
Ordered Counterfactual Explanation by Mixed-Integer Linear Optimization

Kentaro Kanamori,1 Takuya Takagi, 2 Ken Kobayashi, 2,3

Yuichi Ike, 2 Kento Uemura, 2 Hiroki Arimura 1

1Hokkaido University,
2Fujitsu Laboratories Ltd.,

3Tokyo Institute of Technology,
{kanamori, arim}@ist.hokudai.ac.jp, {takagi.takuya, ken-kobayashi, ike.yuichi, uemura.kento}@fujitsu.com

Abstract
Post-hoc explanation methods for machine learning models
have been widely used to support decision-making. One of
the popular methods is Counterfactual Explanation (CE),
also known as Actionable Recourse, which provides a user
with a perturbation vector of features that alters the predic-
tion result. Given a perturbation vector, a user can interpret it
as an “action” for obtaining one’s desired decision result. In
practice, however, showing only a perturbation vector is often
insufficient for users to execute the action. The reason is that
if there is an asymmetric interaction among features, such as
causality, the total cost of the action is expected to depend on
the order of changing features. Therefore, practical CE meth-
ods are required to provide an appropriate order of changing
features in addition to a perturbation vector. For this purpose,
we propose a new framework called Ordered Counterfactual
Explanation (OrdCE). We introduce a new objective function
that evaluates a pair of an action and an order based on feature
interaction. To extract an optimal pair, we propose a mixed-
integer linear optimization approach with our objective func-
tion. Numerical experiments on real datasets demonstrated
the effectiveness of our OrdCE in comparison with unordered
CE methods.

Introduction
Complex machine learning models such as neural networks
and tree ensembles are widely used in critical decision-
making tasks (e.g., medical diagnosis and loan approval).
Thus, post-hoc methods for extracting explanations from
an individual prediction of these models have been attract-
ing much attention for the last few years (Ribeiro, Singh,
and Guestrin 2016; Lundberg and Lee 2017; Koh and Liang
2017; Ribeiro, Singh, and Guestrin 2018). To provide a user
with a better insight into future improvement, a post-hoc
method needs to show not only why undesirable predictions
are given, but also how to act to obtain a desired prediction
result (Doshi-Velez and Kim 2017; Miller 2019).

One of the post-hoc methods that show an action
to obtain a desired outcome is Counterfactual Explana-
tion (CE) (Wachter, Mittelstadt, and Russell 2018), also
known as Actionable Recourse (Ustun, Spangher, and Liu
2019). Consider an example of a synthetic credit loan ap-
proval dataset shown in Figure 1. Imagine a situation that a

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

user receives an undesired prediction H(x̂) 6= y? for a tar-
get label y? from a trained model H , which means denial of
credit loan, on an instance x̂ related to one’s current liveli-
hood. We want to provide the user with advice a on changes
of features such as “Income” and “JobSkill” so that the user
can change one’s current status x̂ to obtain the desired out-
come H(x̂+ a) = y? (Ustun, Spangher, and Liu 2019).

To achieve this goal, most of the existing CE methods find
a perturbation vector a? ∈ A, called an action, as an optimal
solution of the following optimization problem:

a? := arg min
a∈A

Cdist(a | x̂)

subject to H(x̂+ a) = y?,

where A is a set of feasible perturbation vectors, and Cdist

is a cost function that measures the required efforts of
a, such as TLPS (Ustun, Spangher, and Liu 2019) and
DACE (Kanamori et al. 2020). Table 1 presents examples of
actions extracted from a logistic regression classifier trained
on our credit approval dataset in Figure 1. A user can obtain
one’s desired outcome by changing each feature according
to the suggested perturbation vectors in Table 1.

In practice, however, showing only a perturbation vector
a? is often insufficient for users to execute the action due to
interaction among features (Poyiadzi et al. 2020). In the pre-
vious example, as shown in the causal DAG in Figure 1(b),
we have an asymmetric interaction “JobSkill”→ “Income”,
which means that increasing one’s “JobSkill” has a positive
effect on increasing “Income” while the opposite does not.
From these observations, we see that it is more reasonable to
increase first “JobSkill” and then “Income” than the reverse
order. Thus, practical CE methods are required to provide
an appropriate order of changing features in addition to a
perturbation vector a?.

To achieve this requirement, we propose a novel CE
framework that returns a pair (a?, σ?), called an ordered ac-
tion, of a perturbation vector a? and a permutation σ? of
features that advises a user to change features in that order.
We assume that the feature interaction is represented by an
interaction matrixM , whose element indicates the linear in-
teraction between two features, such as correlations, causal
effects, or given by some prior knowledge. Roughly speak-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11564



Name Range

x1 ”Education” 1, . . . , 5
x2 ”JobSkill” 1, . . . , 10
x3 ”Income” 10, . . . , 100
x4 ”WorkPerDay” 4, . . . , 10
x5 ”HealthStatus” 1, . . . , 10

1

(a) Features

Education

JobSkill

Income

WorkPerDay

HealthStatus

1.00

6.00 4.00 −0.50

(b) Causal DAG

Figure 1: Features and the causal DAG of our synthetic
credit loan approval dataset. The task is to predict whether
an individual’s credit loan will be approved. We labeled
each individual depending on one’s values of “Income” and
“HealthStatus”.

ing, we consider the following optimization problem:

(a?, σ?) := arg min
a∈A,σ∈Σ

Cdist(a | x̂) + γ · Cord(a, σ |M)

subject to H(x̂+ a) = y?,

where Cord is a new cost function for determining an order
of changing features, Σ is the set of all permutations of the
features perturbed by a, and γ > 0 is a trade-off parameter.

Our Contributions
Our goal is to extend CE framework so that it provides an or-
dered action by taking into account feature interaction. Our
contributions are summarized as follows:
1. As a new framework for CE, we propose Ordered Coun-

terfactual Explanation (OrdCE) that provides an ordered
action, i.e., a pair of a perturbation vector and an order of
changing features. For that purpose, we introduce a new
objective function that evaluates the cost of an ordered ac-
tion based on a given interaction matrix M .

2. We formulate the problem of finding an optimal ordered
action as a mixed-integer linear optimization (MILO)
problem, which can be efficiently solved by modern
MILO solvers such as CPLEX (IBM 2018). Our for-
mulation works on popular classifiers, such as linear
models, tree ensembles, and multilayer perceptrons. In
addition, the formulation can be combined with any
existing cost function used in MILO-based CE meth-
ods, such as TLPS (Ustun, Spangher, and Liu 2019) or
DACE (Kanamori et al. 2020).

