsimas, den Hertog, and Pauphilet
2019). For ellipsoidal uncertainty sets, the value iteration al-
gorithm involves solving a convex program with a quadratic
constraint at every epoch. While this can be done in polyno-
mial time with modern Interior Point Methods (IPMs, (Lobo
et al. 1998)), this requires inverting matrices at every step of
the IPM which can be intractable for large MDP instances.
Typically, for S = |S|, A = |A|, the complexity of VI to
return an ε-solution to the robust MDP problem with ellip-
soidal uncertainty sets is O

(
A3.5S4.5 log2(ε−1)

)
. This may

prove prohibitive for large instances. For KL uncertainty
sets, we are not aware of any tractable algorithm for solving
s-rectangular robust MDP with KL uncertainty sets, even
though they are well understood in Distributionally Robust
Optimization (Hu and Hong 2013).

Many problems in machine learning and game theory can
be written in the form minx∈X maxy∈Y L(x,y), where L
is a convex-concave function and X,Y are reflexive Banach
spaces, e.g. regularized finite-sum loss minimization, imaging
models, and sequential two-player zero-sum games (Cham-
bolle and Pock 2011; Kroer et al. 2018). Even though convex
duality often allows reformulating this saddle-point prob-
lem as a single convex program, first-order methods (FOMs)
such as Chambolle & Pock’s Primal-Dual Algorithm (PDA,
(Chambolle and Pock 2011)), Mirror Descent (Nemirovski
and Yudin 1983) or Mirror Prox (Nemirovski 2004) are typ-
ically preferred for large instances. This is due to the ex-
pensive matrix calculations involved in IPMs or the simplex
algorithm. Naively, one may hope to apply FOMs directly to
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the robust MDP problem, which looks superficially similar
to the saddle-point problem. However, since the robust MDP
problem is not convex-concave FOMs may fail to converge.

Our main contributions can be summarized as follows.
A first-order method for robust MDP. We present a new
algorithmic framework for solving robust MDPs that is signif-
icantly more scalable than previous methods. Our algorithm
adapts FOMs for solving static zero-sum games to a dynamic
setting with varying payoff matrices. Only cheap proximal
mappings need to be computed at each iteration. Our frame-
work interleaves FOM updates with occasional approximate
VI updates. By carefully controlling the pace of VI updates,
and developing bounds on the change in the payoff matrices
of the zero-sum games, we show that the ergodic average of
policies generated by our framework converges (in value) at
a rate of nearly 1

T in terms of the number of FOM steps T .
Suitable proximal setups. Our algorithmic framework is
general and works for any uncertainty set for which a suitable
proximal setup exists. We instantiate our algorithm on KL and
ellipsoidal uncertainty sets. To the best of our knowledge, our
algorithm is the first to address s-rectangular KL uncertainty
sets for robust MDPs, and is the most scalable for ellipsoidal
s-rectangular uncertainty sets in terms of number of states
and actions.
Empirical performance. We focus our numerical experi-
ments on ellipsoidal and KL uncertainty sets. We investigate
several proximal setups, and find that an `2 setup performs
better than an `1 setup, despite better theoretical guarantees
for the `1 setup. Similar observations have been made for
numerical performance on stationary saddle-point optimiza-
tion (Chambolle and Pock 2016; Gao, Kroer, and Goldfarb
2019). Finally, we show that our approach is significantly
more scalable than state-of-the-art VI setups, both on random
instances and on applications inspired from healthcare and
machine replacement.

Related Work
We now present a summary of the most related literature.
Approximate value iteration and regularized MDP. For
the nominal MDP setting, approximate Value Iteration
(de Farias and Roy 2003; Petrik 2010; Scherrer et al. 2015)
considers inexact Bellman updates which arise from sample-
based errors or function approximation; note that contrary to
works involving value function approximation, we are solv-
ing the MDP up to any chosen accuracy. Geist, Scherrer, and
Pietquin (2019) adds KL regularization to the VI update for
nominal MDP and relate this to Mirror Descent. In contrast
to Geist, Scherrer, and Pietquin (2019), we focus on robust
MDPs, where VI requires computing the robust Bellman op-
erator. Our framework is based on a connection to zero-sum
games with changing payoff matrices and we use FOMs to ef-
ficiently approximate the robust Bellman update. This is very
different from Geist, Scherrer, and Pietquin (2019), where
regularized VI itself is treated as a FOM.
Faster value iteration algorithms. For nominal MDPs,
several algorithms have been proposed to accelerate the
convergence of VI, including Anderson mixing (Zhang,
O’Donoghue, and Boyd 2018; Geist and Scherrer 2018)

