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Abstract

We argue that the vulnerability of model parameters is of cru-
cial value to the study of model robustness and generaliza-
tion but little research has been devoted to understanding this
matter. In this work, we propose an indicator to measure the
robustness of neural network parameters by exploiting their
vulnerability via parameter corruption. The proposed indica-
tor describes the maximum loss variation in the non-trivial
worst-case scenario under parameter corruption. For practical
purposes, we give a gradient-based estimation, which is far
more effective than random corruption trials that can hardly
induce the worst accuracy degradation. Equipped with theo-
retical support and empirical validation, we are able to sys-
tematically investigate the robustness of different model pa-
rameters and reveal vulnerability of deep neural networks that
has been rarely paid attention to before. Moreover, we can en-
hance the models accordingly with the proposed adversarial
corruption-resistant training, which not only improves the pa-
rameter robustness but also translates into accuracy elevation.

Introduction
Despite the promising performance of Deep neural networks
(DNNs), research has discovered that DNNs are vulnerable
to adversarial examples, i.e., simple perturbations to input
data can mislead models (Goodfellow, Shlens, and Szegedy
2015; Kurakin, Goodfellow, and Bengio 2017; Madry et al.
2018). These findings concern the vulnerability of DNNs
against input data. However, the vulnerability of DNNs does
not only exhibit in input data. As functions of both input data
and model parameters, the parameters of neural networks
are a source of vulnerability of equal importance. For neu-
ral networks deployed on electronic computers, parameter
attacks can be conducted in the form of training data poi-
soning (Dai, Chen, and Li 2019; Chen et al. 2017; Gu et al.
2019), bit flipping (Rakin, He, and Fan 2020), compres-
sion (Arora et al. 2018) or quantization (Nagel et al. 2019;
Weng et al. 2020). For neural networks deployed in phys-
ical devices, advances in hardware neural networks (Feld-
mann et al. 2019; Misra and Saha 2010; Abdelsalam et al.
2018; Salimi-Nezhad et al. 2019; Weber, da Silva Labres,
and Cabrera 2019; Bui and Phillips 2019) also call for study
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Figure 1: Parameter corruptions with ResNet-34 on Ima-
geNet. It shows that deep neural networks are robust to ran-
dom corruptions, but the accuracy can drop significantly in
the worst case suggested by the gradient-based method. The
accuracy is measured on the development set.

in parameter vulnerability because of hardware deterioration
and background noise, which can be seen as parameter cor-
ruption. More importantly, study on parameter vulnerabil-
ity can deepen our understanding of various mechanisms in
neural networks, inspiring innovation in architecture design
and training paradigm.

To probe the vulnerability of neural network parame-
ters and evaluate the parameter robustness, we propose an
indicator that measures the maximum loss change caused
by small perturbations on model parameters in the non-
trivial worst-cased scenario. The perturbations can be seen
as artificial parameter corruptions. We give an infinitesimal
gradient-based estimation of the indicator that is efficient for
practical purposes compared with random corruption trials,
which can hardly induce optimal loss degradation. Our the-
oretical and empirical results both validate the effectiveness
of the proposed gradient-based method. As shown in Fig-
ure 1, model parameters are generally resistant to random
corruptions but the worst outlook can be quite bleak sug-
gested by the gradient-based corruption result.

Intuitively, the indicator shows the maximum altitude as-
cent within a certain distance of the current parameter on the
loss surface, as illustrated conceptually in Figure 2. The tra-
ditional learning algorithms focus on obtaining lower loss,
which means generally the parameters at point B are pre-
ferred. However, the local geometry of the landscape also
indicates the generalization performance of the learning al-
gorithm (Keskar et al. 2017; Chaudhari et al. 2017). The pa-
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Figure 2: In this illustration of the loss function, tradi-
tional optimizer prefers B with the lower loss rather than
A, because B has the lower loss. However, parameters at
point B are more vulnerable to parameter corruption, as
maxx∈I0(f(x)−f(x0)) < maxx∈I1(f(x)−f(x1)). Based
on our experiments, we argue that parameters that are resis-
tant to corruption, e.g., at point A, can embody potentially
better robustness and generalization.

rameters at point B demonstrate critical vulnerability to pa-
rameter corruptions, while the parameters at point A are a
better choice since larger perturbations are required to ren-
der significant loss change. It is also observed in our experi-
ments that the parameters at point A have better generaliza-
tion performance as a result of corruption-resistance.