3. We conducted numerical experiments on real datasets and
compared the performance of our OrdCE with previous
CE methods. We confirmed that (i) our MILO approach
obtained better ordered actions than baselines within prac-
tical computation time, and (ii) the obtained orders were
reasonable from the perspective of feature interaction.
Table 2 presents examples of ordered actions extracted by

OrdCE on the credit approval dataset in Figure 1. These or-
ders of changing features are consistent with the causal DAG
shown in Figure 1(b). For example, the ordered action ex-
tracted by OrdCE + DACE indicates increasing “WorkPer-
Day” before “Income”. This order is more reasonable than

Method Action
“Income” “WorkPerDay” “HealthStatus”

DACE +4 +1 +3

TLPS +5 0 0

Table 1: Examples of actions extracted by the existing CE
methods on the credit approval dataset in Figure 1.

Method Order Feature Action

OrdCE + DACE
1st “HealthStatus” +3
2nd “WorkPerDay” +1
3rd “Income” +4

OrdCE + TLPS 1st “JobSkill” +1
2nd “Income” +6

Table 2: Examples of ordered actions extracted by our
OrdCE on the credit approval dataset in Figure 1.

its reverse order because “WorkPerDay” has a positive effect
on “Income”. In addition, in the result of OrdCE + TLPS,
the total number of the changing features increases from
that of the unordered TLPS in Table 1. However, because
“JobSkill” has an effect 6.00 on “Income” as shown in Fig-
ure 1(b), changing “JobSkill” by +1 naturally causes an in-
crease of “Income” by +6. Thus, it is expected that the user
completes the ordered action suggested by OrdCE + TLPS
with only changing “JobSkill” at the 1st step. Our OrdCE
can find such an appropriate order by optimizing a perturba-
tion vector and an order simultaneously. In summary, we see
that our method presents a reasonable ordered action, which
helps a user act to obtain the desired outcome.

Related Work
The existing CE methods can be categorized into gradient-
based (Wachter, Mittelstadt, and Russell 2018; Moore, Ham-
merla, and Watkins 2019; Karimi et al. 2020b), autoen-
coder (Dhurandhar et al. 2018; Mahajan, Tan, and Sharma
2019), SAT (Karimi et al. 2020a), or mixed-integer linear
optimization (MILO) (Cui et al. 2015; Ustun, Spangher, and
Liu 2019; Russell 2019; Kanamori et al. 2020). Since our
cost function is non-differentiable due to the discrete nature
of a permutation σ over features, we focus on MILO-based
methods, which can directly handle such functions.

Most of CE methods provide only a perturbation vector
as an action. To the best of our knowledge, FACE (Poyiadzi
et al. 2020) and OAS (Ramakrishnan, Lee, and Albarghouthi
2020) are the only exceptions that consider a sequence of ac-
tions. FACE provides a sequence of training instances as a
path from a given instance to the target instances in a neigh-
borhood graph. However, FACE does not take into account
feature interaction and not determine the execution order of
features. On the other hands, OAS provides a sequence of
actions, which is related to classical planning (Nau, Ghallab,
and Traverso 2004). There, the costs of candidate actions are
static and irrelevant to their order, while in OrdCE, the costs
dynamically depend on the previously chosen actions due to

11565



their interaction. It is also noteworthy that (Bertsimas et al.
2019) studied how to determine an order of features to im-
prove explainability in linear regression.

Preliminaries
For a positive integer n ∈ N, we write [n] := {1, . . . , n}.
For a proposition ψ, I [ψ] denotes the indicator of ψ, i.e.,
I [ψ] = 1 if ψ is true, and I [ψ] = 0 if ψ is false.

Throughout this work, we consider a binary classification
problem as a prediction task, which is sufficient for CE. For
a multi-class classification problem, we can reduce it to a
binary one between the target class and the other classes.
We denote input and output domains by X = X1 × · · · ×
XD ⊆ RD and Y = {−1,+1}, respectively. An instance is
a vector x = (x1, . . . , xD) ∈ X . A classifier is a function
H : X → Y .

Additive Classifiers
In this paper, we focus on CE with additive classi-
fiers (AC) H : X → Y expressed in the following additive
form (Hastie, Tibshirani, and Friedman 2009):

H(x) = sgn

(∑T

t=1
wt · ht(x)− b

)
,

where T ∈ N is the total number of base learners, ht : X →
R is a base learner, wt ∈ R is a weight value of ht for t ∈
[T ], and b ∈ R is an intercept.

Linear Models Linear models (LM), such as Logistic Re-
gression and Linear Support Vector Machines, are one of
the most popular classifiers (Hastie, Tibshirani, and Fried-
man 2009). We remark that an LM is a special case of AC
such that T = D and hd(x) = xd for d ∈ [D].

Tree Ensembles Tree ensembles (TE), such as Random
Forests (Breiman 2001), are renowned for their high predic-
tion performances in machine learning competitions. Each
base learner ht of a TE is a decision tree, which is a clas-
sifier consisting of a set of if-then-else rules expressed in
the form of a binary tree. A decision tree ht : X → Y
with Lt leaves represents a partition rt,1, . . . , rt,Lt

of the
input domain X (Hastie, Tibshirani, and Friedman 2009).
Then, it can be expressed as the linear combination ht(x) =∑Lt

l=1 ŷt,l · I [x ∈ rt,l], where ŷt,l ∈ Y is a predictive label
of the leaf l ∈ [Lt].

Multilayer Perceptrons Multilayer perceptrons (MLP),
or neural networks, have become increasingly more com-
mon over the past decade (Goodfellow, Bengio, and
Courville 2016). For simplicity, we consider two-layer
ReLU networks, i.e., MLP with one hidden layer and the
rectified linear unit (ReLU) function g(x) = max(0, x)
as an activation function. Our proposed methods presented
later can be extended to general multilayer ReLU networks.
In MLP, each base learner ht is an output of a neuron in its
hidden layers with the ReLU function g. It can be expressed
as ht(x) = g(w(t) ·x+b(t)), where w(t) ∈ RD and b(t) ∈ R
are weight values and an intercept with respect to the t-th
neuron in the hidden layer, respectively.