and acceleration and momentum schemes (Goyal and Grand-
Clement 2019). However, these methods modify the VI algo-
rithm itself, and do not accelerate the computation of each
Bellman update.
Faster Bellman updates. For s, a-rectangular uncertainty
sets, robust Bellman updates were studied for norm-ball
uncertainty sets for the `1 and weighted `1 norms ((Iyen-
gar 2005; Ho, Petrik, and W.Wiesemann 2018)), `2 norm
(Iyengar 2005), KL-divergence (Nilim and Ghaoui 2005)
and `∞ norm (Givan, Leach, and Dean 1997). To the best
of our knowledge, the only paper on fast computation of
robust Bellman updates for s-rectangular uncertainty sets
is Ho, Petrik, and W.Wiesemann (2018) which consid-
ers weighted `1-balls for Ps and attains a complexity of
O
(
AS3 log(AS2) log(ε−1)

)
for finding an ε-solution to the

robust MDP problem. This complexity result relies on linear
programming theory and cannot directly be extended to other
settings for Ps (e.g. ellipsoidal or KL uncertainty sets).

2 Preliminaries on Robust MDP
Notation. We write |S| = S, |A| = A and we assume S <

+∞, A < +∞. Given a policy x ∈ Π = (∆(A))
S and a ker-

nel y ∈ P, we define the one-step cost vector cx ∈ RS and
the value vector vx,y ∈ RS as cx,s =

∑A
a=1 xsacsa, v

x,y
s =

Ex,y

[∑∞
t=0 λ

tcstat

∣∣∣∣ s0 = s

]
, ∀ s ∈ S .

Value Iteration. We first define Value Iteration (VI)
for general s-rectangular uncertainty sets. Let P =

×
s∈S

Ps, for Ps ⊆ R|A|×|S|+ . and let us define the (robust)

Bellman operator F : RS → RS , where for v ∈ RS ,

F (v)s = min
xs∈∆(A)

max
ys∈Ps

{
A∑
a=1

xsa
(
csa + λy>sav

)}
,

(2.1)
for each s ∈ S. Note that with the notation Fx,y(v)s =∑A
a=1 xsa

(
csa + λ · y>sav

)
, we can also write F (v)s =

minxs∈∆(A) maxys∈Ps F
x,y(v)s, which shows that the ro-

bust VI update is a stationary saddle-point problem. Solving
the robust MDP problem is equivalent to computing v∗, the
fixed-point of F :

v∗s = min
xs∈∆(A)

max
ys∈Ps

{
A∑
a=1

xsa
(
csa + λ · y>sav∗

)
}, ∀ s ∈ S.

(2.2)
Since F is a contraction with factor λ, this can be done with
the Value Iteration (VI) Algorithm:

v0 ∈ RS ,v`+1 = F (v`), ∀ ` ≥ 0. (VI)

VI returns a sequence {v`}`≥0 such that ‖v`+1 − v∗‖∞ ≤
λ · ‖v` − v∗‖∞, ∀ ` ≥ 0. An optimal pair (x∗,y∗) can
be computed as any pair attaining the min max in F (v∗).
An ε-optimal pair can be computed as a solution to (2.1),
when ‖v − F (v)‖∞ < ε(1 − λ)(2λ)−1 (Puterman 1994).
Our algorithm relies on approximately solving 2.1 as part
of VI; controlling ε`, the accuracy of epoch ` of VI, plays a
crucial role in the analysis of our algorithm. In the appendix,
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we present approximate Value Iteration, where the Bellman
update F (v`) at epoch ` is only computed up to accuracy ε`.
Ellipsoidal and KL uncertainty sets. We will show spe-
cific results for two types of s-rectangular uncertainty sets,
though our algorithmic framework applies more generally, as
long as appropriate proximal mappings can be computed. We
consider KL s-rectangular uncertainty sets where Ps equals

{(ysa)a∈A ∈ (∆(S))
A |

∑
a∈A

KL(ysa,y
0
sa) ≤ α}, (2.3)

and ellipsoidal s-rectangular uncertainty sets where Ps equals

{(ysa)a∈A ∈ (∆(S))
A |

∑
a∈A

1

2
‖ysa − y0

sa‖22 ≤ α}.

(2.4)
Note that (2.4) is different from the ellipsoidal uncertainty

sets considered in Ben-Tal and Nemirovski (2000), which
also adds box constraints. However, Bertsimas, den Her-
tog, and Pauphilet (2019) shows that the same probabilis-
tic guarantees exist for (2.4) as in the case of the uncer-
tainty sets considered in Ben-Tal and Nemirovski (2000). For
solving s-rectangular KL uncertainty sets, no algorithm is
known (contrary to the significantly more conservative s, a-
rectangular case). Wiesemann, Kuhn, and Rustem (2013)
solves s-rectangular ellipsoidal uncertainty sets (2.4) using
conic programs; we choose to instantiate VI differently in
this case as follows. Using min-max convex duality twice, we
can reformulate each of the S min-max programs (2.1) into a
larger convex program with linear objective and constraints,
and one quadratic constraint.Using IPMs each program can
be solved up to ε accuracy in O

(
A3.5S3.5 log(1/ε)

)
arith-

metic operations ((Ben-Tal and Nemirovski 2001), Section
4.6.2). Therefore, the complexity of (VI) is

O
(
A3.5S4.5 log2(ε−1)

)
. (2.5)

As mentioned earlier, this becomes intractable as soon as
the number of states becomes on the order of hundreds, as
highlighted in our numerical experiments of Section 4.

