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Abstract

This paper presents a Branch and Price approach for a real-
life Bus Driver Scheduling problem with a complex set of
break constraints. The column generation uses a set parti-
tioning model as master problem and a resource constrained
shortest path problem as subproblem. Due to the complex
constraints, the branch and price algorithm adopts several
novel ideas to improve the column generation in the pres-
ence of a high-dimensional subproblem, including exponen-
tial arc throttling and a dedicated two-stage dominance algo-
rithm. Evaluation on a publicly available set of benchmark
instances shows that the approach provides the first provably
optimal solutions for small instances, improving best-known
solutions or proving them optimal for 48 out of 50 instances,
and yielding an optimality gap of less than 1% for more than
half the instances.

Introduction
Scheduling employees for public transport requires to in-
corporate a variety of complex constraints, particularly for
breaks, time schedules, spatial requirements, and conflict-
ing objectives, giving rise to difficult optimization problems.
Companies require cost-efficient schedules, while drivers
and labor unions request employee-friendly schedules to re-
duce stress and increase compatibility of the required shift
work with the private life of the drivers.

This paper presents a Branch and Price approach for a
complex real-life Bus Driver Scheduling (BDS) problem
based on an Austrian collective agreement. The column
generation uses set partitioning as the master problem and
the resource constrained shortest path problem (RCSPP) as
the subproblem. However, due to the complex set of con-
straints, the RCSPP has to deal with a large number of high-
dimensional labels. This paper proposes several novel con-
tributions to improve the generation of new columns for high
dimensional pricing problems, including the splitting of the
subproblem, a throttling scheme, and the use of k-d trees and
bounding boxes in a two stage dominance algorithm.

The new method is evaluated on a publicly available set
of benchmark instances. It provides the first provably op-
timal solutions for small instances and improves previous
best-known solutions or proves them optimal for 48 out of
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50 instances, resulting in an optimality gap of less than 1%
for more than half the instances. It also provides a lower
bound for the quality of existing metaheuristic approaches
which are mostly within 4% of the optimum.

Related Work
There are many versions of employee scheduling problems
and surveys by Ernst et al. (2004); Van den Bergh et al.
(2013) provide a good overview of this line of work. Driver
scheduling, as a part of crew scheduling, resides between
vehicle scheduling and driver rostering in the process of op-
erating bus transport systems (Ibarra-Rojas et al. 2015).

Research on bus driver scheduling problems has a long
history (Wren and Rousseau 1995) and uses a variety of so-
lution methods. Exact methods mostly use column genera-
tion with a set covering or set partitioning master problem
and a resource constrained shortest path subproblem (Smith
and Wren 1988; Desrochers and Soumis 1989; Portugal,
Lourenço, and Paixão 2009; Lin and Hsu 2016). Heuristic
methods like greedy (Martello and Toth 1986; De Leone,
Festa, and Marchitto 2011; Tóth and Krész 2013) or ex-
haustive (Chen et al. 2013) search, tabu search (Lourenço,
Paixão, and Portugal 2001; Shen and Kwan 2001), genetic
algorithms (Lourenço, Paixão, and Portugal 2001; Li and
Kwan 2003), or iterated assignment problems (Constantino
et al. 2017) are used in different variations.

However, most work so far focuses mainly on cost, rarely
minimizing idle time and vehicle changes (Ibarra-Rojas
et al. 2015; Constantino et al. 2017). Break constraints are
mostly simple, often including just one meal break. Com-
plex break scheduling within shifts has been considered
by authors in different contexts (Beer et al. 2008, 2010;
Widl and Musliu 2014). There is not much work on multi-
objective bus driver scheduling (Lourenço, Paixão, and Por-
tugal 2001), but multi-objective approaches are used in other
bus operation problems (Respı́cio, Moz, and Vaz Pato 2013).

