The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Invertible Concept-based Explanations for CNN Models with Non-negative
Concept Activation Vectors

Ruihan Zhang, Prashan Madumal, Tim Miller, Krista A. Ehinger, Benjamin I. P. Rubinstein

School of Computing and Information Systems
The University of Melbourne, Victoria, Australia
{ruihanz, pmathugama} @student.unimelb.edu.au, {tmiller,kehinger,benjamin.rubinstein} @unimelb.edu.au

Abstract

Convolutional neural network (CNN) models for computer
vision are powerful but lack explainability in their most basic
form. This deficiency remains a key challenge when apply-
ing CNNs in important domains. Recent work on explana-
tions through feature importance of approximate linear mod-
els has moved from input-level features (pixels or segments)
to features from mid-layer feature maps in the form of con-
cept activation vectors (CAVs). CAVs contain concept-level
information and could be learned via clustering. In this work,
we rethink the ACE algorithm of Ghorbani et al., propos-
ing an alternative invertible concept-based explanation (ICE)
framework to overcome its shortcomings. Based on the re-
quirements of fidelity (approximate models to target models)
and interpretability (being meaningful to people), we design
measurements and evaluate a range of matrix factorization
methods with our framework. We find that non-negative con-
cept activation vectors (NCAVs) from non-negative matrix
factorization provide superior performance in interpretabil-
ity and fidelity based on computational and human subject
experiments. Our framework provides both local and global
concept-level explanations for pre-trained CNN models.

Introduction

Deep learners such as convolutional neural networks
(CNNs) (He et al. 2016) are widely used across important
domains like computer vision due to demonstrated perfor-
mance in numerous tasks. However, when applying to crit-
ical domains like medicine, justice, and finance, explain-
ability has become a key enabler and mitigation for appli-
cations. While commentators like Rudin (2019) argue that
deep learning approaches should not be used for these risky
domains, using deep learning to discover features for more
‘interpretable’ models requires explainability to determine
what features have been discovered.

Recent CNN explanation methods attempt to quantify the
importance of each feature. Feature importance usually cor-
responds to a linear approximation of highly complex mod-
els. Linear models are simple and explainable with under-
standable features and weights. Methods like CAM (Zhou
et al. 2016), LIME (Ribeiro, Singh, and Guestrin 2016) and
saliency maps (Bach et al. 2015) use input-level features.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

11682

However, these methods only point out the important areas
in an image, rather than, for example, identifying key con-
cepts. To make explanations more human understandable,
more recent work uses features from within the CNN mod-
els with higher-level information (Kim et al. 2018; Bau et al.
2017; Zhou et al. 2018) under the assumption that these are
closer to human-relevant concepts than areas of pixels. This
work uses supervised learning to classify feature maps with
concepts and use weights to indicate the directions of certain
concepts called Concept Activation Vectors (CAVs) in the
feature map space. To reduce the labeling workload, Auto-
mated Concept-based Explanations (ACE) (Ghorbani et al.
2019) apply unsupervised learning to segments of images
from certain classes and generate clusters of image segments
as CAVs.

ACE is powerful for learning features (CAVs) using only
images from target classes without any labels but has sev-
eral drawbacks. First, learned concept weights are inconsis-
tent for different instances. This is a common problem for
all linear approximation explanation methods as they are all
approximations to the target CNN models. Second, it is dif-
ficult to measure the performance of learned sets of CAVs.
ACE is a one-way explainer from the target model to expla-
nations and irrelevant segments are discarded. Transforming
an explanation back to the target model’s prediction is diffi-
cult with segments. However, how much information is lost
in the explanation? Information could be lost in unused seg-
ments and distances between used segments and their cluster
centroids.