3 First-Order Methods for Robust MDPs
We start by briefly introducing first-order methods (FOMs) in
the context of our problem, and giving a high-level overview
of our first-order framework for solving robust MDPs. A
FOM is a method that iteratively produces pairs of solution
candidates xt,yt, where the t’th solution pair is derived
from xt−1,yt−1 combined with a first-order approximation
to the direction of improvement at xt−1,yt−1. Using only
first-order information is desirable for large-scale problems
because second-order information eventually becomes too
slow to compute, meaning that even a single iteration of a
second-order method ends up being intractable. See e.g. Beck
(2017) or Ben-Tal and Nemirovski (2001) for more on FOMs.

Our algorithmic framework is based on the observation that
there exists a collection of matrices K∗s : ∆(A)× Ps → R,
for s ∈ S, such that computing an optimal solution x∗,y∗

to the robust MDP problem boils down to solving S bilinear
saddle-point problems (BSPPs), each of the form

min
xs∈∆(A)

max
ys∈Ps

〈cs,xs〉+ 〈K∗sxs,ys〉. (3.1)

This is a straightforward consequence of the Bellman equa-
tion 2.1 and its reformulation using Fx,y . The matrix K∗s is
the payoff matrix associated with the optimal value vector
v∗. If we knew K∗s , then we could solve (3.1) by applying
existing FOMs for solving BSPPs.

Now, obviously we do not know v∗ before running our al-
gorithm. However, we know that Value Iteration constructs a
sequence {v`}`≥0 which converges to v∗. Letting {K`

s}`≥0

be the associated payoff matrices for each value-vector es-
timate v` and state s, we thus have a sequence of payoff
matrices converging to K∗s for each s. We will apply a FOM
to such a sequence of BSPPs {K`

s}`≥0 based on approximate
Value Iteration updates.

Our algorithmic framework, which we call FOM-VI,
works as follows. We utilize an existing primal-dual FOM for
solving problems of the form (3.1), where the FOM should be
of the type that generates a sequence of iterates xt,yt, with
an ergodic convergence rate on the time-averaged iterates.
Even though such FOMs are designed for a fixed BSPP with
a single payoff matrix K, we apply the FOM updates to a
changing sequence of payoff matrices {K`

s}k`=1. For each
payoff matrix K`

s we apply T` iterations of the FOM, after
which we apply an approximate VI update to generate K`+1

s .
We refer to each step ` with a payoff matrix K`

s as an epoch,
while iteration refers to steps of our FOM. We will apply
many iterations per epoch.

The convergence rate of our algorithm is, intuitively, based
on the following facts: (i) the average of the iterates generated
during epoch ` provides a good estimate of the VI update
associated with v`, and (ii) the sequence of payoff matri-
ces generated by the approximate VI updates is changing
in a controlled manner, such that K`

s and K`+1
s are not too

different.
These facts allow us to show that the averaged strategy

across all epochs ` converges to a solution to (3.1) without
too much degradation in the convergence rate compared to
having run the same number of iterations directly on (3.1).

First-Order Method Setup
In this paper, we use the PDA algorithm of Chambolle and
Pock (2016) as our FOM, but the derivations could also be
performed with other FOMs whose convergence rate is based
on applying a telescoping argument to a sum of descent
inequalities, e.g. mirror prox of Nemirovski (2004) or saddle-
point mirror descent of Ben-Tal and Nemirovski (2001); the
latter would yield a slower rate of convergence.

We now describe PDA as it applies to BSPPs such as (3.1),
for an arbitrary payoff matrix K and some state s. PDA
relies on what we will call a proximal setup. A proximal
setup consists of a set of norms ‖ ·‖X , ‖ ·‖Y for the spaces of
xs,ys, as well as distance-generating functions ψX and ψY ,
which are 1-strongly convex with respect to ‖ · ‖X on ∆(A)
and ‖ · ‖Y on Ps, respectively. Using the distance-generating
functions, PDA uses the Bregman divergence

DX(x,x′) = ψX(x′)− ψX(x)− 〈∇ψX(x),x′ − x〉

to measure the distance between two points x,x′ ∈ ∆(A).
The Bregman divergence DY is defined analogously.
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The convergence rate of PDA then depends on
the maximum Bregman divergence distance ΘX =
maxx,x′∈∆(A)DX(x,x′) between any two points, and the
maximum norm RX = maxx∈∆(A) ‖x‖X on ∆(A). The
quantities ΘY and RY are defined analogously on Ps.