Equipped with the proposed indicator, we are able to sys-
tematically analyze the parameter robustness and probe the
vulnerability of different components in a deep neural net-
work via observing the accuracy degradation after applying
corruptions to its parameters. Furthermore, the comparisons
between the gradient-based and the random corruption for
estimating the indicator suggest that the neighborhood of the
learned parameters on the loss surface is generally flattish
except for certain steep directions. If we can push the pa-
rameters away from the steep directions, the robustness of
the parameters can be improved significantly. Therefore, we
propose to conduct adversarial corruption-resistant training
that incorporates virtual parameter corruptions to find pa-
rameters without steep directions in the neighborhood. Ex-
perimental results show that the proposed method not only
improves the parameter robustness of deep neural networks
but also elevates their accuracy in application tasks.

Our main contributions are as follows:
• To understand the parameter vulnerability of deep neural

networks, which is fundamentally related to model robust-
ness and generalization, we propose an indicator that mea-
sures the maximum loss change if small perturbations are
applied on parameters, i.e., parameter corruptions. The
proposed gradient-based estimation is far more effective
in exposing the vulnerability than random corruption tri-
als, validated by both theoretical and empirical results.

• The indicator is used to probe the vulnerability of dif-
ferent kinds of parameters with diverse structural char-
acteristics in a trained neural network. Through system-
atic analyses of representative architectures, we summa-

rize divergent vulnerability of neural network parameters,
especially bringing attention to normalization layers.

• To improve the robustness of the models with respect to
parameters, we propose to enhance the training of deep
neural networks by taking the parameter vulnerability into
account and introduce the adversarial corruption-resistant
training that can improve the accuracy and the generaliza-
tion performance of deep neural networks.

Parameter Corruption
In this section, we introduce the problem of parameter cor-
ruption and the proposed indicator. Then, we describe the
Monte-Carlo estimation and the gradient-based estimation
of the indicator backed with theoretical support.

Before delving into the specifics, we first introduce our
notations. Let N denote a neural network, w ∈ Rk de-
note a k-dimensional subspace of its parameter space, and
L(w;D) denote the loss function of N on the dataset D,
regarding to the specific parameter subspace w. Taking a k-
dimensional subspace allows a more general analysis on a
specific group of parameters.

To expose the vulnerability of model parameters, we pro-
pose to adopt the approach of parameter corruption. To for-
mally analyze its effect on neural networks and eliminate
trivial corruption, we formulate the parameter corruption as
a small perturbation a ∈ Rk to the parameter vector w. The
corrupted parameter vector becomes w + a. The small per-
turbation requirement is realized as a constraint set of the
parameter corruptions.
Definition 1 (Corruption Constraint). The corruption con-
straint is specified by the set

S = {a : ‖a‖p = ε and ‖a‖0 ≤ n}, (1)

where ‖ · ‖0 denotes the number of non-zero elements in a
vector and 1 ≤ n ≤ k denotes the maximum number of
corrupted parameters. ε is a small positive real number and
‖ · ‖p denotes the Lp-norm where p ≥ 1 such that ‖ · ‖p is a
valid distance in Euclidean geometry.

For example, the set S = {a : ‖a‖2 = ε} specifies that
the corruption should be on a hypersphere with a radius of ε
and no limit on the number of corrupted parameters.

Suppose ∆L(w,a;D) = L(w + a;D) − L(w;D) de-
notes the loss change. To evaluate the effect of parameter
corruption, it is most reasonable to consider the worst-case
scenario and thus, we propose the indicator as the maximum
loss change under the corruption constraints. The optimal
parameter corruption is defined accordingly.
Definition 2 (Indicator and Optimal Parameter Corruption).
The indicator ∆maxL(w, S,D) and the optimal parameter
corruption a∗ are defined as:

∆maxL(w, S,D) = max
a∈S

∆L(w,a,D), (2)

a∗ = arg max
a∈S

∆L(w,a,D). (3)

Let g denote ∂L(w;D)/∂w and H denote the Hessian ma-
trix; suppose ‖g‖2 = G > 0. Using the second-order Taylor
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Algorithm 1 Random Corruption

Require: Parameter vector w ∈ Rk, set of corruption constraints
S

1: Sample r ∼ N(0, 1)
2: Solve the random corruption ã according to Eq.(5)
3: Update the parameter vector w← w + ã