Olah et al. (2018) introduces an interpretable interface
with many methods to display what’s inside the CNN model
for a given image to achieve interpretability. Feature maps
can be shown using different grouping methods (axes). They
also introduce a method using non-negative matrix factoriza-
tion (NMF) on feature maps to gather interpretable informa-
tion. This shares a similar idea with ACE as the clustering
methods like k-means used in ACE could be considered as
a matrix factorization (dimensionality reduction) method. In
addition to reducing the dimensionality, matrix factorization
also analyzes the information loss with inverse functions.
The feature maps from segments used in ACE are replaced
by spatial activations from the feature map. This replace-
ment is also used in CoCoX (Akula, Wang, and Zhu 2020).

In this paper, we modify the ACE framework using ma-



trix factorization for feature maps instead of clustering seg-
ments’ feature maps as in ACE to overcome its shortcom-
ings. Targeting the last feature map of CNN models, our
framework could provide consistent CAVs weights for dif-
ferent instances (in most CNN models). Through the in-
verse function of matrix factorization, the information lost
(fidelity, differences in prediction) in the explanations can
be measured. Given performance requirements (e.g. ac-
curacy of approximations), explainers (hyper-parameters)
could then be learned automatically. Also, inverse func-
tions allow us to analyze the distributions of contributions
from learned CAVs to provide detailed local explanations
for given instances. ACE only provides global explanations
for classes. Having this framework, we compare three dif-
ferent methods k-means, PCA and NMF. Sample local and
global explanations are shown in Figure 1. Our contributions
are:

We propose a new concept-based explanation framework
that provides consistent weights for features (under some
limitations) and consistent fidelity measurement using
non-negative matrix factorization.

We propose new measurements of fidelity for CAV-based
interpretability methods. This measures how accurate the
explanations are to the original CNN model. Hyper-
parameters can be learned through this measurement.

We propose a new human subject experiment design
for measuring the interpretability of concept-based inter-
pretability methods. Unlike previous work, we measure
interpretability in a scientific manner using human stud-
ies, rather than relying on “intuition” and selected ex-
amples to illustrate interpretability (Leavitt and Morcos
2020).

A Framework for Concept-based Explanations

Concept-based explanations may be approached as linear
approximations for separate CNN models as follows. First,
we separate the CNN classifier into a concept extractor and
classifier from a single CNN layer, and the explanations are
based on the feature maps from that layer. Input-level expla-
nations like LIME (Ribeiro, Singh, and Guestrin 2016) and
saliency maps (Shrikumar, Greenside, and Kundaje 2017;
Smilkov et al. 2017) skip this step and use input pixels as
features for approximate models directly. Second, we ap-
ply matrix factorization to the feature maps to provide CAVs
for the next step. A reducer is trained with a target concept-
related dataset. Note that the middle-layer feature maps may
contain too many dimensions, and information in each di-
mension is not enough to be meaningful. Therefore, the re-
ducer may gather information separated in all dimensions
to provide CAVs and reduce the complexity of the approx-
imate model. For the final step, we build a linear approxi-
mation to the classifier and estimate the concept importance
for each CAV. The explanation is based on the learned re-
ducer and estimated weights for each CAV. For explanations
of new inputs, reducers provide meaningful concept descrip-
tions and concept scores from the feature maps. A diagram
of the framework is shown in Figure 2.
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The selection of the target layer is important. Higher lay-
ers focus more on concepts (high-level features) and lower
layers focus more on edges and textures of the image (low-
level features) (Zeiler and Fergus 2014). If the reduced con-
cepts are to be meaningful, the selection of a higher layer
seems more suitable. Higher layers usually mean a clas-
sifier with fewer layers (simpler) and a concept extractor
with higher-level concepts. This provides more accurate es-
timated weights. One special case is when using feature
maps from the last layers when they are a Global Average
Pooling (GAP) layer and a dense layer, the classifier under
explanation will reduce to a simple linear model. Estimated
weights are accurate as they are constant at any position un-
der any CAVs. The previous layers’ weight estimates take
the average weights of all instances. Weights could vary for
different inputs. In this paper, we assume that the last layer
is the most suitable for concept-based explanations, so we
use this as the target layer.