Given DX and DY , the associated prox mappings are

proxx(gx,x
′
s) = arg min

xs∈∆(A)
〈gx,x〉+DX(xs,x

′
s),

proxy(gy,y
′
s) = arg max

ys∈Ps

〈gy,ys〉 −DY (ys,y
′
s).

Intuitively, the prox mappings generalize taking a step in
the direction of the negative gradient, as in gradient descent.
Given some gradient gx, proxx(gx,x

′
s) moves in the direc-

tion of improvement, but is penalized by the Bregman diver-
gence DX(xs,x

′
s), which attempts to ensure that we stay in

a region where the first-order approximation is still good.
Given step sizes τ, σ > 0 and current iterates xts,y

t
s, PDA

generates the iterates for t + 1 by taking prox steps in the
negative gradient direction given the current strategies:

xt+1
s = proxx(τK>yts,x

t
s),

yt+1
s = proxy(σK(2xt+1

s − xts),x
t
s),

(3.2)

Note that for the yt+1
s update, the “direction of improvement”

is measured according to the extrapolated point 2xt+1
s − xts,

as opposed to at either xts or xt+1
s . If a simpler single current

iterate is used to take the gradient for yt+1
s , then the overall

PDA setup yields an algorithm that converges at a O(1/
√
T )

rate. The extrapolation is used to get a stronger O(1/T ) rate.
Let Ω = 2 (ΘX/τ + ΘY /σ) and let τ, σ > 0 be such that,

for LK ≥ sup‖x‖X≤1,‖y‖Y ≤1〈Kx,y〉, we have(
1

τ
− Lf

)
1

σ
≥ L2

K . (3.3)

After T iterations of PDA, we can construct weighted
averages (x̄T , ȳT ) = (1/ST )

∑T
t=1 ωt(xt,yt) of all it-

erates, using weights ω1, ..., ωT and normalization factor
ST =

∑T
t=1 ωt. In the case of a static BSPP, if the stepsizes

are chosen such that they satisfy (3.3), then the average of
the iterates from PDA satisfies the convergence rate:

max
y∈Ps

〈Kx̄T ,y〉 − min
x∈∆(A)

〈Kx, ȳT 〉 ≤ ΩωT /ST .

Here we are using the weighted average of iterates, as in
Gao, Kroer, and Goldfarb (2019).Since PDA applies the two
prox mappings (3.2) at every iteration, it is crucial that these
prox mappings can be computed efficiently. Ideally, in time
roughly linear in the dimension of the iterates. A significant
part of our contribution is to show that this is indeed the case
for several important types of uncertainty sets.

In our setting, where the payoff matrix K`
s in the BSPP is

changing over time, the existing convergence rate for PDA
does not apply. Instead, we have to consider how to deal with
the error that is introduced in the process due to the changing
payoffs.

Algorithm 1 First-order Method for Robust MDP with s-
rectangular uncertainty set.

1: Input Number of epochs k, number of iterations per
epoch T1, ..., Tk, weights ω1, ..., ωT , and stepsizes τ, σ.

2: Initialize ` = 1,v` = 0, and x0,y0 at random.
3: for epoch ` = 1, ..., k do
4: for s ∈ S do
5: Set τ` = T1 + ...+ T`−1

6: for t = τ`, . . . , τ` + T` do
7: xt+1

s = proxx(τKs[v
`]>yts,x

t
s)

8: yt+1
s = proxy(σKs[v

`](2xt+1
s − xts),y

t
s)

9: S` =
∑τ`+T`

t=τ`
ωt

10: x̄`s =
∑τ`+T`

t=τ`
ωt

S`
xts, ȳ

`
s =

∑τ`+T`

t=τ`
ωt

S`
yts

11: Update v`+1
s = F x̄`

s,ȳ
`
s(v`)s.

12: Output x̄Ts =
∑T
t=1

ωt

ST
xts, ȳ

T
s =

∑T
t=1

ωt

ST
yts, ∀s ∈ S

First-Order Method Value Iteration (FOM-VI)
We now describe our algorithm in detail, as well as the
choices of ‖·‖X , ‖·‖Y that lead to tractable proximal updates
(3.2). As we have described in (3.1), given a vector v ∈ RS
and s ∈ S, the matrix Ks ∈ RA×A×S is defined such that

Fx,y
s (v) = 〈cs,xs〉+ 〈Ksxs,ys〉.