This paper investigates a complex real-life Bus Driver
Scheduling Problem that was recently introduced by Klet-
zander and Musliu (2020). Previous work explains the need
for a combined objective function that goes beyond cost. The
published instances were solved with simulated annealing
and a hill climbing heuristic. Although these methods pro-
vide good results, they cannot guarantee optimality or pro-
vide lower bounds.
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` tour ` start` end ` startPos` endPos`
1 1 360 395 0 1
2 1 410 455 1 2
3 1 460 502 2 1
4 1 508 540 1 0

Table 1: A Bus Tour Example

Branch and Price is a decomposition technique for large
mixed integer programs (Barnhart et al. 1998). This work
uses set partitioning (Balas and Padberg 1976) as the master
problem and the RCSPP (Irnich and Desaulniers 2005) as
the subproblem. Resources are modelled via resource exten-
sion functions (REF) (Irnich 2008). Different techniques for
dealing with pareto-front calculation can mostly be found as
maxima-finding algorithms in a geometrical context (Bent-
ley 1980; Chen, Hwang, and Tsai 2012).

Problem Description
The investigated Bus Driver Scheduling Problem deals with
the assignment of bus drivers to vehicles that already have a
predetermined route for one day of operation. The problem
specification is taken from Kletzander and Musliu (2020).

Problem Input
The bus routes are given as a set L of individual bus legs,
each leg ` ∈ L is associated with a tour tour ` (corre-
sponding to a particular vehicle), a start time start`, an end
time end `, a starting position startPos`, and an end posi-
tion endPos`. The actual driving time for the leg is denoted
by drive`. The given instances use drive` = length` =
end ` − start`.

Table 1 shows a short example of one particular bus tour.
The vehicle starts at time 360 (6:00 am) at position 0, does
multiple legs between positions 1 and 2 with waiting times
inbetween and finally returns to position 0. A valid tour
never has overlapping bus legs and consecutive bus legs sat-
isfy endPosi = startPos i+1. A tour change occurs when a
driver has an assignment of two consecutive bus legs i and j
with tour i 6= tour j .

A distance matrix specifies, for each pair of positions p
and q, the time dp,q a driver takes to get from p to q when
not actively driving a bus. If no transfer is possible, then
dp,q = ∞. dp,q with p 6= q is called the passive ride time.
dp,p represents the time it takes to switch tour at the same
position, but is not considered passive ride time.

Finally, each position p is associated with an amount of
working time for starting a shift (startWorkp) and ending
a shift (endWorkp) at that position. The instances in this
paper use startWorkp = 15 and endWorkp = 10 at the
depot (p = 0). These values are 0 for other positions.

Solution
A solution to the problem is an assignment of exactly one
driver to each bus leg. Criteria for feasibility are:

• No overlapping bus legs are assigned to any driver.

start work

`1

rest

`2

rest

passive ride

`3

end work

Working time Ws

? ?

Driving time Ds

Total time Ts

Figure 1: Example shift

• Changing tour or position between consecutive assign-
ments i and j requires startj ≥ end i+dendPosi,startPosj .

• Each shift respects all hard constraints regarding work
regulations as specified in the next section.

Work and Break Regulations
Valid shifts for drivers are constrained by work regulations
and require frequent breaks. First, different measures of time
related to a shift s containing the set of bus legs Ls need to
be distinguished, as visualized in Figure 1:
• The total amount of driving time: Ds =

∑
i∈Ls

drivei.
• The span from the start of work until the end of work Ts

with a maximum of Tmax = 14 hours.
• The working time Ws = Ts − unpaids, which does not

include certain unpaid breaks.

Driving Time Regulations. The maximum driving time
is restricted to Dmax = 9 hours. The whole distance
startj−endi between consecutive bus legs i and j qualifies
as a driving break, including passive ride time. Breaks from
driving need to be taken repeatedly after at most 4 hours of
driving time. In case a break is split in several parts, all parts
must occur before a driving block exceeds the 4 hour limit.
Once the required amount of break time is reached, a new
driving block starts. The following options are possible:
• One break of at least 30 minutes;
• Two breaks of at least 20 minutes each;
• Three breaks of at least 15 minutes each.