A benefit of using reducers instead of clustering methods
is that reducers provide scores for concepts as outputs in-
stead of predictions of clusters’ centroids. The reduced con-
cept scores can be applied to the approximate model to an-
alyze the contribution distribution for each feature more ac-
curately. In ACE, concept scores can only be binary. Thus,
reducers provide better fidelity when inverting the reduc-
tion process. This could help when evaluating the fidelity
of the learned CAVs and also when applying the concepts in
a larger explainability framework.

Ribeiro, Singh, and Guestrin (2016) claim two important
requirements for linear approximations: interpretability and
fidelity. Interpretability means that the feature representa-
tion used in the approximate model needs to be meaning-
ful to human observers. Fidelity prescribes that the approx-
imate model should make similar predictions to the model
under explanation. This clearly introduces a dual-objective
problem: increasing fidelity can decrease interpretability, or
vice-versa. In this paper, we evaluate different matrix factor-
ization methods on these two measures.

Methodology

Given a pre-trained CNN classifier F' with n training images
I, the prediction process will be F(I) = Y. We remove
any final softmax layer (if present) so that each y is a scalar
instead of a probability. Let A be the feature map from the
target layer [, then F' can be seperated into two parts, feature
extractor Ey(I) = A; and classifier C;(A4;) = Y. Feature
map A should be of shape n x h X w x ¢ where h and w reflect
the feature map size and c is the number of channels. A is
assumed to be non-negative as most recent CNN models use
the relu activation. Let a(*7) be a vector from A at position
(4,7),{0 <i < h,0 < j < w}. CNN models share weights,
so vector a at each position in A could be considered as a
vector description of the original images but with different
correlated receptive fields after equivalent processing.

Non-Negative Concept Activation Vectors Feature map
A can be flattened to V' € R(®*h*w)x¢ Non-negative ma-
trix factorization (NMF) reduces the channel dimensions of
non-negative matrix V' from ¢ to ¢’. Here V is reduced to
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Figure 1: Explanation for an image with a dog and cat. For each concept, the framework provides prototypes based on the
training set and correlates areas as global explanations. The explainer decomposes the final prediction score to concept scores
and weights through a linear model to explain locally. The explanation is based on the ResNet50 CNN model from TorchVision.
The full version for this explanations is shown in the appendix

fea/ture score § € R(mxhxw)xe’ anq feature direction P €
R¢*¢asV = SP + U. The aim is to minimize the residual
error U. It is given formally as Iéll}gl”V — SP||F st. S>

0, P > 0. Having images with the same label or concept,
most vectors a with different correlated receptive fields in A
can be considered as a vector description of a target concept
part (e.g. eye, mouth or ear of a dog). Factorization on these
vectors can disentangle important and frequently-appearing
directions for target concepts.

P, the meaningful NCAVs in the feature map dimen-
sion space, is a fixed parameter for the explainer after being
trained with A from some images. Given the explainer, for
feature maps from new images, we can apply NMF with P
to get S. P is a vector basis and S is the length of projec-
tions of @ on these directions. .S can be considered as feature
scores for feature directions in P as it’s the degree to which
vector « is related (similar) to the NCAVs in P.

Weight Estimation For weights or concept importance,
other interpretability methods such as saliency maps use
the gradients of output scores for some classes with respect
to individual input features. Feature importance of classi-
fier C' can be estimated using the method in TCAV (Kim
et al. 2018). Given a learned NCAV p; in target layer
l, the estimated feature importance for a classifier tar-

. } . aC

geting class k for given feature map A; is =5 pf;’“ =
1 . hi k(atepi)—hyk(a—epy) :

T aeA, Meso 52 . Classifier C

is usually a non-linear function. Estimated weight is an av-
erage derivative over the area sampled by A, and A should
come from images related to the target concept to reduce
estimate error.