Problem Statement
Action and Ordered Action
Let H : X → Y and x̂ = (x̂1, . . . , x̂D) ∈ X be a clas-
sifier and a given instance such that H(x̂) = −1, respec-
tively. We define an action for x̂ as a perturbation vec-
tor a ∈ RD such that H(x̂ + a) = +1. An action set
A = A1 × · · · × AD is a finite set of feasible actions such
that 0 ∈ Ad and Ad ⊆ {ad ∈ R | x̂d + ad ∈ Xd} for
d ∈ [D]. We can determine each Ad depending on the type
and constraint of the feature d ∈ [D]. For example, a feature
representing “Age” must be a positive integer and cannot be
decreased. We define the perturbing features of an action a
as supp(a) := {d ∈ [D] | ad 6= 0}. For K ∈ [D], we write
A≤K := {a ∈ A | |supp(a)| ≤ K}.

We introduce an ordered action for OrdCE. An ordered
action is a pair of a perturbation vector a ∈ A=K for some
K ∈ [D] and a permutation σ = (σ1, . . . , σK) ∈ [D]K of
the perturbing features supp(a), which suggests perturbing
the features supp(a) in that order. We denote by Σ(a) the
set of all permutations of supp(a), and call σ ∈ Σ(a) a
perturbing order of a.

Interaction Matrix
Practically, causal relationships are usually unknown in ad-
vance, and we need to estimate them. Since linear causal
models can be estimated properly in practical settings where
hidden common causes are included (Shimizu et al. 2011),
we assume the feature interaction is linear. We assume that
the feature interaction is represented by a matrix M =
(Mi,j)1≤i,j≤D, which we call an interaction matrix. Each
element Mi,j represents the linear interaction from i to j,
that is, when we perturb a feature xi to xi + ai, then xj is
perturbed to xj + Mi,jai. We can compute Mi,j explicitly
with causal effect estimation methods (Pearl 2009; Shimizu
et al. 2011; Janzing et al. 2013) or some prior knowledge of
domain experts.

From a given causal DAG estimated by, for example,
DirectLiNGAM (Shimizu et al. 2011; Hyvärinen and Smith
2013), we can compute an interaction matrix as follows. Let
B = (Bi,j)1≤i,j≤D be the adjacency matrix of the estimated
causal DAG. By reordering the order of the nodes, we can
assume that B is a strictly upper triangular matrix. Here,
LiNGAM considers a model expressed the following struc-
tural equations: xj =

∑
i∈paB(j)Bi,jxi + ej , where ej is a

continuous random variable that has non-Gaussian distribu-
tions and is independent of each other, and paB(j) ⊆ [D] is
the set of features that are the ancestors of j on the estimated
causal DAG. Then, we obtain

M = I +
∑D−1

k=1
Bk.

Cost Function
As a score to evaluate the required effort of an ordered action
(a, σ), we introduce a new cost function COrdCE as follows.
Given an input instance x̂ ∈ X , an interaction matrix M ,
and a trade-off parameter γ ≥ 0, we define COrdCE for a

11566



pair of a perturbation a ∈ A and its order σ ∈ Σ(a) as

COrdCE(a, σ | x̂,M, γ)

:= Cdist(a | x̂) + γ · Cord(a, σ |M),

where Cdist and Cord are distance-based and ordering cost
functions, respectively. The former evaluates the required ef-
fort of a perturbation vector a, and the latter determines a
perturbing order σ of a.

Distance-based Cost Function As with the existing CE
methods, we utilize a distance-based cost function Cdist to
evaluate the required effort of an entire perturbation a. For
simplicity, we assume Cdist as the following form:

Cdist(a | x̂) =
∑D

d=1
distd(ad | x̂d),

where distd : Ad → R≥0 is a cost measure of the feature d
that evaluates the effort to change x̂d to x̂d + ad, such as the
total-log percentile shift (Ustun, Spangher, and Liu 2019).
Note that our optimization approach can adapt to other types
of existing cost functions, such as `1-Mahalanobis’ dis-
tance (Kanamori et al. 2020). While these useful distance-
based cost functions have been proposed, they do not deal
with a perturbing order σ ∈ Σ(a).

Ordering Cost Function To extend CE so as to deal with
a perturbing order σ = (σ1, . . . , σK) ∈ Σ(a), we introduce
an ordering cost function Cord as the following form:

Cord(a, σ |M) =
∑K

k=1
cost(k)(aσ1,...,σk

|M),

where aσ1,...,σk
:= (aσ1

, . . . , aσk
) and cost(k) is a cost for

each k-th perturbation aσk
. We define cost(k) as a func-

tion that depends not only on the perturbation of σk at
the k-th step but also on the previously perturbed features
σ1, . . . , σk−1 ∈ supp(a) since the actual amount of a per-
turbation of a feature is affected by the values of other fea-
tures that interact with it. Note that we assume that the pre-
viously perturbed features are unaffected by the following
perturbation, which is based on the intervention in causal
models (Pearl 2009).

To define cost(k), we introduce a parameter ∆(k) =
∆(k)(aσ1,...,σk

| M), called the actual perturbation, as the
amount of change on xσk

that we actually need to obtain a
desired perturbation. Then, the resulting perturbation aσk

is
equal to the sum of ∆(k) and the effect of the previous per-
turbations ∆(1), . . . ,∆(k−1). Formalizing this idea, we have
the following conditions on ∆(k) for k = 1, 2, 3:

aσ1
= ∆(1),

aσ2 = ∆(2) +Mσ1,σ2 ·∆(1),

aσ3
= ∆(3) +Mσ2,σ3

·∆(2) +Mσ1,σ3
·∆(1).

Generally, we have aσk
= ∆(k) +

∑k−1
l=1 Mσl,σk

·∆(l). For
any k ∈ [K], we inductively obtain

∆(k)(aσ1,...,σk
|M)

= aσk
−
∑k−1

l=1
Mσl,σk

·∆(l)(aσ1,...,σl
|M).

By using ∆(k), we define cost(k) as follows:

cost(k)(aσ1,...,σk
|M) :=

∣∣∣∆(k)(aσ1,...,σk
|M)

∣∣∣ .
In practice, since each feature has different scale, we mul-
tiply each ∆(k) by a scaling factor sσk

> 0, such as the
inverse of its standard deviation.

Problem Definition
Our aim is to find an ordered action (a, σ) that minimizes
the cost COrdCE. This problem can be defined as follows.
Problem 1. Given an additive classifier H : X → Y , an
input instance x̂ ∈ X such that H(x̂) = −1, an action set
A, an interaction matrix M ∈ RD×D, K ∈ [D], and γ ≥ 0,
find an ordered action (a, σ) that is an optimal solution for
the following optimization problem:

minimize
a∈A≤K ,σ∈Σ(a)

COrdCE(a, σ | x̂,M, γ)

subject to H(x̂+ a) = +1.