Working Time Regulations. The working time Ws has a
hard maximum of Wmax = 10 hours and a soft minimum of
Wmin = 6.5 hours. If the employee is working for a shorter
period of time, the difference has to be paid anyway. The
actual paid working time is W ′

s = max{Ws; 390}.
A minimum rest break is required according to the fol-

lowing options:
• Ws < 6 hours: no rest break;
• 6 hours ≤Ws ≤ 9 hours: at least 30 minutes;
• Ws > 9 hours: at least 45 minutes.
The rest break may be split into one part of at least 30 min-
utes and one or more parts of at least 15 minutes. The first
part has to occur after at most 6 hours of work.
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unpaid rest
2 · 60 2 · 60

3 · 60 3 · 60

paid rest paid rest

centered
30 min break

Figure 2: Rest break positioning

Whether rest breaks are paid or unpaid depends on break
positions according to Figure 2. Every period of at least 15
minutes of consecutive rest break is unpaid as long as it does
not intersect the first 2 or the last 2 hours of the shift (a longer
rest break might be partially paid and partially unpaid). The
maximum amount of unpaid rest is limited:
• If 30 consecutive minutes of rest break are located such

that they do not intersect the first 3 hours of the shift or
the last 3 hours of the shift, at most 1.5 hours of unpaid
rest are allowed;

• Otherwise, at most one hour of unpaid rest is allowed.
Rest breaks beyond this limit are paid.

Split Shifts. If a rest break would be at least 3 hours long,
it is instead considered a shift split, which is unpaid and does
not count towards Ws. However, such splits are typically re-
garded badly by the drivers. A shift split counts as a driving
break, but does not contribute to rest breaks.

Objectives
As argued in Kletzander and Musliu (2020), practical sched-
ules must not consider only operation costs. The objective

costs = 2 ·W ′
s + Ts + rides + 30 · chs + 180 · splits (1)

represents a linear combination of several criteria for shift
s. The paid working time W ′

s is the main objective and it
is combined with the total time Ts to reduce long unpaid
periods for employees. The next sub-objectives reduce the
passive ride time rides and the number of tour changes chs,
which is beneficial for both employees and efficient sched-
ules. The last objective aims to reduce the number of shift
splits splits as they are very unpopular.

Branch and Price
The problem is solved by Branch and Price (Barnhart et al.
1998). Set partitioning is used as the master problem and the
resource constrained shortest path problem (RCSPP) as the
subproblem. Column generation is applied on each node of
the branching tree. The duals of the relaxed master problem
are used to find new shifts that have the potential to improve
the solution of the master problem. Branching occurs when
the resulting solution is not integer. The process continues
until all branches either result in integer solutions or are cut
off by the current objective bounds.

Master Problem
The goal of the master problem is to select a subset of the
shift set S, such that each bus leg is covered by exactly one
shift while minimizing total cost. This corresponds to the
set-partitioning problem:

minimize
∑
s∈S

costs · xs (2)

subject to
∑
s∈S

covers` · xs = 1 ∀` (3)

xs ∈ {0, 1} ∀s (4)

Here xs is the variable for the selection of shift s. The
objective (2) minimizes the total cost, Equation (3) states
that each bus leg needs to be covered exactly once (using
covers` ∈ {0, 1} to indicate whether shift s covers leg `),
and Equation (4) states the integrality constraint. This con-
straint is relaxed to 0 ≤ xs ≤ 1 for the relaxed master prob-
lem which is repeatedly solved at each node of the branching
tree. Once no more new shifts can be found by the subprob-
lem, the result of the relaxed master problem provides a local
lower bound for the solution of the integer problem.

In some cases, the resulting solution might already be in-
teger. Usually, however, the result will be fractional. Then,
the integer version of the master problem is solved with the
current set of columns. While there are no guarantees re-
garding the quality of the integer solution in this case, in
practice, solutions are often very close to the lower bound
already. In any case, the result from the integer master prob-
lem is a feasible solution that provides a global upper bound
for the problem. If the solution is not integer, branching will
be done, resuming calculation on one of the open branches.

Subproblem
The goal of the subproblem is to find the column (shift) with
the lowest reduced cost. For BDS this corresponds to the
resource constrained shortest path problem (RCSPP) on an
acyclic graph. In this problem, a graph G = (N,A) is given
where N is the set of n nodes, corresponding to all bus legs,
a source node s, and a target node t, and A is the set of arcs,
corresponding to connections between bus legs. As the bus
legs are naturally ordered by time, the RCSPP is acyclic.

Each node and arc is associated with a cost and an r-
dimensional resource vector representing the resource con-
sumption when using the node or arc. A shift is defined as a
path from s to t such that the path satisfies all feasibility cri-
teria associated with the resources. Each node corresponding
to a bus leg is associated with a dual from the master prob-
lem. The reduced cost of a path is therefore the cost of a path
minus the sum of the duals along the path. The RCSPP aims
at finding the least-cost feasible path from s to t.