Only a linear classifier has a consistent derivative over
the whole input space, so the best choice for target layer is
the last layer before a GAP layer and a dense layer. Having
weights W € R° with bias b from the last dense layer for
target class k and learned NCAV parameter P, the classifier
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C will be:

Ck’l(A) = GAP(A)W +b
— GAP(S)PW + GAP(U)W + b

The feature importance for NCAV P will be PW. This is
independent of the input feature map A.

Vector Visualization There are many ways to visual-
ize a vector from a layer. For instance, having a vector
in a middle layer, Deep Dream concept vector visualiza-
tion (Olah, Mordvintsev, and Schubert 2017) provides a
pattern-enhanced image based on gradients for the vector. In
this work, we use the method of prototypes (Kim, Khanna,
and Koyejo 2016), choosing images containing target con-
cepts and highlighting these concepts. Applying GAP to the
decomposed feature maps, we can provide a score for each
concept. Images with high concept scores are taken as the
prototypes. Previous work shows that middle-layer feature
maps have spatial correlations with input images, as was
used in image segmentation to replace input masks with fea-
ture map masks (Dai, He, and Sun 2015). Decomposed fea-
ture maps for a single CAV could be presented as heatmaps
for target concepts. Combining a heatmap and an image, we
can apply a threshold for the heatmap and highlight only ar-
eas with high concept value in the image. In this paper, the
threshold is taken to be 0.5, and only regions with values
higher than 0.5 (after a min-max normalization) are consid-
ered to be related. Concept prototypes from Figure 1 are vi-
sualized in this way.

Evaluation

Following the desiderata of this work, we aim to measure
both fidelity and interpretability. Fidelity is measured com-
putationally while for interpretability, we propose a new task
that uses human subject experiments.

For both the computational and human subject experi-
ments, we use well-known CNN models for image classi-
fication. We consider two different datasets: ILSVRC2012
(ImageNet) (Russakovsky et al. 2015) and CUB (Wah et al.
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Figure 2: A depiction of our framework. The CNN model is separated into concept extractor and classifier by chosen middle
layer with a reducer. The concept extractor provides concept presentations, instance correlated areas and feature scores. The
classifier provides concept weights and generates linear approximations as an explanation.

2011). The implementation is based on PyTorch and scikit-
learn. CNN models used for the ILSVRC2012 dataset are
from torchvision pre-trained models. The topl error of
ResNet50 on ILSVRC2012 is 23.85% and that of Inception-
V3 onILSVRC2012 is 22.55%. For the CUB dataset, we use
the ResNet50 (He et al. 2016) architecture and apply fine-
tuning based on ImageNet pre-trained weights. The top1 er-
ror is 15.81%. For comparison with NMF, we choose the
baseline of clustering (from ACE) and PCA (a popular ma-
trix factorization method). Reducers are trained based on the
training set and evaluated on the test set or the validation set.

Fidelity for Approximate Models

In this section, we compare the fidelity of approximate mod-
els using the three different matrix factorization methods.
We evaluate the fidelity for CNN pre-trained models with
different ¢’ for each matrix factorization method using both
classification and regression measurements.

For fidelity, we measure the difference between the ap-
proximate and original model predictions, but the measure-
ments for classification and regression problems are differ-
ent. Classification models only focus on predicting labels,
so errors that do not change the predicted labels are ignored.
For regression, any difference in approximate models will
affect the performance based on the loss function measure-
ment.