By solving the above optimization problem, we obtain an
ordered action (a, σ) that accords with feature interaction.

Concrete Examples
To study the cost function Cord and objective function
COrdCE, we present concrete examples to observe behavior
of these functions in the same setting as Introduction. Our
synthetic credit loan approval dataset consists of five fea-
tures x1, . . . x5 presented in Figure 1. As an interaction ma-
trix, we take the matrix M whose element Mi,j represents
the average causal effect from a feature i to j. As described
previously, M = (Mi,j)1≤i,j≤5 is calculated from the adja-
cency matrix of the causal DAG in Figure 1(b) as follows:

M =



1 2 3 4 5

1 1 1 6 0 0

2 0 1 6 0 0

3 0 0 1 0 0

4 0 0 4 1 −0.5

5 0 0 0 0 1

.
In the examples below, we use Cord with scaling factors
sd > 0 (d ∈ [D]):

Cord(a, σ |M) =
∑K

k=1
sσk
·
∣∣∣∆(k)(aσ1,...,σk

|M)
∣∣∣ .

First, we show an example to observe behavior of the or-
dering cost function Cord in the following Example 1.
Example 1. Consider a perturbation a = (0, 0, 4, 1, 3) and
its perturbing orders σ = (4, 3, 5) and σ◦ = (5, 4, 3). We
compare the values of our ordering cost function Cord for
the two ordered actions (a, σ) and (a, σ◦).

For (a, σ), the actual perturbations ∆(k) can be calculated
as follows:

∆(1) = 1− 0 = 1,

∆(2) = 4−M4,3 ·∆(1) = 0,

∆(3) = 3−M3,5 ·∆(2) −M4,5 ·∆(1) = 3.5.

11567



Thus, the value of Cord for (a, σ) can be calculated as

Cord(a, σ |M) = sσ1 · |∆(1)|+ sσ2 · |∆(2)|+ sσ3 · |∆(3)|
= s4 + 3.5s5.

Similarly, the value of Cord for (a, σ◦) is

Cord(a, σ◦ |M) = sσ◦1 · |∆
(1)|+ sσ◦2 · |∆

(2)|+ sσ◦3 · |∆
(3)|

= s4 + 3s5.

Because sd > 0 for all d ∈ {1, . . . , 5}, Cord(a, σ |M) >
Cord(a, σ◦ |M) holds. 2

In the above example, the ordered action (a, σ) sug-
gests increasing the values of “WorkPerDay”, “Income”,
and “HealthStatus” in this order. The other ordered ac-
tion (a, σ◦) suggests increasing the values of “HealthSta-
tus”, “WorkPerDay”, and “Income” in this order. Since
“WorkPerDay” has a negative causal effect to “HealthSta-
tus”, the perturbing order σ◦ is more reasonable than σ from
the perspective of the feature interaction. The above exam-
ple indicates that we can obtain an appropriate order of its
perturbing features by minimizing Cord.

Next, we show an example to observe behavior of the ob-
jective cost function COrdCE in the following Example 2.
Example 2. Consider the same setting as Example 1 and
two feasible ordered actions (a, σ) and (a◦, σ◦) with

a = (0, 0, 6, 0, 0), σ = (3),
a◦ = (0, 1, 6, 0, 0), σ◦ = (2, 3).

We compare the values of our objective functionCOrdCE for
the two ordered actions (a, σ) and (a◦, σ◦).

For (a, σ), the actual perturbations ∆(1) can be calculated
as ∆(1) = 6 − 0 = 6. Thus, the value of COrdCE for (a, σ)
can be calculated as

COrdCE(a, σ | x̂,M, γ) = c3 + γ · (sσ1
· |∆(1)|)

= c3 + γ · 6s3,

where c3 = dist3(6 | x̂3) > 0.
Similarly, the value of COrdCE for (a◦, σ◦) is

COrdCE(a◦, σ◦ | x̂,M, γ)

= c2 + c3 + γ · (sσ◦1 · |∆
(1)|+ sσ◦2 · |∆

(2)|)
= c2 + c3 + γ · s2,

where c2 = dist2(1 | x̂2) > 0.
Now we assume 6s3 − s2 > 0. Then, we obtain

COrdCE(a, σ | x̂,M, γ) > COrdCE(a◦, σ◦ | x̂,M, γ)

⇐⇒ γ · (6s3 − s2)− c2 > 0

⇐⇒ γ >
c2

6s3 − s2
.

Hence, if 6s3 − s2 > 0 and γ > c2/(6s3 − s2), then
COrdCE(a, σ | x̂,M, γ) > COrdCE(a◦, σ◦ | x̂,M, γ). 2

In the above example, the ordered action (a, σ) suggests
increasing only “Income”. The other ordered action (a◦, σ◦)
suggests increasing the values of “JobSkill” and “Income”
in this order. The total number of the changing features of

the latter ordered action is greater than that of the former.
However, a user is expected to complete the latter ordered
action with only changing “JobSkill” since increasing one’s
“JobSkill” has a positive effect on increasing “Income” as
mentioned in Introduction. From the above example, we see
that we can adjust a trade-off between the required effort of
an entire perturbation a and each step ∆(k) by tuning the
parameter γ.

Optimization Framework
Basic Constraints
For d ∈ [D], we set Ad = {ad,1, . . . , ad,Id} and ad,1 = 0.
First, we introduce binary variables πd,i ∈ {0, 1} for d ∈
[D] and i ∈ [Id], which indicate that ad,i ∈ Ad is selected
(πd,i = 1) or not (πd,i = 0) as in the previous MILO-based
methods (Ustun, Spangher, and Liu 2019; Kanamori et al.
2020). Then, πd,i must satisfy the following constraints:∑Id

i=1
πd,i = 1, ∀d ∈ [D]. (1)

By using πd,i, we can express a perturbation for each feature
d as ad =

∑Id
i=1 ad,i · πd,i. Note that πd,1 = 1 indicates that

a feature d is not perturbed since ad,1 = 0.
To express an order of perturbing features, we introduce

binary variables π(k)
d,i ∈ {0, 1} for d ∈ [D], i ∈ [Id], and

k ∈ [K], which indicate ad,i ∈ Ad is selected as the k-th
perturbation; that is, π(k)

d,i = 1 if ad,i ∈ Ad is selected in the

k-th step, and π(k)
d,i = 0 otherwise. Then, π(k)

d,i must satisfy
the following constraints:

πd,i =
∑K

k=1
π

(k)
d,i , ∀d ∈ [D], ∀i ∈ [Id]. (2)

We also introduce binary variables σk,d for k ∈ [K] and
d ∈ [D] that indicate whether the feature d is perturbed in
the k-th step. We impose the following constraints on σk,d:

σk,d = 1− π(k)
d,1 , ∀k ∈ [K], ∀d ∈ [D], (3)∑K

k=1
σk,d ≤ 1, ∀d ∈ [D], (4)∑D

d=1
σk,d ≤ 1, ∀k ∈ [K], (5)∑D

d=1
σk,d ≥

∑D

d=1
σk+1,d, ∀k ∈ [K − 1]. (6)

Constraint (4) allows that we can perturb each feature at
most once. Constraint (5) imposes that we can perturb at
most one feature in each step. Constraint (6) is a symmetry
breaking constraint on σk,d.