There is an arc from node s to each node i except i = t,
and there is an arc from each node i except i = s to node
t. Nodes corresponding to bus legs i and j are only con-
nected by an arc ij if chaining the bus legs is feasible ac-
cording to their times and the distance matrix d. Building
the graph is done once per instance in O(n2). The rest of
this section goes into the details of this graph, its costs, and
its constraints. The description is rather complex because the
regulations themselves are complex.

Costs. The costs for nodes and arcs are based on objective
(1). The cost ci for each node i corresponding to a bus leg i
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is defined as ci = 3 · lengthi as each bus leg contributes its
length to both Ws (weight 2) and Ts (weight 1). By defini-
tion, cs = ct = 0.

Several helpful properties of arcs from node i to node j
are defined and used for defining the arc costs:

lengthij =


startj − end i if i 6= s ∧ j 6= t

startWork startPosj if i = s

endWork endPosi if j = t

(5)

rideij =


dendPosi,startPosj if i 6= s ∧ j 6= t ∧

endPosi 6= startPosj
0 otherwise

(6)

changeij =

{
1 if i 6= s ∧ j 6= t ∧ tour i 6= tour j

0 otherwise
(7)

split ij =


1 if i 6= s ∧ j 6= t ∧

lengthij − rideij ≥ 3 · 60
0 otherwise

(8)

remainij =

{
lengthij − rideij if split ij = 0

0 otherwise
(9)

rest ij =


remainij if i 6= s ∧ j 6= t ∧

remainij ≥ 15

0 otherwise
(10)

Equation (5) defines the length of an arc, taking into ac-
count start and end arcs. Equation (6) states the passive
ride time, Equation (7) whether a tour change occurs, Equa-
tion (8) whether the arc corresponds to a shift split, Equa-
tion (9) captures the remaining arc length after removing the
passive ride time and the shift split time, and Equation (10)
captures a potential rest break.

The cost cij for arc ij (i.e., bus leg i to j) is defined as

cij = 2 · remainij + lengthij + 3 · rideij
+ 30 · changeij + 180 · split ij (11)

Note that unpaid rest cannot be determined at this point,
therefore all rest is treated as paid for this computation. Un-
paid rest is separately treated when solving the subproblem.
rideij contributes to both working time Ws and the addi-
tional passive ride penalty.

Resources. The solution method is a label-setting algo-
rithm (Irnich and Desaulniers 2005). Due to the acyclic na-
ture of the graph, each node can be processed in temporal
order, starting with an initial label representing an empty
path at s where each resource usage is 0. For each node i
and each label x on that node, all arcs ij are processed and
a label y is placed at the end node j of the arc unless some
constraints are violated. Therefore, each label x represents a
path from s to its node i, capturing the nodes in the path, the
cost, and the resource usage. In total, eleven resources need
to be tracked in order to satisfy the BDS constraints. The
first resources are classical additive resources with a maxi-
mum allowed usage.

dy = dx + drivej (12)
sy = sx + lengthij + lengthj (13)

Equation (12) tracks driving time, Equation (13) the span.

rdy =


true if lengthij ≥ 30 ∨

(lengthij ≥ 20 ∧ b20x ≥ 1) ∨
(lengthij ≥ 15 ∧ b15x ≥ 2)

false otherwise

(14)

dcy =

{
0 if rdy

dcx + drivej otherwise
(15)

b15 y =


0 if rdy

b15x + 1 if ¬rdy ∧ lengthij ≥ 15

b15x otherwise
(16)

b20 y =


0 if rdy

b20x + 1 if ¬rdy ∧ lengthij ≥ 20

b20x otherwise
(17)

Resources for monitoring drive breaks need to be reset at
each full drive break. Equation (14) defines a helping flag
to indicate whether the current drive block is finished. Equa-
tion (15) uses this flag to reset or increase the current driving
time. Equation (16) tracks the number of 15-minute breaks
in the current driving block and Equation (17) the number
of 20-minute breaks. 30-minute breaks do not need to be
tracked as each of them resets the driving block.