We will write this as K = K[v]. The pseudocode for the
FOM-VI algorithm is given in Algorithm 1. At each epoch
`, we have some current estimate v` of the value vector,
which is used to construct the payoff matrix K` for the
`’th BSPP. For each state s, we then run T` iterations of
PDA, where, crucially, the first such iteration starts from
the last iterates (xτ` ,yτ`) generated at the previous epoch.
The average iterate constructed from just these T` iterations
is then used to construct the next value vector v`+1

s via an
approximate VI update (lines 10 and 11). Finally, after the last
epoch k, we output the average of all the iterates generates
across all the epochs, using the weights ω1, ..., ωT .

We prove that FOM-VI satisfies the following conver-
gence rate. We state our results for the two special cases
where the norms ‖ · ‖X and ‖ · ‖Y are both equal to the `1
norm (we call this the `1 setup) or `2 norm (`2 setup) on the
spaces ∆(A),Ps. FOM-VI could also be instantiated with
other norms. The proof is in the appendix.
Theorem 3.1. Assume that the stepsizes τ, σ are such that
(3.3) holds, and for each epoch `, we set T` = `q for some
q ∈ N. Let x̄T , ȳT be the averages of the FOM-VI iterates
using the weights w1, ..., wT . Then for all states s ∈ S,

max
y∈Ps

F x̄T ,y(v∗)s − min
x∈∆(A)

Fx,ȳT

(v∗)s

≤O

(
CRXRY

(
ΘX

τ
+

ΘY

σ

)(
λT

1/(q+1)

T 1/(q+1)
+

1

T q/(q+1)

))
,

with C = 1 in the `1 setup, and C =
√
S in the `2 setup.

Tractable Proximal Setups for Algorithm 1
In the previous section we saw that FOM-VI instantiated
with appropriate proximal setups yields an attractive con-
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vergence rate. For a given proximal setup, the convergence
rate in Theorem 3.1 depends on the maximum-norm quanti-
ties RX , RY and the polytope diameter measures ΘX ,ΘY .
However, another important issue was previously not dis-
cussed: in order to run FOM-VI we must compute the iterates
xt+1
s , yt+1

s , which means that the updates in (3.2) must be
fast to compute (ideally in closed form). We next present
several tractable proximal setups for Algorithm 1.
Tractable updates for ∆(A). Since decision space for x is
a simplex, we can apply well-known results to get a proximal
setup. For the `2 setup (i.e. where ‖ · ‖X = ‖ · ‖2), we can
set ψX(x) = (1/2)‖x‖22, in which case DX is the squared
Euclidean distance. For this setup, ΘX = 1, and xt+1

s can
be computed in A logA time, using a well-known algorithm
based on sorting (Ben-Tal and Nemirovski 2001).

For the `1 setup, (i.e. where ‖ · ‖X = ‖ · ‖1), we set
ψX(x) = ENT(x) :=

∑
i xi log xi (i.e. the negative en-

tropy), in which case DX is the KL divergence. The advan-
tage of this setup is that the strong convexity is with respect
to the `1 norm, which makes the Lipschitz associated to the
payoff matrix a constant (as opposed to

√
S for the `2 norm),

while the polytope diameter is only ΘX = logA. Finally,
xt+1
s can be computed in closed form. Thus, from a theoret-

ical perspective, the `1 setup is more attractive than the `2
setup for ∆(A). This is well-known in the literature.

In all cases, RX = 1, since x comes from a simplex.
Tractable updates for ellipsoidal uncertainty. The proxi-
mal updates for y turn out to be more complicated. In the
first place, they depend heavily on the form of Ps. First, we
present our results for the case where Ps is an ellipsoidal
s-rectangular uncertainty set as in (2.4). We present both `1
and `2 setups.

In the `2 setup for ellipsoidal uncertainty, we let ‖ · ‖Y
be the `2 norm, and ψY (y) = (1/2)‖y‖22. The Bregman
divergence DY (y,y′) is then simply the squared Euclidean
distance. In this case, we get that RY =

√
A, since the

squared norm of each individual simplex is at most one,
and then we take the square root. The polytope diameter is
ΘY = 2A for the same reason. We show in Proposition 3.2
below that the iterate yt+1

s can be computed efficiently.
In the `1 setup for ellipsoidal uncertainty, we let ‖ · ‖Y

be the `1 norm, and ψY (y) = (A/2)
∑A
a=1 ENT(ya), where

ENT(ya) is the negative entropy function. The Bregman di-
vergence DY (y,y′) = (A/2)

∑A
a=1 KL(ya,y

′
a) is then a

sum over KL divergences on each action. In this case, we
get that RY = A, since we are taking the `1 norm over A
simplexes, while the polytope diameter is ΘY = A2 logS.