Algorithm 2 Gradient-Based Corruption

Require: Parameter vector w ∈ Rk, set of corruption constraints
S, loss function L and dataset D

1: Obtain the gradient g← ∂L(w;D)/∂w
2: Solve the corruption â in Eq.(10) with S and g
3: Update the parameter vector w← w + â

expansion, we estimate the loss change and the indicator:

∆L(w,a;D) = aTg+
1

2
aTHa+o(ε2) = f(a)+o(ε). (4)

Here, f(a) = aTg is a first-order estimation of ∆L(w,a;D)
and meanwhile the inner product of the parameter corrup-
tion a and the gradient g, based on which we maximize the
alternative inner product instead of initial loss function to
estimate the indicator.

We provide and analyze two methods to understand the
effect of parameter corruption, which estimate the value of
the indicator based on constructive, artificial, theoretical pa-
rameter corruptions. Comparing the two methods, the ran-
dom parameter corruption gives a Monte-Carlo estimation
of the indicator and the gradient-based parameter corruption
gives an infinitesimal estimation that can effectively capture
the worst case. Please refer to Appendix for detailed proofs
of propositions and theorems.

Random Corruption
We first analyze the random case. As we know, randomly
sampling a perturbation vector a does not necessarily con-
form to the constraint set S and it is complex to generate
corruption uniformly distributed in S as the generation is de-
termined by the shape of S and is not universal enough. To
eliminate the problem, we define the random parameter cor-
ruptions used in this estimation as maximizing an alternative
inner product aTr under the constraint, based on a random
vector r instead of the gradient g to ensure the randomness.
Definition 3 (Random Parameter Corruption and Monte–
Carlo Estimation). Given a randomly sampled vector r ∼
N(0, 1), a valid random corruption ã for a Monte-Carlo es-
timation of the indicator in the constraint set S, which has a
closed-form solution, is

ã = arg max
a∈S

aTr = ε

(
sgn(h)� |h|

1
p−1

‖|h|
1

p−1 ‖p

)
(5)

where h = topn(r). The topn(v) function retains top-n
magnitude of all |v| dimensions and set other dimensions to
0, sgn(·) denotes the signum function, | · | denotes the point-
wise absolute function, and (·)α denotes the point-wise α-
power function. The loss change with the random corruption
is a Monte-Carlo estimation of the indicator.

The procedure to derive the random corruption vector un-
der the Monte-Carlo estimation of the indicator is shown in
Algorithm 1. The correctness and randomness of the result-
ing corruption vector are assured and the theoretical results
are given in Appendix. Without losing generality, we discuss

the characteristics of the loss change caused by random cor-
ruption under a representative corruption constraint in The-
orem 1. The proof and further analysis are in Appendix.

Theorem 1 (Distribution of Random Corruption). Given
the constraint set S = {a : ‖a‖2 = ε} and a generated
random corruption ã by Eq.(5), which in turn obeys a uni-
form distribution on ‖ã‖2 = ε. The first-order estimation
of ∆maxL(w, S,D) and the expectation of the loss change
caused by random corruption is

∆maxL(w, S,D) = εG+ o(ε); (6)

E‖ã‖2=ε[∆L(w, ã;D)] = O

(
tr(H)

k
ε2
)
. (7)

Define η = |ãTg|/εG and η ∈ [0, 1], which is an estima-
tion of |∆L(w,ã,D)|/∆maxL(w,S,D), then the probability density
function pη(x) of η and the cumulative density P (η ≤ x)
function of η are

pη(x) =
2Γ(k2 )
√
πΓ(k−1

2 )
(1− x2)

k−3
2 ; (8)

P (η ≤ x) =
2xF1( 1

2 ,
3−k

2 ; 3
2 ;x2)

B(k−1
2 , 1

2 )
; (9)

where k denotes the number of corrupted parameters and
Γ(·),B(·, ·) andF1(·, ·; ·; ·) denote the gamma function, beta
function and hyper-geometric function, respectively.

Theorem 1 states that the expectation of loss change of
random corruption is an infinitesimal of higher order com-
pared to ∆maxL(w, S,D) when ε → 0. In addition, it is un-
likely for multiple random trials to induce the optimal loss
change corresponding to the indicator. For a deep neural net-
work, the number of corrupted parameters can be consider-
ably large. According to Eq.(8), η will be concentrated near
0. Thus, theoretically, it is not generally possible for the ran-
dom corruption to cause substantial loss changes in this cir-
cumstance, making it ineffective in finding vulnerability.