Objective Function
Our objective function COrdCE consists of Cdist and Cord,
which we express with the program variables π(k)

d,i and σk,d.

Distance-based Cost Function From our assumption of
Cdist, it can be expressed as follows:

Cdist(a | x̂) =
∑D

d=1

∑Id

i=1

∑K

k=1
cd,i · π(k)

d,i ,

11568



where cd,i is a constant value such that cd,i = distd(ad,i |
x̂d). Note that our MILO formulation can adapt to other ex-
isting cost functions such as DACE (Kanamori et al. 2020)
and SCM (Mahajan, Tan, and Sharma 2019).

Ordering Cost Function Since Cord is non-linear due to
a permutation σ, we need to express it by linear constraints
of the variables. We introduce variables ζk for k ∈ [K] such
that ζk = |∆(k)|. Then, Cord can be expressed as follows:

Cord(a, σ |M) =
∑K

k=1
ζk.

Moreover, for k ∈ [K] and d ∈ [D], we introduce variables
δk,d ∈ R to express ζk = |

∑D
d=1 δk,d|. Then, δk,d must

satisfy δk,d = ∆(k) if σk,d = 1, and δk,d = 0 if σk,d = 0.
We can linearize these non-linear constraints as follows:

δk,d ≥
∑Id

i=1
ad,i · π(k)

d,i − εk,d − Uk,d · (1− σk,d),

∀k ∈ [K], ∀d ∈ [D], (7)

δk,d ≤
∑Id

i=1
ad,i · π(k)

d,i − εk,d − Lk,d · (1− σk,d),

∀k ∈ [K], ∀d ∈ [D], (8)
Lk,d · σk,d ≤ δk,d ≤ Uk,d · σk,d, ∀k ∈ [K], ∀d ∈ [D], (9)

εk,d =
∑k−1

l=1

∑D

d′=1
Md′,d · δl,d′ ,

∀k ∈ [K], ∀d ∈ [D], (10)

− ζk ≤
∑D

d=1
δk,d ≤ ζk, ∀k ∈ [K], (11)

where εk,d is an auxiliary variable such that εk,d =∑k−1
l=1 Mσl,d · ∆(l) for k ∈ [K] and d ∈ [D]. The con-

stant values Lk,d and Uk,d are the lower and upper bounds
of δk,d. These values can be recursively computed from the
interaction matrix M and the action set A as follows:

Lk+1,d = Lk,d − max
d′∈[D]\{d}

max
∆∈{Lk,d′ ,Uk,d′}

Md′,d ·∆,

Uk+1,d = Uk,d − min
d′∈[D]\{d}

min
∆∈{Lk,d′ ,Uk,d′}

Md′,d ·∆,

where L1,d = minad∈Ad
ad and U1,d = maxad∈Ad

ad.

Base Learner Constraints
We introduce variables ξt ∈ R for t ∈ [T ] such that ξt =
ht(x̂ + a), where ht is the t-th base learner of H . From the
definition of additive classifiers, the constraint H(x̂ + a) =
+1 is equivalent to the following linear constraint of ξt:∑T

t=1
wt · ξt ≥ b. (12)

We express the constraint ξt = ht(x̂ + a) by linear con-
straints of ξt and πd,i because ht(x̂ + a) depends on the
value of a, i.e., the variables πd,i. In the following, we show
how to express ξt when H is a linear model (LM), tree en-
semble (TE), or multilayer perceptron (MLP).

Linear Models From the definition of LM, T = D and
hd(x̂ + a) = x̂d + ad for d ∈ [D]. Hence, we can simply
express the base learner of the LM as follows:

ξd = x̂d +
∑Id

i=1
ad,i · πd,i, ∀d ∈ [D]. (13)

Tree Ensembles Each base learner ht of the TE is a deci-
sion tree. To express ξt = ht(x̂+ a), we can utilize the fol-
lowing decision logic constraint (Cui et al. 2015; Kanamori
et al. 2020):

φt,l ∈ {0, 1}, ∀t ∈ [T ], ∀l ∈ [Lt], (14)∑Lt

l=1
φt,l = 1, ∀t ∈ [T ], (15)

D · φt,l ≤
∑D

d=1

∑
i∈I(d)t,l

πd,i, ∀t ∈ [T ], ∀l ∈ [Lt], (16)

ξt =
∑Lt

l=1
ŷt,l · φt,l, ∀t ∈ [T ], (17)

where I(d)
t,l = {i ∈ [Id] | x̂d + ad,i ∈ r(d)

t,l } and r(d)
t,l is the

subspace of Xd such that rt,l = r
(1)
t,l × · · · × r

(D)
t,l .

Multilayer Perceptrons Each base learner ht of the MLP
is an output of the t-th neuron with the ReLU activation
function, i.e., ht(x + a) = max{0, w(t)(x + a) + b(t)}.
Hence, we need to extract the positive part of w(t)(x+ a) +
b(t) as the output of the t-th base learner ξt. To express it,
we can utilize the following constraints proposed by (Serra,
Tjandraatmadja, and Ramalingam 2018):

νt ∈ {0, 1}, ξ̄t ≥ 0, ∀t ∈ [T ], (18)
ξt ≤ Ht · νt, ∀t ∈ [T ], (19)

ξ̄t ≤ H̄t · (1− νt), ∀t ∈ [T ], (20)

ξt = ξ̄t +
∑D

d=1
w

(t)
d

∑Id

i=1
ad,i · πd,i + Ft, ∀t ∈ [T ],

(21)

where Ft, Ht, and H̄t are constants such that Ft =
w(t)x̂ + b(t), Ht ≥ maxa∈A w

(t)(x + a) + b(t), and H̄t ≥
−mina∈A w

(t)(x + a) + b(t). The variable νt indicates
whetherw(t)(x+a)+b(t) is positive, and ξ̄t represents nega-
tive part ofw(t)(x+a)+b(t). Note that the above constraints
can be extended to a general MLP with more than two hid-
den layers (Serra, Tjandraatmadja, and Ramalingam 2018).