Proposition 3.2 shows that for both our `2-based and `1-
based setup for y, the next iterate can be computed efficiently.
We present a detailed proof in the appendix.
Proposition 3.2. For the `2 setup, the proximal update (3.2)
with uncertainty set (2.4) can be approximated up to ε in a
number of arithmetic operations of O

(
AS log(S) log(ε−1)

)
.

For the `1 setup, the proximal update (3.2) with uncer-
tainty set (2.4) can be approximated up to ε in a number of
arithmetic operations of O

(
AS log2(ε−1)

)
.

Tractable updates for KL uncertainty. As in the case of
ellipsoidal uncertainty, we present both `1 and `2 setups for

KL uncertainty. The setups are exactly the same as for ellip-
soidal uncertainty (i.e. same norms, distance functions, and
Bregman divergences), and all constants remain the same.
The reason that all constants remain the same is because our
bounds on the maximum norms and ΘY , for both uncertainty
set types, are based on bounding these values over the bigger
set consisting of the Cartesian product of A simplexes. The
question thus becomes whether (3.2) can be computed effi-
ciently (for y) when DY is the sum over KL divergences on
each action. We present our results in the following proposi-
tion.

Proposition 3.3. For the `2 setup, the proximal update (3.2)
with uncertainty set (2.3) can be approximated up to ε in a
number of arithmetic operations in O

(
AS log2(ε−1)

)
.

For the `1 setup, the proximal update (3.2) with uncer-
tainty set (2.3) can be approximated up to ε in a number of
arithmetic operations in O

(
AS log(ε−1)

)
.

Remark 3.4. At a cursory reading, our results in Proposi-
tions 3.2 and 3.3 may seem similar to those of (Nilim and
Ghaoui 2005) and (Iyengar 2005). Both authors introduce bi-
section algorithms for computing Bellman updates, but these
are for the simpler case of (s, a)-rectangular uncertainty sets.
In that case, the Bellman updates can be computed by enu-
merating the set of actions a ∈ A, since an optimal solution
exists among the set of pure actions. In contrast, in our setting
the optimal x ∈ ∆(A) may require randomization, which is
why we must solve a min-max problem as in (2.1).

Complexity of Algorithm 1
Armed with our various proximal setups, we can finally state
the performance guarantees provided by FOM-VI explicitly
for the various setups. Since the constants for the `1 and `2
setups are the same for both KL and ellipsoidal uncertainty
sets, we start by stating a single theorem which gives a bound
on the error after T iterations for either type of uncertainty
set. The following theorem works for any polynomial scheme
for choosing the iterate weights when averaging, as well as
how many FOM iterations to perform in-between each VI
update.

Theorem 3.5. Let p, q ∈ N and at time step t ≥ 0, let the
iterate weight be ωt = tp, and the number of FOM itera-
tions at epoch ` be T` = `q. After T iterations of Algorithm
1, maxy∈Ps F

x̄T ,y(v∗)s−minx∈∆(A) F
x,ȳT

(v∗)s is upper
bounded by

• O

(
A2

√
log(S)

log(A)

(
1

T q/(q+1)
+
λT

1/(q+1)

T 1/(q+1)

))
in the `1

setup,

• O

(
AS

(
1

T q/(q+1)
+
λT

1/(q+1)

T 1/(q+1)

))
in the `2 setup.

The careful reader may notice that the choice of p ∈ N
in our polynomial averaging scheme does not figure in the
bound of Theorem 3.5: any valid choice of p leads to the
same bound. However, in practice the choice of p turns
out to be very important as we shall see later. Secondly,
the reader may notice an interesting dependence on q: the
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term O(1/T q/(q+1)) gets better as q increases; while larger
q worsens the exponential rate with base λ in the term
O(λT

1/(q+1)

/T 1/(q+1)). For any fixed q, the dominant term
is O(1/T q/(q+1)).
Complexity for ellipsoidal uncertainty sets. We will now
combine Proposition 3.2, which gives the cost per iteration
of FOM-VI, with Theorem 3.5, to get a total complexity of
FOM-VI when considering both the number of iterations and
cost per iteration.

First, let us consider q = 2, which is the setup we will
focus on in our experiments. The complexity of the `1 setup

is O

(
A4S2

(
log(S)

log(A)

)0.75

log2(ε−1)ε−1.5

)
and for the `2

setup it is O
(
A2.5S3.5 log(S) log(ε−1)ε−1.5

)
. These results

are better than the complexity of VI in terms of the number of
states and actions. This comes at the cost of the dependence
on the desired accuracy ε, which is worse than for VI. This
is of course expected when applying a first-order method
rather than IPMs. However, in practice we expect that our
algorithms will be preferable when solving problems with
large A and S, as is often the case with first-order methods.
Indeed, we find numerically that this occurs for S,A ≥ 50
on ellipsoidal uncertainty sets (see Section 4).