Gradient-Based Corruption

To arrive at the optimal parameter corruption that renders a
more accurate estimation of the proposed indicator, we fur-
ther propose a gradient-based method based on maximizing
the first-order estimation f(a) = aTg of the indicator.

Definition 4 (Gradient-Based Corruption and Estimation).
Maximizing the first-order estimation f(a) = aTg of the
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Dataset ImageNet (Acc ↑) CIFAR-10 (Acc ↑) PTB-LM (Log PPL ↓) PTB-Parsing (UAS ↑) De-En (BLEU ↑)

Base model ResNet-34 LSTM MLP Transformer

w/o corruption 72.5 ? 94.3 ? 4.25 ? 87.3 ? 35.33 ?

Approach Random Proposed Random Proposed Random Proposed Random Proposed Random Proposed

n=k, ε=10-4 ? 62.2 (-10.3) ? 93.3 (-1.0) ? ? ? ? ? 35.21 (-0.12)
n=k, ε=10-3 ? 22.2 (-50.3) ? 36.1 (-58.2) ? ? ? 80.6 (-6.7) ? 33.62 (-1.71)
n=k, ε=10-2 30.3 (-42.2) 0.1 (-72.4) 75.1 (-19.2) 10.0 (-84.3) ? 4.52 (+0.27) 79.8 (-7.5) 6.1 (-81.2) 34.82 (-0.51) 0.17 (-35.16)
n=k, ε=10-1 0.1 (-72.4) 0.1 (-72.4) 10.0 (-84.3) 10.0 (-84.3) 4.43 (+0.18) 13.25 (+9.00) 0.0 (-87.3) 0.0 (-87.3) 0.00 (-35.33) 0.00 (-35.33)
n=k, ε=1 0.1 (-72.4) 0.1 (-72.4) 10.0 (-84.3) 10.0 (-84.3) 32.21 (+27.96) 48.92 (+44.67) 0.0 (-87.3) 0.0 (-87.3) 0.00 (-35.33) 0.00 (-35.33)

n=100, ε=10-2 ? ? ? ? ? ? ? 64.6 (-22.7) ? ?
n=100, ε=10-1 ? 67.5 (-5.0) ? ? ? ? ? 11.0 (-76.3) ? 31.68 (-3.65)
n=100, ε=1 ? 0.1 (-72.4) ? ? ? ? 87.1 (-0.2) 0.0 (-87.3) 35.25 (-0.08) 0.00 (-35.33)
n=100, ε=101 0.2 (-72.3) 0.1 (-72.4) 77.1 (-17.2) 44.8 (-49.5) ? ? 31.9 (-55.4) 0.0 (-87.3) 11.58 (-23.75) 0.00 (-35.33)
n=100, ε=102 0.1 (-72.4) 0.1 (-72.4) 10.1 (-84.2) 9.6 (-84.7) 16.90 (+12.65) 23.55 (+19.30) 0.0 (-87.3) 0.0 (-87.3) 0.00 (-35.33) 0.00 (-35.33)

Table 1: Comparisons of gradient-based corruption and random corruption under the corruption constraint (L+∞), with further
study on the number n of parameters to be corrupted. Here, all parameters can be corrupted, that is, k stands for the total number
of model parameters and n = k means the number of changed parameters is not limited. ↑ means the higher value the better
accuracy and ↓ means the opposite. ? denotes scores close to the original score without corruption (difference less than 0.1).

indicator, the gradient-based parameter corruption â in S is

â = arg max
a∈S

aTg = ε

(
sgn(h)� |h|

1
p−1

‖|h|
1

p−1 ‖p

)
; (10)

f(â) = âTg = ε‖h‖ p
p−1

; (11)

where h = topn(g), other notations are used similarly
to Definition 3. The resultant corruption vector leads to a
gradient-based estimation of the indicator.