Constraints regarding rest breaks need to consider differ-
ent sums of rest breaks and their positioning.

wy = wx + ux − uy + remainij + rideij + lengthj (18)

ry = min(rx + rest ij , 45) (19)
b30 y = b30x ∨ rest ij ≥ 30 (20)

rest ′ij = rest ij −max(2 · 60− sx, 0)

−max(end i + rest ij − (endy − 2 · 60), 0) (21)

uy = min

(
ux +

{
rest ′ij if rest ′ij ≥ 15

0 otherwise
, 90

)
(22)

bc30 y = bc30x ∨ rest ′′ij ≥ 30 (23)

Equation (18) tracks working time, assuming that all of uy is
unpaid so far, which constitutes a lower bound for the actual
value. Equation (19) tracks the amount of required rest time,
capping it at 45 as higher values do not matter. Equation (20)
deals with the occurrence of a 30-minute rest break.

Equation (21) captures the part of the rest break that can
be unpaid depending on the position. However, this requires
knowing the end time of the shift endy which violates the
general assumption of the algorithm that nodes can be pro-
cessed in temporary order. Therefore, for each node j, with
known end time end j if j is the last bus leg in the shift, new
nodes are added to the graph: Nj is the set of nodes reach-
able within 3 hours from end j when traversing the network
backwards from j (including j itself). For each node i ∈ Nj

a new node ij is created. For each pair of nodes i and k both
in Nj , an arc ijkj is added if ik is in the original graph. For
i 6∈ Nj and k ∈ Nj , an arc ikj is added if ik is in the origi-
nal graph. The arc jjt replaces the arc jt. Each new node is
associated with the end time end j . All original nodes have
end time∞. This solves the problem, but increases the graph
size by a factor of 6 for small instances up to more than 30
for large instances.
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The potential total amount of unpaid rest is captured in
Equation (22). Equation (23) tracks the existence of a cen-
tered 30-minute break using rest ′′ij defined like in (21) ex-
cept with 3 · 60 instead of 2 · 60.

Finally, the cost needs to be computed.

cost ′y = cost ′x + 2 · (ux − uy) + cij + cj − dual j (24)

costy = cost ′y + 2 ·max(Wmin − wi, 0) (25)

Equation (24) takes into account the unpaid rest and the du-
als for the bus legs. Equation (25) further considers the min-
imum working time.

Constraints. A shift is a path from s to t that does not vi-
olate any resource constraints. The following resource con-
straints need to be satisfied for every label x: dx ≤ Dmax,
sx ≤ Tmax, dcx ≤ 4 · 60, wx ≤ Wmax, and rx ≥ 15 if
wx ≥ 6 · 60. Additionally, at node t, all labels x need to
satisfy: rx ≥ 45 if wx > 9 · 60 and b30x if wx ≥ 6 · 60.

Dominance. In order to track only paths with the potential
to become minimum-cost paths, only pareto-optimal labels
with respect to both cost and resource usage are kept at each
node, i.e., labels which are not dominated. Regarding more
complex constraints, it is important to observe that, if label
x dominates label y at a node i, extensions of x to future
nodes must still dominate extensions of y. Finally, the least-
cost label at node t represents the minimum-cost path.

Therefore, a label x dominates label y if all following
conditions are true: dx ≤ dy , sx ≤ sy , dcx ≤ dcy ,
b20x ≥ b20 y , b15x ≥ b15 y , wx + ux ≤ wy , rx ≥ ry ,
b30x ∨ ¬b30 y , bc30x ∨ ¬bc30 y , cx + 2 · ux ≤ cy .

In general, lower values dominate for resources with up-
per bounds and higher values dominate for resources with
lower bounds. The most complex case arises from the fact
that the maximum value of unpaid break might be 0, 60, or
90 depending on the existence and position of a 30-minute
rest break. This results in neither higher nor lower values
of ui being dominant. Rather, the uncertain amount of un-
paid rest weakens the domination power of cost and working
time, as those might vary in the amount of unpaid rest un-
til the end of the path. However, in the next section a more
useful way to deal with this problem is described.

Branching
Branching is performed on the connections between bus legs
in a shift that correspond to arcs in the subproblem. The
branching considers a connection between bus legs i and j
that appears in a fractional shift in the master and selects the
most fractional to maximize impact. In the left branch, all
columns containing i or j, but not both consecutively, are
removed. In the RCSPP graph all outgoing arcs from i ex-
cept for the one connecting to j are removed. In the right
branch, all columns with i and j assigned consecutively are
removed, as well as the arc from i to j in the RCSPP graph.