Measures Given the original model F' and an approximate
model F, Craven and Shavlik (1996) measure the fidelity
of approximate classification models as the 0-1 loss. This
targets the difference in accuracy through predictions. For
regression, Ribeiro, Singh, and Guestrin (2016) measure fi-
delity as the squared error (F(X) — F(X))2. While the
squared error is appropriate as a loss function during train-
ing, for evaluation, relative error (RE) is more easily inter-
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pretable, being scale-free. Given F', F and a set of images
1, the measurement for classification and regression models
based on the dataset will be:

_#ie | F(@) = F@i)}

- #{1}

Yier [F (i) = F(i)]
Dicr [F(@)] + e

Having a trained reducer R and its inverse function R’

for layer [, the approximate model is given by Fj(I)
Ci(R'(R(EN(1))))-

Experimental Setup Our experiment is based on a
ResNet50 pre-trained model for ImageNet from torchvision
and a ResNet50 pre-trained model for CUB. Both of them
use the feature maps from layer4’s output. The parameter
¢ is evaluated from 5 to 50, in steps of 5. The model can
be considered as both a classification and regression (score
for every single class) model. So both fidelity measures can
be evaluated. Here we trained reducers for all 1,000 classes
in ILSVRC2012 and all 200 classes in CUB. Reducers are
trained with images from a single class. For classification
methods, only the top 5 classes are considered as candidates.
For regression, only ground truth classes are tested, calculat-
ing the RE for the approximate models’ outputs. We take the
mean RE for all classes as the final result.

Fidcp, ¢(I) (1)

Fidrp (1) = 2)

Experimental Results Figure 3 shows the accuracy (left)
and fidelity for different ¢’ with Fid_c (middle) and Fid_r
(right). PCA provided the best fidelity result for both re-
gression and classification. NMF’s result is close to PCA’s
but diverges as ¢ increases. PCA is a popular and efficient
matrix factorization method. Compared to PCA, NMF has
two limitations: non-negativity and no introduction of ex-
tra bias. Also, NMF finds new vector bases to achieve a
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Figure 3: Average accuracy and fidelity for approximate lin-
ear models of two ResNet50 models over different number
of concepts. Left figures show the accuracy if the approxi-
mate models are directly used as classifiers. For classifica-
tion, higher means better. For regression, lower means better.

new balance for each vector every time ¢’ increases, while
PCA simply seeks a new basis vector iteratively, based on
variance maximization. Clustering showed the worst perfor-
mance. Clustering methods can be considered as matrix fac-
torization methods, but they only provide one-hot vectors
as centroid predictions offering the least information. When
’ increases, approximate models provide more faithful pre-
dictions for both classification and regression. Around 1,000
compute (8 core CPU, v100 GPU) hours are needed for the
evaluation.

The fidelity results demonstrate the limitation of approx-
imate models: explanations will be incorrect some of the
time. However, the classification accuracy on the left shows
a potential trade-off for domains where accurate explana-
tions are important: we can throw away the final layers of the
target model and use the approximate model instead. This
will result in a 2-5% drop in accuracy for NMF and PCA
(30+ concepts), but the fidelity of the approximate model
against itself is 100%.

Interpretability via Human Subject Experiments

In this section, we present a new type of experiment for mea-
suring the interpretability of concept-based explanations,
and use this to evaluate the interpretability of approximate
models based on NMEF, clustering, and PCA. We agree with
the claims by Leavitt and Morcos (Leavitt and Morcos 2020)
that interpretability should be measured in a falsifiable man-
ner. In this paper, this includes measuring how well people
can interpret and understand the concepts, rather than rely-
ing on “intuition” based on selected examples. These exper-
iments provide a better basis for model comparison, com-
pared to simply demonstrating interpretability via a hand-
ful of selected examples. To that end, we present a human-
subject experiment design that measures the interpretability
of concepts by asking study participants to provide free-text
labels for concepts and measuring the consistency of label-
ing between participants.
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We hypothesized that NCAVs learned from NMF are
more interpretable than CAVs learned from clustering and
PCA. We assume that CAVs learned from segments and fea-
ture maps using k-means are similar and consider CAVs
from k-means clustering method on feature maps as ACE
baselines, as both cluster feature maps and provide CAVs as
outputs.

Methodology: We use task prediction (Hoffman et al.
2018, p. 11) and the Explanation Satisfaction Scale (Hoft-
man et al. 2018, p. 39) for evaluation. The assumption be-
hind task prediction is that the ability to predict the output
of a model implies a better understanding of how the model
works.