The procedure of the gradient-based method is summa-
rized in Algorithm 2. The error bound of the gradient-based
estimation is described in Theorem 2. The proof and further
analysis of computational complexity are in Appendix.
Theorem 2 (Error Bound of the Gradient-Based Estima-
tion). Suppose L(w;D) is convex and L-smooth with re-
spect to w in the subspace {w + a : a ∈ S}, where
S = {a : ‖a‖p = ε and ‖a‖0 ≤ n}.1 Suppose a∗ and â
are the optimal corruption and the gradient-based corrup-
tion in S respectively. ‖g‖2 = G > 0. It is easy to verify
that L(w + a∗;D) ≥ L(w + â;D) > L(w;D) . It can be
proved that the loss change of the gradient-based corruption
is the same order infinitesimal of that of the optimal param-
eter corruption:

∆maxL(w, S;D)

∆L(w, â;D)
= 1 +O

(
Lng(p)

√
kε

G

)
; (12)

where g(p) is formulated as g(p) = max{p−4
2p ,

1−p
p }.

Theorem 2 guarantees when perturbations to model pa-
rameters are small enough, the gradient-based corruption
can accurately estimate the indicator with small errors. In
Eq.(12), the numerator is the proposed indicator, which is
the maximum loss change caused by parameter corruption,

1Note that L is only required to be convex and L-smooth in a
neighbourhood of w, instead of the entire Rk.

and the denominator is the loss change with the parameter
corruption generated by the gradient-based method. As we
can see, when ε, the p-norm of the corruption vector, tends
to zero, the term O(·) will also tend to zero such that the ra-
tio becomes one, meaning the gradient-based method is an
infinitesimal estimation of the indicator.

Experiments
We first empirically validate the effectiveness of the pro-
posed gradient-based corruption compared to random cor-
ruption. Then, it is applied to evaluate the robustness of neu-
ral network parameters by scanning for vulnerability and
counteract parameter corruption via adversarial training.

Experimental Settings
We use four widely-used tasks including benchmark datasets
in CV and NLP and use diverse neural network architecture.
On the image classification task, the base model is ResNet-
34 (He et al. 2016), the datasets are CIFAR-10 (Torralba,
Fergus, and Freeman 2008) and ImageNet, and the evalua-
tion metric is accuracy. On the machine translation task, the
base model is Transformer provided by fairseq (Ott et al.
2019), the dataset is German-English translation dataset
(De-En) Ott et al. (2019); Ranzato et al. (2016); Wise-
man and Rush (2016), and the evaluation metric is BLEU
score. On the language modeling task, the base model is
LSTM following Merity, Keskar, and Socher (2017, 2018),
the dataset is the English Penn TreeBank (PTB-LM) (Mar-
cus, Santorini, and Marcinkiewicz 1993), and the evalua-
tion metric is Log Perplexity (Log PPL). On the dependency
parsing task, the base model is MLP following Chen and
Manning (2014), the dataset is the English Penn TreeBank
dependency parsing (PTB-Parsing) (Marcus, Santorini, and
Marcinkiewicz 1993), and the evaluation metric is Unla-
beled Attachment Score (UAS). For the detailed experimen-
tal setup, please refer to Appendix.
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Figure 3: Results of gradient-based corruption and random corruption under the corruption constraints (n = k). Results of
ResNet-34 are from CIFAR-10. Gradient-based corruption performs more effectively than the random corruption.

Validation of Gradient-Based Corruption
The comparative results between the gradient-based corrup-
tion and the random corruption are shown in Figure 3 and
Table 1. Figure 3 shows that parameter corruption under
the corruption constraint can result in substantial accuracy
degradation for different sorts of neural networks and the
gradient-based parameter corruption requires smaller pertur-
bation than the random parameter corruption. The gradient-
based corruption works for smaller corruption length and
causes more damage at the same corruption length. To
conclude, the gradient-based corruption effectively defects
model parameters with minimal corruption length compared
to the random corruption, thus being a viable and efficient
approach to find the parameter vulnerability.

Probing the Vulnerability of DNN Parameters
Here we use the indicator to probe the Vulnerability of DNN
Parameters. We use the gradient-based corruption on param-
eters from separated components and set n as the maximum
number of the corrupted parameters. We probe the vulnera-
bility of network parameters in terms of two natural struc-
tural characteristics of deep neural networks: the type, e.g.,
whether they belong to embeddings or convolutions, and the
position, e.g., whether they belong to lower layers or higher
layers. Due to limited space, the results of different layers in
neural networks and detailed visualization of the vulnerabil-
ity of different components are shown in Appendix.