Overall Formulation
Finally, we show our overall formulation as follows:

minimize
∑D
d=1

∑Id
i=1

∑K
k=1 cd,iπ

(k)
d,i + γ ·

∑K
k=1 ζk

subject to Constraint (1–12),
Constraint (13), if H is a LM,
Constraint (14–17), if H is a TE,
Constraint (18–21), if H is a MLP,

π
(k)
d,i ∈ {0, 1}, ∀k ∈ [K], ∀d ∈ [D], ∀i ∈ [Id],

σk,d ∈ {0, 1}, ∀k ∈ [K], ∀d ∈ [D],

δk,d, ζk ∈ R, ∀k ∈ [K], ∀d ∈ [D].

(22)

As with the existing MILO-based methods (Ustun,
Spangher, and Liu 2019; Russell 2019; Kanamori et al.
2020), our formulation can be (i) handled by off-the-shelf

11569



MILO solvers, such as CPLEX (IBM 2018), and (ii) cus-
tomized by additional user-defined constraints, such as one-
hot encoded categorical features and hard constraints for
ordering (e.g., precondition (Ramakrishnan, Lee, and Al-
barghouthi 2020)). In summary, we can obtain ordered ac-
tions that satisfy user-defined constraints without imple-
menting designated algorithms.

For computational complexity, Problem (22) includes K
times more variables and constraints than in the unordered
one. Thus, solving (22) is equal to or mode difficult than
unordered ones. However, in the context of CE, sparse ac-
tions are preferred from the perspective of interpretabil-
ity (Wachter, Mittelstadt, and Russell 2018). Therefore, it
is sufficient to choose small K for obtaining sparse actions.

Post-processing and Partially Ordered Actions
When some perturbing features have no interaction, chang-
ing the order of such features does not affect the cost Cord.
For example in Figure 1(b), the cost of the ordered action
[“Education” → “WorkPerDay” → “JobSkill”] is the same
as that of [“WorkPerDay”→ “Education”→ “JobSkill”] be-
cause “WorkPerDay” has no effect to the others. Thus the
ordered action can be reduced to the partially ordered action
[“WorkPerDay”] and [“Education”→ “JobSkill”]. Suggest-
ing such a partial order helps a user to execute an ordered ac-
tion. We provide a post-processing algorithm that computes
a partial order of the perturbing features from an ordered ac-
tion and an interaction matrix.

An ordered action may be reduced to a partially ordered
action, which is a pair (a,≤) of a perturbation vector a ∈ A
and a partial order≤ on supp(a). Here, we give a procedure
to construct a partially ordered structure ≤ from an interac-
tion matrix M and an ordered action (a, σ). If a perturbing
order σ′ of a is consistent with the obtained partial order ≤,
the ordered action (a, σ′) has the same ordering cost Cord

with that of (a, σ).
An ordered action can be expressed in the form of a path

structure like Figure 2(a), where each node indicates a per-
turbing feature. In this path structure, changing a feature i
should be executed after changing all its ancestors pa(i) and
not after any its descendant. A partially ordered action is ex-
pressed in the form of a DAG like Figure 2(d), and a change
in a feature satisfies the same condition as above. Note that
even if a causal DAG is given, the DAG of a partially ordered
action is not necessarily a subgraph of the causal DAG.

Algorithm We give an algorithm to obtain a partially or-
dered action from an ordered action and an interaction ma-
trix M . The procedure is as follows:

1. Construct a path that represents the perturbing order of a
given ordered action.

2. Compute the transitive closure that represents the total or-
der of the perturbing features.

3. Remove an edge from i to j if there is no interaction be-
tween i and j, that is, Mi,j = Mj,i = 0.

4. Compute the transitive reduction that represents a par-
tially ordered action.

3 4 1 2 6

(a): Path structure for a given ordered action

3 4 1 2 6

(b): Transitive closure of (a)

3 4 1 2 6

(c): Remove the edges with no interaction from (b)

3 4 1 2 6

(d): Transitive reduction of (c)

Figure 2: Algorithm for obtaining a partially ordered action.

Here, a transitive closure of a directed graph G is a directed
graph that has an edge from i to j if and only if there is a di-
rected path from i to j in G. Also, a transitive reduction of a
directed graph G is a directed graph with the fewest number
of edges whose transitive closure is the same as the tran-
sitive closure of G. For a finite DAG, its transitive closure
and its transitive reduction are uniquely determined and can
be computed in polynomial time (Munro 1971; Aho, Garey,
and Ullman 1972; Gries et al. 1989).

We show that our algorithm can output a desired par-
tial order of perturbing features for a given ordered action.
For this purpose, we see that the ordering cost Cord of an
ordered action only depends on its partially ordered struc-
ture obtained by the above procedure. If i is not an an-
cestor of j on the DAG of a partially ordered action, then
Mi,j = Mj,i = 0. Thus, the actual perturbation in the k-th
step is calculated as follows:

∆(k)(aσ1,...,σk
|M)

= aσk
−
∑k−1

l=1
Mσl,σk

·∆(l)(aσ1,...,σl
|M)

= aσk
−
∑

l=1,...,k−1
σl∈pa(σk)

Mσl,σk
·∆(l)(aσ1,...,σl

|M),

where pa(j) ⊆ supp(a) denotes the set of ancestors of a
feature j on the DAG of the partially ordered action. That is,
the ordered action (a, σ′) has the same ordering cost Cord

as that of (a, σ) if σ′ is consistent with the partially ordered
structure obtained from (a, σ).

Experiments
In this section, we conducted experiments on real datasets
to investigate the effectiveness and behavior of our OrdCE.
All the code was implemented in Python 3.7 with scikit-
learn and IBM ILOG CPLEX v12.101. All the experiments

1All the code is available at https://github.com/kelicht/ordce.