Experimental Design: The experiment has two phases. In
Phase 1, at each trial, participants are given one image with
one concept highlighted and five concept explanations from
the same class as candidates. Participants are asked to pre-
dict which of the candidate explanations matches the high-
lighted concept. An example is shown in Figure 4. Then,
for each concept candidate, participants are asked to provide
a 1-2 word description of the concept. All participants are
given five images as a training phase followed by 15 testing
images. They can move back to a training example at any
time in the test phase. In Phase 2, participants are asked to
complete an explanation quality survey to self-report their
opinion about explanations in the form of Hoffman et al.’s
explanation satisfaction scale. The experiment was imple-
mented in a web-based environment on Amazon Mechani-
cal Turk, a crowd-sourcing platform popular for obtaining
data for human-subject experiments (Buhrmester, Kwang,
and Gosling 2011).

We used a between-subject design: participants were ran-
domly assigned into one of nine groups (3 scenarios and 3
types of reducers). There were a total of 157 participants
who completed the survey. Participants with a prediction ac-
curacy lower than 20% (random choice) were excluded from
the results. Each experiment ran for approximately 30 min-
utes. We compensated each participant with $5USD and an
extra bonus of $1USD for participants with high accuracy.
65% of participants were male, 34% were female and 1%
specified their own gender. Participants’ reported ages were
between 23 and 70 (u = 38.9).

Our measure for the task prediction is the percentage
of correctly identified concept explanations. This assumes
that better concept explainers allow participants to better
match the highlighted concept to the correct explanation.
For the 1-2 word descriptions, participants should have sim-
ilar descriptions for the concepts that correspond to clear
meanings. We use GloVe (Pennington, Socher, and Man-
ning 2014) pre-trained word vector representations for each
description, then use the average pairwise cosine similarity
to measure the similarity of the concept descriptions across
participants. We chose the free-text response task over pro-
viding pre-defined concept labels because using pre-defined
labels could result in making concepts appear more inter-
pretable than they are. If participants are uncertain, choos-
ing the closest available label from a limited list makes the
task about discrimination, rather than interpretation. Finally,



Figure 4: Survey trial sample in the prediction phase using
NMF reducer. Participants instructions: “Each row on the
right reflects some concepts in the form of image samples
generated by our Al model. Look carefully at the image on
the left and select the concepts on the right which it most
likely belongs to.” The first row is the ground truth.

we measure the participants’ satisfaction with the expla-
nations in terms of confidence, understanding, satisfaction,
sufficiency and completeness (Hoffman et al. 2018). Expla-
nations that are easy to interpret but perceived to be poor are
unlikely to be used, so measuring subjective perception of
explanations is important. We obtained ethics approval from
The University of Melbourne Human Research Ethics Com-
mittee (ID 1749428).

Experimental Parameters: To validate the consistency
of results, we include three different scenarios: ResNet50
(layerd as the target layer) for ILSVRC2012 (scenario
RI), Inception-V3 (Mized_7c as the target layer) for
ILSVRC2012 (scenario IT) and ResNet50 (layer4 as the tar-
get layer) for CUB (scenario RC) as target CNN models.
The three methods NMF, Clustering and PCA are applied
individually in each scenario.

The 20 images were drawn from 20 random classes cho-
sen from all classes within a given dataset. For each class, we
train an explainer with ¢’ of 10, and only the top 5 CAVs with
the highest weights are chosen as selection candidates. One
of these CAVs is randomly selected as the target. The con-
cept in the target CAV is identifiable only if the sample im-
age highly activates that CAV. So each target image is chosen
from the top 10% images in the test set which activates the
target CAV most strongly (with high feature scores). Thus,
we avoid using images in which the concept is absent (e.g.,
the tail concept may be considered absent when only the
upper part of a dog is shown in the image). Each CAV is vi-
sualized using the 5 prototype samples. All explainers were
trained with images from one class. The 20 classes were the
same for different models for the same dataset, but candidate
concepts and target instances were different.