Vulnerability in Terms of Parameter Types Figure 4 (a-
b) show the distinguished vulnerability of different selected
components in ResNet-34 and Transformer. Several obser-
vations can be drawn from the results: (1) Normalization
layers are prone to parameter corruption. The batch normal-
ization in ResNet-34 and the layer normalization in Trans-
former are most sensitive in comparison to other compo-
nents in each network. It is possible that since these compo-

nents adjust the data distribution, a slight change in scaling
or biasing could lead to systematic disorder in the whole net-
work. (2) Convolution layers are more sensitive to corrup-
tion than fully-connected layers. Since parameters in con-
volution, i.e., the filters, are repeatedly applied to the input
feature grids, they might exert more influence than parame-
ters in fully-connected layers that are only applied to the in-
puts once. (3) Embedding and attention layers are relatively
robust against parameter corruption. It is obvious that em-
beddings consist of word vectors and fewer word vectors are
corrupted if the corrupted number of parameters is limited,
thus scarcely affecting the model. The robustness of atten-
tion is intriguing and further experimentation is required to
understand its characteristics.

Vulnerability in Terms of Parameter Positions The il-
lustration of division of different layers and results of param-
eter corruption on different layers are shown in Figure 4 (c-
f). We can draw the following observations: (1) Lower layers
in ResNet-34 are less robust to parameter corruption. It is
generally believed that lower layers in convolutional neural
networks extract basic visual patterns and are very funda-
mental in classification tasks (Yosinski et al. 2014), which
indicates that perturbations to lower layers can fundamen-
tally hurt the whole model. (2) Upper layers in Transformer
Decoder are less robust to parameter corruption. From the
sequence-to-sequence perspective, the encoder layers en-
code the sequence from shallow semantics to deep semantics
and the decoder layers decode the sequence in a reversed or-
der. It means that the higher layers are responsible for the
choice of specific words and have a direct impact on the
generated sequence. For Transformer Encoder, the param-
eter corruption exhibits inconspicuous trends.

As we can see, the proposed indicator reveals several
problems that are rarely paid attention to before. Especially,
the results on normalization layers should provide verifica-
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Figure 4: Results of gradient-based corruption on (a-b) different components of ResNet-34 (ImageNet) and Transformer under
the corruption constraint (n = 10, L+∞-norm) and (c-f) different layers in ResNet-34 and Transformer (n = 100, L+∞-norm).
Conv: convolution; Emb: embedding; FC: fully-connected; Attn: attention; BN: batch normalization; LN: layer normalization.
ε is set to be 10 and 0.2 for ResNet-34 and Transformer, respectively. Warmer colors indicate significant accuracy degradation.

tion for the heuristic designs of future architecture.

Adversarial Corruption-Resistant Training
As shown by the probing results, the indicator can reveal
interesting vulnerability of neural networks, which leads to
poor robustness against parameter corruption. An important
question is what we could do about the discovered vulnera-
bility in practice, since it could be the innate characteristic of
the neural network components and cannot be eliminated in
design. However, if we can automatically drive the parame-
ters from the area with steep surroundings measured by the
indicator, we can obtain models that achieve natural balance
on accuracy and parameter robustness.

Adversarial Corruption-Resistant Loss
To this end, we propose the adversarial corruption-resistant
loss La to counteract parameter corruptions in an adversar-
ial way. The key idea is to routinely corrupt the parameters
and minimize both the induced loss change and the original
loss. Intuitively, the proposed method tries to keep the pa-
rameters away from the neighborhood where there are sheer
directions around, which means the parameters should be
situated at the center of a flattish basin in the loss landscape.

Concretely, given batched data B, virtual gradient-based
corruption â on parameter w, we propose to minimize both
the loss with corrupted parameter w+â and the original loss
by minimizing a new loss L∗(w;B):

L∗(w;B) = (1− α)L(w;B) + αL(w + â;B) (13)
≈ (1− α)L(w;B) + α[L(w;B) + f(â)] (14)
= L(w;B) + αf(â). (15)

According to Eq.(10), when S = {‖a‖p = ε}, f(â) can
be written as f(â) = ε‖g‖p/(p−1), where g = ∇wL(w;B),

which can be seen as a regularization term in the pro-
posed adversarial corruption-resistant training. We can see
that it actually serves as gradient regularization by simple
derivation. Therefore, we define the adversarial corruption-
resistant loss La(w;B) as

La(w;B) = L(w;B) + λ‖g‖p/(p−1) (16)

where La is equivalent to Eq.(15) when λ = αε. Alizadeh
et al. (2020) adopts the L1-norm of gradients as regulariza-
tion term to improve the robustness of model against quanti-
zation, which can be treated as the L+∞ bounded parameter
corruption. In our proposed universal framework, we adopt
the Lp/(p−1)-norm of gradients as regularization term to re-
sist the Lp-norm bounded parameter corruption.