11570



Cdist Dataset Logistic Regression Random Forest Multilayer Perceptron

Greedy OrdCE Greedy OrdCE Greedy OrdCE

TLPS

FICO 3.96 ± 2.6 3.27 ± 2.1 3.26 ± 2.9 3.22 ± 3.2 3.35 ± 3.0 1.57 ± 1.4
German 4.9 ± 5.8 4.81 ± 5.7 3.23 ± 2.9 3.2 ± 2.9 5.38 ± 4.7 5.03 ± 4.5

WineQuality 1.78 ± 1.8 1.57 ± 1.5 0.901 ± 0.55 0.875 ± 0.52 0.969 ± 0.83 0.761 ± 0.61
Diabetes 2.91 ± 2.5 2.47 ± 2.0 2.3 ± 1.8 2.26 ± 1.8 1.12 ± 1.5 0.668 ± 0.99

DACE

FICO 10.6 ± 7.3 9.61 ± 6.7 6.78 ± 4.8 6.67 ± 4.7 3.5 ± 3.5 3.41 ± 3.3
German 6.19 ± 5.3 5.88 ± 4.9 5.54 ± 4.6 5.42 ± 4.5 7.0 ± 5.8 6.7 ± 5.4

WineQuality 2.93 ± 2.0 2.42 ± 1.6 1.65 ± 1.2 1.51 ± 1.1 1.91 ± 1.5 1.66 ± 1.3
Diabetes 2.56 ± 1.7 2.43 ± 1.6 2.38 ± 1.7 2.21 ± 1.6 0.832 ± 1.2 0.766 ± 1.1

(a) Objective Function COrdCE

Cdist Dataset Logistic Regression Random Forest Multilayer Perceptron

Greedy OrdCE Greedy OrdCE Greedy OrdCE

TLPS

FICO 2.21 ± 1.6 1.33 ± 0.87 1.72 ± 1.5 1.49 ± 1.2 3.05 ± 2.8 0.84 ± 0.74
German 1.85 ± 1.5 1.71 ± 1.4 1.5 ± 1.2 1.47 ± 1.2 2.27 ± 1.8 1.76 ± 1.6

WineQuality 1.0 ± 0.98 0.765 ± 0.59 0.475 ± 0.31 0.439 ± 0.29 0.69 ± 0.63 0.446 ± 0.35
Diabetes 1.74 ± 1.6 1.01 ± 0.81 0.939 ± 0.67 0.883 ± 0.64 0.862 ± 1.3 0.318 ± 0.58

DACE

FICO 3.79 ± 2.6 2.41 ± 1.8 2.14 ± 1.5 1.59 ± 1.2 1.24 ± 1.2 0.918 ± 0.86
German 1.92 ± 1.8 1.43 ± 1.1 1.6 ± 1.3 1.46 ± 1.2 2.23 ± 2.0 1.87 ± 1.5

WineQuality 1.31 ± 0.94 0.781 ± 0.53 0.716 ± 0.54 0.503 ± 0.34 0.796 ± 0.69 0.509 ± 0.41
Diabetes 1.2 ± 0.83 1.02 ± 0.7 1.13 ± 0.84 0.912 ± 0.67 0.425 ± 0.63 0.322 ± 0.47

(b) Ordering Cost Function Cord

Table 3: Experimental results on the real datasets.

were conducted on 64-bit macOS Catalina 10.15.6 with Intel
Core i9 2.4GHz CPU and 64GB memory, and we imposed a
300 second time limit for solving.

Experimental Setting
We randomly split each dataset into train (75%) and test
(25%) instances, and trained `2-regularized logistic regres-
sion classifiers (LR), random forest classifiers (RF) with
T = 100 decision trees, and two-layer ReLU network classi-
fiers (MLP) with T = 200 neurons, on each training dataset.
Then, we extracted ordered actions for test instances that had
been received undesired prediction results, such as predicted
as “high risk of default” from each classifier.

Distance-based Cost Functions As a distance-based cost
function Cdist, we used four existing cost functions: the
total log-percentile shift (TLPS) (Ustun, Spangher, and
Liu 2019), weighted `1-norm of median absolute devia-
tion (MAD) (Wachter, Mittelstadt, and Russell 2018; Rus-
sell 2019), `1-Mahalanobis’ distance (DACE) (Kanamori
et al. 2020), and distance based on structural causal mod-
els (SCM) (Mahajan, Tan, and Sharma 2019). The former
two are norm-based cost functions that evaluate actions for
each perturbing feature independently. The latter two are
interaction-aware cost functions that evaluate actions by
considering feature-correlation and causality, respectively.

Baseline Method To the best of our knowledge, there is no
existing method that determines a minimum-cost perturbing

order. Even if an ordered action is consistent with a given
causal DAG, it is not necessarily optimal with respect to
COrdCE = Cdist + γ ·Cord, since Cord depends not only on
the causal direction but also on the amount of the resultant
perturbation. As a baseline, we proposed a greedy algorithm
(Greedy), which consists of the following two steps:

1. Extract a perturbation vector a? by optimizing Cdist.
2. Determine a perturbing order σ of a? by solving the fol-

lowing optimization problem for k iteratively:

σk = arg min
d∈supp(a?)\{σ1,...,σk−1}

∣∣∣∣a?d −∑k−1

l=1
Mσl,d ·∆(l)

∣∣∣∣ .
This procedure greedily selects a perturbing feature that
has the smallest cost in each step.
To compare OrdCE with Greedy, we measured the av-

erage values of the distance-based cost Cdist, the ordering
cost Cord, and the objective function COrdCE over the or-
dered actions obtained by those two methods.

Experimental Results
We show experimental results here with TLPS and DACE
owing to page limitation2.

Comparison with Baseline We used four real datasets:
FICO (D = 23) (FICO et al. 2018), German (D = 40),

2For the full results, see https://arxiv.org/abs/2012.11782.

11571



Method Order Feature Action Cdist Cord

Greedy 1st “BMI” -6.25 0.778 0.828

OrdCE 1st “Glucose” -3.0 0.825 0.7492nd “BMI” -5.05

(a) TLPS (Ustun, Spangher, and Liu 2019)

Method Order Feature Action Cdist Cord

Greedy

1st “BMI” -0.8

0.716 0.8252nd “SkinTHK” -2.5
3rd “Glucose” -8.5
4th “Insulin” -32.0

OrdCE

1st “Insulin” -32.0

0.716 0.5282nd “Glucose” -8.5
3rd “SkinTHK” -2.5
4th “BMI” -0.8

(b) DACE (Kanamori et al. 2020)

Table 4: Examples of ordered actions extracted from the RF
classifier on the Diabetes dataset.

Insulin

Glucose SkinTHK

BMI

0.09 0.05

0.04 0.16

Figure 3: Subgraph of the causal DAG of the Di-
abetes dataset estimated by the DirectLiNGAM algo-
rithm (Shimizu et al. 2011; Hyvärinen and Smith 2013).