Lagrangean Bound
In the case when the column generation terminates at the
root node, small optimality gaps are typically achieved.

However, when there is not enough time to complete the col-
umn generation at the root node, a Lagrangean lower bound
is computed as O(RMP) + κ · O(PP), where O(RMP)
is the optimum of the reduced master problem, κ is an up-
per bound on the number of shifts and O(PP ) is the op-
timum of the pricing problem. The implementation uses
κ = bO(RMP)/minCostc, where minCost = 2 ·Wmin +
min`∈L length`. The minimum reduced cost is only known
when no more throttling (see next section) is in play. Other-
wise a lower bound for the minimum reduced cost is com-
puted where the constraints regarding break positions for un-
paid breaks are relaxed.

Handling the Subproblem Dimensionality
As described in the previous section, due to the complex
constraints for valid shifts, the subproblem complexity is
very high. In particular, eleven resources are tracked in the
labels. However, the efficiency of the label-setting algo-
rithm depends on its ability to keep a small number of non-
dominated labels. The more dimensions the labels have, the
easier it is for labels to be non-dominated, drastically in-
creasing the number of labels for processing. Therefore, the
increase in the number of processed labels turns out to be the
bottleneck of scaling the solution method to larger instances.
Several novel improvements to reduce this bottleneck are in-
troduced. These are generally applicable to other problems
with similar characteristics.

Subproblem Partitioning
Instead of generating all possible shifts from one graph, the
subproblem is split into three similar, but disjoint RCSPP
problems, removing the uncertainty for unpaid breaks de-
pending on whether the maximum amount of rest break is 0,
60, or 90. This depends on the existence and position of a
30-minute rest break:

• No 30-minute rest break: All arcs corresponding to rest
breaks of at least 30 minutes can be removed, making the
graph very spare and therefore fast to process. Unpaid rest
is guaranteed to be 0, all rest break resources are ignored.

• Uncentered 30-minute rest break: b30 y must be true at
t. The maximum of uy is changed to 60, but the current
amount of uy is guaranteed to be unpaid. Therefore,wx ≤
wy and wx + ux ≤ wy + uy can be used instead of wx +
ux ≤ wy as the domination criterion (same change for cx
and cy), reducing the number of undominated labels.

• Centered 30-minute rest break: b30 y and b30cy must be
true at t. The maximum of uy is set to 90, but the im-
proved dominance criteria from the previous graph still
apply as again all of uy is guaranteed to be unpaid.

The pricing subproblem is used to add multiple columns
(up to 1000 per graph) at once. Indeed, solving the relaxed
master problem even with thousands of columns is much
faster than solving the pricing subproblem. Therefore, ac-
cepting some unnecessary columns while reducing the num-
ber of times the subproblem is solved pays off. The differ-
ent graphs are ordered by their complexity, measured by the
number labels they expand. The pricing subproblem avoids
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searching more complex graphs, as long as those with less
complexity still produce enough shifts with negative reduced
costs (usually 10, 100 if the objective did not change, 1000
if the objective did not change repeatedly).

Cost Bound
An upper bound for the reduced cost for each node can be
computed by processing the RCSPP graph backwards with
the current duals. The upper bound describes the maximum
reduced cost at each node, such that there is still a path to
arrive at t with reduced cost < 0, disregarding resource con-
straints. All labels above this bound can be discarded during
the solution process.

Exponential Arc Throttling
While it might be hard to find the best column, at least in the
beginning of the solving process, there are many columns
with negative reduced cost. Two options were considered to
reduce the size of the subproblem in early iterations. The
first option is to reduce the number of labels at each node.
This can be done either by rejecting new labels after a cer-
tain threshold or only retaining labels according to certain
criteria, e.g., the best 100 by cost.

The better option is to exploit the fact that good columns
are unlikely to include very costly arcs. It proposes a new
throttling mechanism that imposes a maximum cost per arc,
starting at 100 (just enough for a 30 min break). This greatly
reduces the size of the graph and therefore the number of
labels. Once the number of new columns is small, this factor
is multiplied by 2. This is repeated until all arcs are included.
While a lot of arcs are not present in the early stage, the
focus on arcs that are likely to appear in good columns leads
to very fast convergence to good solutions, even if there is
not enough time to finish the column-generation process.