Next, let us consider what happens as q gets
large. In that case, the complexity of the `1 setup
approaches O

(
A3S2 (log(S)/ log(A))

0.5
log2(ε−1)ε−1

)
,

while the complexity of the `2 setup approaches
O
(
A2S3 log(S) log(ε−1)ε−1

)
. This last complexity result

is O(A1.5S1.5) better than the VI complexity (2.5) in terms
of instance size.

Next let us compare the `1 and `2 setups. When S = A,
the `2 and `1 setup have better dependence on number of
states and actions than VI (by 2 order of magnitudes). If the
number of actions A is considered a constant, then the `1 has
better convergence guarantees than the `2 setup. However,
each proximal update in the `1 setup requires two interwoven
binary searches over Lagrange multipliers, which can prove
time-consuming in practice, as we show in our numerical
experiments.
Complexity for KL uncertainty sets. Similarly to ellip-
soidal uncertainty sets, we can analyze our performance
on KL uncertainty sets. Again we combine Proposition 3.3
with Theorem 3.5. For q = 2, the `1 setup has complex-

ity O

(
A4S2

(
log(S)

log(A)

)0.75

log(ε−1)ε−1.5

)
for returning

an ε-optimal solution, while the `2 setup has complexity
O
(
A2.5S3.5 log(ε−1)ε−1.5

)
. For large q, the complexity ap-

proaches O

(
A3S2

(
log(S)

log(A)

)0.5

log(ε−1)ε−1

)
for the `1

setup and O
(
A2S3 log(ε−1)ε−1

)
for the `2 setup. To the

best of our knowledge, this is the first algorithmic result for
s-rectangular KL uncertainty sets.

Finally, note that in terms of storage complexity, all our
setups only need to store the current value vector v` ∈ RS
and the running weighted average (x̄`, ȳ`) of the iterates. In

total, we need to store O
(
S2A

)
coefficients, which is the

same as the number of decision variables of a solution.

4 Numerical Experiments
In this section we study the performance of our approach
numerically. We focus here on ellipsoidal uncertainty sets,
where we can compare our methods to Value Iteration. We
present results for KL uncertainty sets in the appendix.
Duality gap in the robust MDP problem. For a given
policy-kernel pair (x,y), we measure the performance as the
duality gap (DG) = maxy′∈PR(x,y′)−minx′∈ΠR(x′,y).
Note that (DG)≤ ε implies that x is 2ε-optimal in the robust
MDP problem.
Best empirical setup of Algorithm 1. For the sake of con-
ciseness, our extensive comparisons of the various proximal
setups and parameter choices (p, q ∈ N) are presented in the
appendix.Here we focus on the conclusions. The proximal
setup with the best empirical performance is the `2 setup
where (‖ · ‖X , ‖ · ‖Y ) = (`2, `2), even though its theoret-
ical guarantees may be worse than the `1 setup (for large
state space); this is similar to the matrix-game setting (Gao,
Kroer, and Goldfarb 2019). For averaging the PD iterates, an
increasing weight scheme, i.e. p ≥ 1 in ωt = tp, is clearly
stronger (this is again similar to the matrix-game setting). We
also recommend setting q = 2 (or even larger), as this leads
to better empirical performance for the true duality gap (DG)
in the settings where we could compute that duality gap.

Comparison with Value Iteration
We present our comparisons with the VI algorithm in Figures
1a-1d. We also compare FOM-VI with Gauss-Seidel VI (GS-
VI, (Puterman 1994)), Anderson VI (Anderson, (Geist and
Scherrer 2018)), and Accelerated VI (AVI, Goyal and Grand-
Clement (2019)).The y-axis shows the number of seconds
it takes each algorithm to compute an ε-optimal policy, for
ε = 0.1. Following our analysis of the various setups for our
algorithm, these plots focus on the `2 setup with (p, q) =
(2, 2).
Empirical setup. All simulations are implemented in Python
3.7.3, and performed on a laptop with 2.2 GHz Intel Core i7
and 8 GB of RAM. We use Gurobi 8.1.1 to solve any linear
or quadratic optimization problems involved. In order to
obtain an ε-solution of the robust MDP problem with the VI
algorithms, we use the stopping condition ‖vs+1 − vs‖∞ ≤
ε · (1 − λ) · (2λ)−1 (Chapter 6.3 in Puterman (1994)). We
stop Algorithm 1 as soon as (DG) ≤ ε/2. We initialize the
algorithms with v0 = 0. At epoch ` of Value, AVI and
Anderson, we warm-start each computation of F (v`) with
the optimal solution obtained from the previous epoch `− 1.