Relations to Resistance against Data Perturbations
In the common L2 or L+∞ cases, our gradient regulariza-
tion term can be written as ‖g‖p/(p−1) = ‖g‖2 when p = 2,
and ‖g‖p/(p−1) = ‖g‖1 when p = +∞.

The formulation of the gradient regularization L(w;B) +
‖g‖1 (or ‖g‖2) is similar to the weight regularization
L(w;B) + ‖w‖1 (or ‖w‖2). Shaham, Yamada, and Negah-
ban (2015) indicates that L1 or L2 weight regularization
is equivalent to resist L+∞ and L2 data perturbations re-
spectively under some circumstances. Complementarily, we
show that L1 and L2 gradient regularization is equivalent to
resist L+∞ and L2 parameter corruptions, respectively.

Experiments
We conduct experiments on the above benchmark datasets to
validate that the proposed corruption-resistant training func-
tions as designed. For ImageNet, due to its huge size, we test
our corruption resistant training method on a subset of Im-
ageNet, the Tiny-ImageNet dataset. We find that optimizing
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Dataset Tiny-ImageNet (Acc ↑) CIFAR-10 (Acc ↑) PTB-LM (PPL ↓) PTB-Parsing (UAS ↑) De-En (BLEU ↑)

Base model ResNet-34 LSTM MLP Transformer

Approach ε Baseline Proposed ε Baseline Proposed ε Baseline Proposed ε Baseline Proposed ε Baseline Proposed

w/o corrupt. - 66.56 67.06 (+0.50) - 94.26 96.12 (+1.86) - 70.09 68.28 (-1.81) - 87.26 87.89 (+0.63) - 35.33 35.69 (+0.36)

Corrupt.

0.05 64.88 65.79 0.05 93.20 95.65 2 4.28 4.24 0.005 86.74 87.67 0.5 31.68 34.84
0.1 60.70 63.47 0.1 89.84 94.59 5 4.43 4.24 0.01 85.32 87.26 0.75 22.13 33.58
0.2 41.79 52.51 0.2 71.44 87.92 10 4.94 4.24 0.05 72.32 82.06 1 11.17 31.25
0.5 1.07 7.92 0.5 13.77 21.42 20 6.45 4.27 0.1 61.80 73.19 1.25 3.47 24.47
1 0.55 1.26 1 10.00 10.94 50 12.11 4.62 0.2 49.46 57.73 1.5 1.56 14.91

Table 2: Results of the proposed corruption-resistant training, which not only improves the accuracy without corruption but also
enhances the robustness against corruption. In parameter corruptions (n = k, L2-norm), all parameters can be corrupted.

L∗ in Eq.(13) directly instead of adopting the gradient reg-
ularization term can further improve the accuracy on some
tasks. Therefore, we sometimes adopt a variant of La by di-
rectly optimizing L∗ in Eq.(13). Detailed experimental set-
tings and supplemental results are reported in Appendix.

In Table 2, we can see that incorporating virtual gradient-
based corruptions into adversarial training can help improve
both the test accuracy and the robustness of neural networks
against parameter corruption. In particular, we can see that
parameters that are resistant to corruption, may entail better
generalization, reflected as higher accuracy on the test set.

We also find that the accuracy of the uncorrupted neu-
ral network can often be improved substantially with small
magnitude of virtual parameter corruptions. However, when
the magnitude of virtual parameter corruptions grows too
large, virtual parameter corruptions will harm the learning
process and the accuracy the uncorrupted neural network
will drop. In particular, the accuracy can be treated as a uni-
modal function of the magnitude of virtual parameter cor-
ruptions approximately, whose best configuration can be de-
termined easily.