Results Table 1 shows the results of the human-subject ex-
periment. We ran an ANOVA to evaluate the results and used
pairwise t-tests to identify differences between each pair of
reducers. In the prediction task, NCAVs from NMF are more
interpretable than CAVs from PCA (p < 0.001), and CAVs
from clustering are more interpretable than CAVs from PCA
(p < 0.001). For description similarity, results are not sig-
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Figure 5: Having two concepts of ‘mouth’ and ‘eyes’ mea-
sured in two dimensions (only positive values reflect con-
cepts), different reducers provide different directions to rep-
resent concepts. PCA learns less meaningful but efficient di-
rections. Clustering methods could provide meaningful cen-
troids’ center directions but are the least efficient. NMF may
provide meaningful directions with fewer dimensions.

nificant (p > 0.05 level in most cases). Most CAVs con-
tain some meaningful information; participants are confident
about their choice. There is no significant difference in con-
fidence and quality scores in most cases (p > 0.05). We
conclude that NCAV's from NMF are more interpretable than
CAVs from PCA. NCAVs are at least equally interpretable
to CAVs from clustering.

We observe from our experiments that reducers can help
generate meaningful concepts from feature maps, but fi-
delity and interpretability measure different aspects of per-
formance. Here we propose an explanation for this phe-
nomenon based on the differences between the three re-
ducers. Figure 5 shows a distribution of some concept in-
stances. Each dot reflects an instance with some concept
scores. Due to the Relu activation in CNNs, we assumed
that only positive values make sense in CNN models. The
X axis could contain the concept of ‘mouth’ and Y axis
may reflect ‘eyes’. PCA has a new intersection of dimen-
sions (bias) other than the root so one of the dimensions is
meaningless (points to negative values). Clustering methods
provide correct concept directions (from the root to the cen-
ter of each cluster). But it may require more clusters for the
same fidelity, since clustering is based on data clusters but
not directions. Also, it may provide some similar concepts
(bottom left and upper right clusters have similar directions).
Clusters may also be influenced by some isolated instances
and provide meaningless concepts. But for NMF, it provides
correct concept directions in an efficient way if only positive
values reflect meaningful concepts.

Related Work

This work focuses on explanations for pre-trained models.
Common explanation methods provide explanations based
on input level feature importance. Some methods provide
model agnostic explanations based on importance for image
segments (Ribeiro, Singh, and Guestrin 2016; Lundberg and
Lee 2017) by training linear approximate models on nearby



Quality

. Description
Scenario  Reducer type Accuracy Similarity Confidence Understand ~ Satisfaction ~ Sufficiency =~ Completeness
NMF 74.4% + 9.2% 0.59 £ 0.1 77.7% + 13.0% 4.3+ 0.6 4.1+ 0.6 3.8+£0.8 37+12
RI Cluster 66.3% £ 13.8% 0.56 £0.08 75.6% + 13.8% 42+0.7 3.8+ 1.0 39+1.0 36+ 1.1
PCA 37.8% + 5.9% 0.52+0.08 783% +14.7%  4.0+0.9 3.8+ 1.1 38+ 1.1 3.7+1.2
NMF 62.6% +18.6% 0.57 +=0.08 69.3% £ 13.2% 35+ 1.0 34+13 33+ 1.1 34+13
I Cluster 448% £ 13.2% 053 £0.09 75.1% £+ 13.7% 39+1.1 36+ 12 3.6 +1.2 35+14
PCA 40.0% + 8.6% 0.49 +0.08 76.0% + 13.0% 3.8+09 37+1.1 344+1.2 324+13
NMF 81.1% + 8.4% 0.7+0.04 79.5% +£10.8% 4.1 +0.8 3.7+09 34+1.2 35+ 1.1
RC Cluster 78.6% £ 15.5% 0.7 £ 0.05 75.0% + 18.7% 39+ 1.0 41+1.0 4.0+ 1.0 39+1.1
PCA 57.0% = 11.6% 059 £0.03 61.1% £ 17.6% 3.6+ 1.0 30+1.2 34+1.2 32+12
Scenario Accurac Description Confidence Quallty
y Similarity Understand  Satisfaction Sufficiency Completeness
RI <0.001 0.131 0.841 0.446 0.592 0.941 0.948
II <0.001 0.064 0.304 0.493 0.752 0.690 0.844
RC <0.001 <0.001 0.004 0.283 0.016 0.219 0.174
o Quality
. . Description
Scenario  Reducer Pair  Accuracy Similarity Confidence Understand ~ Satisfaction  Sufficiency Completeness
NMF vs. Cluster 0.159
RI NMF vs. PCA <0.001 / / / / / /
Cluster vs. PCA <0.001
NMF vs. Cluster 0.019
1I NMF vs. PCA <0.001 / / / / / /
Cluster vs. PCA 0.754
NMF vs. Cluster 1.00 1.00 1.00 0.784
RC NMF vs. PCA <0.001 <0.001 0.002 / 0.222 / /
Cluster vs. PCA <0.001 <0.001 0.088 0.023