We consider two type of instances for our simulation. The
first type of instances is inspired from real-life application and
consists of a healthcare management instance and a machine
replacement instance. The second type is based on random
Garnet MDPs, a class of random MDP instances widely used
for benchmarking algorithms.
Results for healthcare instances. We consider an MDP in-
stance inspired from a healthcare application. We model the
evolution of a patient’s health using a Markov chain, using a
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(a) Healthcare instance.
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(b) Machine replacement instance.
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(c) Garnet, high connectivity.
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(d) Garnet, low connectivity.

Figure 1: Comparison of FOM-VI with variants of Value Iteration on four MDP domains.

simplification of the models used in Goh et al. (2018); Grand-
Clement et al. (2020). Note that such a model is prone to
errors as (i) the Markovian assumption is only an approxima-
tion of the true dynamics of the patient’s health, (ii) the pres-
ence of unobservable confounders may introduce biases in
our observed transitions. Therefore, it is important to account
for model mispecification in this setting. More specifically,
we consider an MDP where there are S − 1 health states, one
‘mortality’ state and three actions (drug level), corresponding
to high, medium and low drug levels. The state 1 corresponds
to a healthy condition while the state S − 1 is more likely
to lead to mortality. The goal of the decision maker is to
prescribe a given drug dosage (low/high/medium) at every
state, in order to keep the patient alive (avoiding the mortality
state), while minimizing the invasiveness of the treatment.
We observe N = 60 samples around the nominal kernel
transitions, presented in the appendices, and we construct
ellipsoidal uncertainty sets with radius α =

√
SA. Figure 1a

shows the results, where our algorithm outperforms VI by
about one order of magnitude on this structured and simple
MDP instance, even though GS-VI performs well better than
VI too. Additionally, our algorithm scales much better with
instance size.

Results for machine replacement problems We also con-
sider a machine replacement problem studied by Delage and
Mannor (2010) and Wiesemann, Kuhn, and Rustem (2013).
The problem is to design a replacement policy for a line of
machines. The states of the MDP represent age phases of the
machine and the actions represent different repair or replace-
ment options. Even though the transition parameters can be
estimated from historical data, one often does not have access
to enough historical data to exactly assess the probability of a
machine breaking down when in a given condition. Addition-
ally, the historical data may contain errors; this warrants the
use of a robust model for finding a good replacement policy.
In particular, the machine replacement problem involves a
machine whose set of possible conditions are described by S
states. There are two actions: repair and no repair. The first
S − 2 states are operative states. The states 1 to S − 2 model
the condition of the machine, with 1 being perfect condition
and S−2 being worst condition. There is a cost of 0 for states
1, ..., S − 3; letting the machine reach the worst operative
state S − 2 is penalized with a cost of 20. The last two states
S−1 and S are states representing when the machine is being
repaired. The state S − 1 is a standard repair state and has a

cost of 2, while the last state S is a longer and more costly
repair state and has cost 10. The initial distribution is uniform
across states. Figures describing the MDP can be found in
the appendix.On this instance, FOM-VI clearly outperforms
every variants of VI, as seen on Figure 1b.
Random Garnet MDP instances. We generate Garnet
MDPs (Generalized Average Reward Non-stationary Environ-
ment Test-bench, Archibald, McKinnon, and Thomas (1995);
Bhatnagar et al. (2007)), which are an abstract class of MDPs
parametrized by a branching factor nbranch, equal to the pro-
portion of reachable next states from each state-action pair
(s, a). Garnet MDPs are a popular class of finite MDPs used
for benchmarking algorithms for MDPs (Tarbouriech and
Lazaric 2019; Piot, Geist, and Pietquin 2016; Jian et al. 2019).
The parameter nbranch controls the level of connectivity of
the underlying Markov chains. We test our algorithm for high
connectivity (nbranch = 50%, Figure 1c) and low connectiv-
ity (nbranch = 20%, Figure 1d) in our simulations. We draw
the cost parameters at random uniformly in [0, 10] and we fix
a discount factor λ = 0.8. The radius α of the `2 ball from
the uncertainty set (2.4) is set to α =

√
nbranch ×A.

In Figures 1c-1d, we note that for smaller instances, the
performance of FOM-VI is similar to both VI, AVI, GS-VI
and Anderson. This is expected: our algorithm has worse
convergence guarantees in terms of the dependence in ε, but
better guarantees in terms of the number of state-actions S,A.
When the number of states and actions grows larger, FOM-VI
performs significantly better than the three other methods.

5 Future Works
Our work introduces a novel first-order framework for solv-
ing robust MDP, with better theoretical convergence guar-
antees and significantly better empirical performances than
state-of-the-art value iteration algorithms. There are several
interesting future directions. For instance, it is important to
design new algorithms based on other first-order methods, e.g.
mirror descent, mirror prox or online gradient descent. It is
also possible to find novel tractable proximal setups beyond
KL divergence and `2 balls. Finally, extensions to distribu-
tionally robust settings can lead to tractable algorithms for
finding less pessimistic solutions.
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