Improved Elimination of Non-Dominated Labels
Even with the previously mentioned improvements, the ma-
jority of runtime is spent figuring out which labels are non-
dominated. The naive approach is to compare each new label
on a node with each label in the current set of non-dominated
labels. However, the runtime complexity of this method is
quadratic in the number of non-dominated labels. Therefore,
two different methods are explored to speed up the dom-
inance checks. The first method is the multi-dimensional
divide-and-conquer of Bentley (1980): It is based on recur-
sively solving the k-dimensional problem with n labels by
two k-dimensional problems of size n/2 and one k − 1-
dimensional problem of size n.

The second method is a two-stage approach based on
k-d trees and bounding boxes (Chen, Hwang, and Tsai
2012). The two-stage approach is more effective for sev-
eral reasons. First, the algorithm is based on two stages. In-
stead of comparing each new label with all previously non-
dominated labels both ways and deleting dominated labels
in the process, two passes are performed. Labels are added
as long as they are not dominated, but no removal operations
are executed. The second pass is performed in opposite or-
der before expanding the labels at a node, ensuring that only

non-dominated labels are expanded. Second, instead of stor-
ing labels in a list, a k-dimensional tree is used for storage.
For each node r on level `, the left child is better with respect
to dimension ` mod k and the right child is worse (or equal).
Finally, each node r is associated with a bound ur where
each dimension contains the best value among all nodes in
the subtree rooted at r. Therefore, if a label is not dominated
by ur, it is not dominated by any label in the subtree rooted
at r, saving several comparisons.

Evaluation
The implementation uses Java (OpenJDK 14.0.1), the mas-
ter problem is solved by CPLEX 12.10. The evaluation was
performed on Windows 10 Professional using an Intel Core
i7-6700K with 4x4.0 GHz and 32 GB RAM. The application
is deterministic: Repeated runs produce the same result.

The method was evaluated on a publicly available set of
benchmark instances (Kletzander and Musliu 2020). There
are 50 instances in 10 size categories ranging from 10 tours
(about 70 legs) to 100 tours (almost 1000 legs). The in-
stances are based on real-life demand distributions. The
small to medium size instances represent clusters of bus
lines that often need to be optimized when competing for
new contracts. Large instances correspond to the scale of
medium-size Austrian cities.

Results
Table 2 shows the results of using the best configuration on
the benchmark instances. Results are presented as average
over the respective size category. The runtime for the Branch
and Price was limited to one hour and up to one more hour
to finish the last ongoing computation. This is needed to find
a feasible solution even if the column generation at the root
node does not terminate.

Results show that small instances can be optimally solved
in very short time. For size 20, 4 out of 5 instances can be
solved optimally within an hour, with a gap of only 0.07
% for the remaining instance. For all instances up including
size 60, the root node terminates within one hour and the op-
timality gap of the solution is always less than 1%; A similar
result also occurs for 2 instances of size 70 and one instance
of size 80. For larger instances, the lower bound is provided
by the traditional Lagrangean bound, whose quality depends
on the column generation upon termination. However, due
to the exponential arc throttling, the results obtained in this
time are still of high quality, improving or proving the op-
timality of previous best known solutions on 48 out of 50
instances. It is expected that the new results are very close to
the optimum as the lower bound shows slower convergence
compared to the upper bound. For the larger instances (start-
ing with some of size 70), solving the integer set-partitioning
problem with around 50000 generated columns also times
out with a gap of a few percent. Those are the instances with
sightly above 2 hours of runtime.