Related Work
Vulnerability of Deep Neural Networks Existing studies
concerning vulnerability or robustness of neural networks
mostly focus on generating adversarial examples (Goodfel-
low, Shlens, and Szegedy 2015) and adversarial training al-
gorithms given adversarial examples in the input data (Zhu
et al. 2019). Szegedy et al. (2014) first proposed the con-
cept of adversarial examples and found that neural net-
work classifiers are vulnerable to adversarial attacks on input
data. Following that study, different adversarial attack algo-
rithms (Moosavi-Dezfooli, Fawzi, and Frossard 2016; Ku-
rakin, Goodfellow, and Bengio 2017) were developed. An-
other class of studies (Dai, Chen, and Li 2019; Chen et al.
2017; Gu et al. 2019; Kurita, Michel, and Neubig 2020)
known as backdoor attacks injected vulnerabilities to neu-
ral networks by data poisoning, which requires access to the
training process of the neural network models.

Adversarial Training Other related work on adversarial
examples aimed to design adversarial defense algorithms to
evaluate and improve the robustness of neural networks over
adversarial examples (Carlini and Wagner 2017; Madry et al.

2018; Zhu et al. 2019). As another application of adversar-
ial training, GAN (Goodfellow et al. 2014) has been widely
used in multiple machine learning tasks, such as computer
vision (Ma et al. 2017; Vondrick, Pirsiavash, and Torralba
2016), natural language processing (Yang et al. 2017; Dai
et al. 2017) and time series synthesis (Donahue, McAuley,
and Puckette 2018; Esteban, Hyland, and Rätsch 2017).

Changes in Neural Network Parameters Existing stud-
ies also concern the influence of noises or changes in neural
network parameters by training data poisoning (Dai, Chen,
and Li 2019; Chen et al. 2017; Gu et al. 2019), bit flip-
ping (Rakin, He, and Fan 2020), compression (Arora et al.
2018) or quantization (Nagel et al. 2019; Weng et al. 2020).
Lan et al. (2019) proposes the Loss Change Allocation indi-
cator (LCA) to analyze the allocation of loss change parti-
tioned to different parameters.

To summarize, existing related work mostly focuses on
adversarial examples and its adversarial training. However,
we focus on parameter corruptions of neural networks so as
to find vulnerable components of models and design an ad-
versarial corruption-resistant training algorithm to improve
the parameter robustness.

Conclusion
To better understand the vulnerability of deep neural net-
work parameters, which is not well studied before, we pro-
pose an indicator measuring the maximum loss change when
a small perturbation is applied to model parameters to eval-
uate the robustness against parameter corruption. Intuitively,
the indicator describes the steepness of the loss surface
around the parameters. We show that the indicator can be
efficiently estimated by a gradient-based method and ran-
dom parameter corruptions can hardly induce the maximum
degradation, which is validated both theoretically and em-
pirically. In addition, we apply the proposed indicator to sys-
tematically analyze the vulnerability of different parameters
in different neural networks and reveal that the normaliza-
tion layers, which are important in stabilizing the data dis-
tribution in deep neural networks, are prone to parameter
corruption. Furthermore, we propose an adversarial learning
approach to improve the parameter robustness and show that
parameters that are resistant to parameter corruption embody
better robustness and accuracy.
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Ethics Statement
This paper presents a study on parameter corruptions in
deep neural networks. Despite the promising performance in
benchmark datasets, the existing deep neural network mod-
els are not robust in real-life scenarios and run the risks of
adversarial examples, backdoor attacks (Dai, Chen, and Li
2019; Chen et al. 2017; Gu et al. 2019; Kurita, Michel, and
Neubig 2020), and the parameter corruption issues.

Unlike adversarial examples and backdoor attacks, pa-
rameter corruptions have drawn limited attention in the com-
munity despite its urgent need in areas such as hardware
neural networks and software neural networks applied in a
difficult hardware environment. Our work takes a first step
towards the parameter corruptions and we are able to investi-
gate the robustness of different model parameters and reveal
vulnerability of deep neural networks. It provides fundamen-
tal guidance for applying deep neural networks in the afore-
mentioned scenarios. Moreover, we also propose an adver-
sarial corruption-resistant training to improve the robustness
of neural networks, making such models available to many
more critical applications.

On the other hand, the method used in this work to es-
timate the loss change could also be taken maliciously to
tamper with the neural network applied in business. How-
ever, such kind of “attack” requires access to the storage
of parameters, meaning that the system security would have
been already breached. Still, it should be recommended that
certain measures are taken to verify the parameters are not
changed or check the parameters are corrupted in actual ap-
plications.
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