Table 1: Top: Mean and standard deviation of prediction accuracy, description similarity, confidence and quality comparison
for 9 different groups. Middle: ANOVA test p values for each scenario. Bottom: Bonferroni corrected T-test p values for each

pair of reducers with significant ANOVA p value (p < 0.05)

datasets. Saliency maps provide pixel-level feature impor-
tance for images based on gradients (Shrikumar, Greenside,
and Kundaje 2017; Bach et al. 2015; Smilkov et al. 2017).
However, some papers point out the unreliability of saliency
methods (Kindermans et al. 2017; Dombrowski et al. 2019).
CAM is another type of approach, providing heatmaps to in-
dicate where the image activates the target class most based
on CNN weights from the last several layers (Zhou et al.
2016; Selvaraju et al. 2017). All these methods use features
from input images.

Other than input level explanations, some papers build
explanations from feature maps inside the CNN model
and provide concept-level explanations based on supervised
learning (Kim et al. 2018; Bau et al. 2017; Zhou et al. 2018).
These methods build linear classifiers on target concepts and
use weights as CAVs. ACE (Ghorbani et al. 2019) relaxes the
limitation of the labeled dataset using unsupervised learning
with k-means clustering. Learned concepts take the form of
vectors from cluster centroids.

Other than explanations for pre-trained models, some
works modify the structure of CNN models to provide built-
in interpretability (Hendricks et al. 2016; Zhang, Nian Wu,
and Zhu 2018; Chen et al. 2019). Visualization of the values
inside the CNN models can also help explain the process of

11688

prediction. Optimization methods can visualize which pat-
terns produce the highest activation within the CNN mod-
els (Olah, Mordvintsev, and Schubert 2017). There are many
options for feature visualizations. These could choose dif-
ferent layers, different axes for target layer matrices, differ-
ent matrices from CNN weights or instance feature maps
and different methods of presentation to satisfy different in-
terpretability requirements (Olah et al. 2018). In this work,
NMF is introduced to gather interpretable information from
a feature map. NMF is a common interpretable matrix fac-
torization method (Lee and Seung 1999),

Conclusion

We propose a framework for concept-based explanations for
CNN models based on the post-training explanation method
ACE. By using feature maps inside the CNN model, we
can gather some interpretable concept vectors to provide
explanations and invert them back to predictions. We also
show that having requirements of fidelity and interpretabil-
ity, NCAVs from NMF can provide overall better expla-
nations compared with clustering and PCA methods. PCA
provides CAVs with better fidelity but lack interpretability,
which makes PCA less suitable for explanations. CAVs from
clustering methods are interpretable but lower in fidelity.
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