There are two main contributions to this research. On the
one hand, the approach provides lower bounds to evaluate
the quality of the previous solutions obtained by metaheuris-
tics. In particular, they show that, for 4 out of 5 instances of
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Instances Time BP Lower bound BP Best BP Gap Prev time Prev best Gap to BP LB Gap to BP best
10 7.2 14709.2 14709.2 0 % 22.8 14717.4 0.06 % 0.06 %
20 1201.4 30290.3 30294.8 0.01 % 62.2 30790 1.65 % 1.63 %
30 3610.6 49674.4 49846.4 0.35 % 108.8 50947.4 2.56 % 2.21 %
40 3605.8 66780.3 67000.4 0.33 % 267.0 69072.2 3.43 % 3.09 %
50 3674.4 84042.1 84341.0 0.36 % 295.4 86539.6 2.97 % 2.61 %
60 4373.2 99334.0 99727.0 0.40 % 432.8 103445.2 4.15 % 3.74 %
70 6460.4 108083.1 118524.2 9.66 % 751.4 122531.4 13.4 % 3.38 %
80 5912.4 106499.2 134513.8 26.3 % 959.4 139518.2 31.0 % 3.72 %
90 7390.4 104848.1 150370.8 43.4 % 1516.6 156046.0 48.8 % 3.77 %

100 7395.8 102858.6 172582.2 67.8 % 1483.2 172269.6 67.5 % -0.18 %

Table 2: Results for the benchmark dataset (new method left, comparison to previous results right)

size 10, the optimum was previously found (but not proven
optimal). On the other hand, except for size 100, the Branch
and Price algorithm improves existing results by 1-4%, with
results for sizes 60–90 being close to 4%. This is very sig-
nificant for such logistics and transportation problems.

Note that the previous solution method has the advan-
tage of lower runtimes (except for size 10) and it is useful
for even larger instances. In practical scenarios like provid-
ing cost calculations when competing for new bus lines, or
investigating the potential improvement for the current bus
network, spending some extra time for better and bounded
solutions is very important. Therefore, the use of Branch and
Price for such scenarios is very useful.

Effects of Subproblem Improvements
While all the design choices and parameter settings have
been carefully tested, this section focuses on the effects of
our crucial subproblem improvements.

We highlight the benefits for splitting the subproblem on
the example of instance 40 16. At the root node the sub-
problem is solved 197 times. Only 76 times the uncentered
30-min break graph is solved and only 14 times the centered
30-min break graph. However, the runtimes for the different
graphs are 4 ms, 1.5 s and 1.9 s respectively at the beginning
(arc throttling) and 16 ms, 7.7 s and 51.1 s at the end (all
arcs). Even though easier subproblems only provide parts of
the new shifts, their runtime advantage makes it worth only
going to the more complex subproblems when necessary.

Figure 3 shows the comparison of cost-based throttling
(100 best regarding cost per node, factor 10 increase), no
throttling, node-based throttling (100 first per node, fac-
tor 10 increase), and arc-based throttling (arc cost limited
to 100, factor 2 increase) on the objective of the reduced
master problem over time. The results show a significant
overhead of cost-based throttling, and weak improvements
early but more efficiency later for node-based throttling.
Arc-based throttling, however, clearly shows superior per-
formance starting to drop significantly in objective value
compared to other approaches in less than 10 seconds. Its
overall time is 727 seconds compared to 1354 seconds for
node-based throttling, the second best approach. Overall, us-
ing node-based throttling would provide improvement on 16
fewer instances than arc-based throttling and terminate the
root node for 5 fewer instances.
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Figure 3: Throttling approaches for 40 16

Regarding the dominance algorithm, one run of the largest
subproblem on instance 40 16 takes 290 seconds with the
default dominance algorithm, 293 seconds with the multi-
dimensional divide-and-conquer algorithm, and 51 seconds
with the two-stage algorithm. Overall, for default dominance
the root node terminates in only 25 compared to 33 instances
for the two-stage algorithm within the time limit.

Conclusion

This paper presented a Branch and Price approach for a com-
plex Bus Driver Scheduling Problem. The Branch and Price
includes a range of novel improvements for solving the high-
dimensional subproblem that can be applied to other prob-
lems with similar characteristics. Experimental results show
that the approach provides strong lower bounds for existing
metaheuristics and improves or proves optimality for 48 out
of 50 instances. The novel results have optimality gaps be-
low 1% for small to medium size instances and represent
high-quality solutions for larger instance sizes in reasonable
time. Therefore the Branch and Price approach may be con-
sidered the new state-of-the-art exact method for this com-
plex scheduling problem. Future work might might include
applying the method to different BDS problems, or incorpo-
rating robustness features like break buffers.
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we consider an objective function that does not only include
cost, but was developed to incorporate several criteria that
are important for the affected employees. Even though this
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