WineQuality (D = 12), and Diabetes (D = 8) (Dua and
Graff 2017) datasets, where D is the number of features.
For German dataset, we transformed each categorical fea-
ture into a one-hot encoded vector. For each dataset, we
estimated the adjacency matrix of a causal DAG by the
DirectLiNGAM algorithm (Shimizu et al. 2011; Hyvärinen
and Smith 2013), and computed an interaction matrix M
from the adjacency matrix. We set γ = 1.0 and K = 4.

Table 3(a) and Table 3(b) present the average of the ob-
jective function COrdCE and the ordering cost Cord for ex-
tracted ordered actions, respectively. From Table 3, we can
observe that OrdCE always achieved lower COrdCE and
Cord than Greedy for all datasets and classifiers. Especially,
in MLP and TLPS on FICO dataset, the averages of COrdCE

and Cdist given by OrdCE are 1.57 and 0.84, respectively,
which were less than half of those obtained by Greedy.

Next, we examine the ordered actions given by OrdCE
to confirm the practicality. Table 4 presents examples of or-
dered actions extracted from the RF classifier on the Dia-
betes dataset, and Figure 3 presents a subgraph of the es-
timated causal DAG of the dataset. In both cases of TLPS
and DACE, our OrdCE output ordered actions that accords
with the directed edges in the causal DAG in Figure 3. On
the other hand, the action extracted by Greedy with DACE,
the order is not consistent with the causal DAG. From these
results, we confirmed that OrdCE succeeded in obtaining

10−3 10−2 10−1 100 101 102

λ

5.0

7.5

C
d

is
t

German

Cdist (TLPS)

Cord
1.50

1.75

C
or

d

10−3 10−2 10−1 100 101 102

λ

2.0

2.5

C
d

is
t

WineQuality

Cdist (DACE)

Cord
0.7

0.8

C
or

d

Figure 4: Sensitivity analyses of the trade-off parameter γ of
OrdCE between the average Cdist and Cord.

a reasonable perturbing order from the perspective of the
causal DAG. In addition, for TLPS, the perturbation given
by OrdCE is different from that given by Greedy. This dif-
ference is caused by the effect that OrdCE optimizes a per-
turbation vector and its order simultaneously.

Regarding the computation time, OrdCE was certainly
slower than Greedy because OrdCE exactly solved Prob-
lem 1. In MLP and TLPS on FICO dataset, the average
computation times of OrdCE and Greedy are 183 and 12.6
seconds, respectively. For other datasets, OrdCE is within
1.38–120 times slower than Greedy. However, Tables 3
and 4 indicate that OrdCE found better ordered actions in
terms of COrdCE and Cord than Greedy within 300 seconds,
which is a reasonable computation time.

Sensitivity Analysis of Trade-off Parameter To exam-
ine the sensitivity of the trade-off parameter γ, we observed
Cdist and Cord of ordered actions extracted from LR classi-
fiers by varying γ. The above (resp. below) figure in Figure 4
presents the averageCdist (resp.Cord) for each γ on the Ger-
man and WineQuality datasets. We can see trade-off rela-
tionship between Cdist and Cord. As mentioned in (Wachter,
Mittelstadt, and Russell 2018; Mothilal, Sharma, and Tan
2020), suggesting multiple actions is helpful for diversity.
By varying γ, we can obtain several distinct ordered actions
that have diverse characteristics in terms of Cdist and Cord.

Conclusion
We proposed Ordered Counterfactual Explanation (OrdCE)
that provides an optimal pair of a perturbation vector and
an order of the features to be perturbed. We introduced a
new objective function that evaluates the required cost of a
perturbation vector and an order, and proposed a MILO for-
mulation for optimizing it. By experiments on real datasets,
we confirmed the effectiveness of our method by comparing
it with a greedy method. As future work, we plan to conduct
user-experiments to evaluate the usability of our OrdCE. In
this study, while we assume the causal relationship is linear,
our cost function has a potential to deal with non-linear rela-
tionships, which sometimes appear in the real world (Pearl
2009). Therefore, it is also interesting future work to develop
a method for optimizing our cost function with non-linear
causal relationships.

11572



Acknowledgments
We wish to thank Kunihiro Wasa and Kazuhiro Kurita for
making a number of valuable suggestions. We also thank
anonymous reviewers for their insightful comments. This
work was supported in part by JSPS KAKENHI Grant-
in-Aid for JSPS Research Fellow 20J20654, Scientific Re-
search (A) 20H00595, and JST CREST JPMJCR18K3.

References
Aho, A. V.; Garey, M. R.; and Ullman, J. D. 1972. The
Transitive Reduction of a Directed Graph. SIAM Journal on
Computation 1(2): 131–137.

Bertsimas, D.; Delarue, A.; Jaillet, P.; and Martin, S.
2019. Optimal Explanations of Linear Models. arXiv,
arXiv:1907.04669 .

Breiman, L. 2001. Random Forests. Machine Learning
45(1): 5–32.

Cui, Z.; Chen, W.; He, Y.; and Chen, Y. 2015. Opti-
mal Action Extraction for Random Forests and Boosted
Trees. In Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 179–188.

Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.;
Shanmugam, K.; and Das, P. 2018. Explanations Based on
the Missing: Towards Contrastive Explanations with Per-
tinent Negatives. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Sys-
tems, 590–601.

Doshi-Velez, F.; and Kim, B. 2017. Towards A Rigor-
ous Science of Interpretable Machine Learning. arXiv,
arXiv:1702.08608 .

Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory. URL http://archive.ics.uci.edu/ml. Accessed Sep. 9th,
2020.

FICO; Google; Imperial College London; MIT; University
of Oxford; UC Irvine; and UC Berkeley. 2018. Explainable
Machine Learning Challenge. URL https://community.fico.
com/s/explainable-machine-learning-challenge. Accessed
Sep. 9th, 2020.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press.

Gries, D.; Martin, A. J.; van de Snepscheut, J. L.; and Ud-
ding, J. T. 1989. An algorithm for transitive reduction of
an acyclic graph. Science of Computer Programming 12(2):
151 – 155.

Hastie, T.; Tibshirani, R.; and Friedman, J. H. 2009. The
Elements of Statistical Learning: Data Mining, Inference,
and Prediction, 2nd Edition. Springer Series in Statistics.
Springer.

Hyvärinen, A.; and Smith, S. M. 2013. Pairwise Likelihood
Ratios for Estimation of Non-Gaussian Structural Equation
Models. Journal of Machine Learning Research 14(1):
111–152.

IBM. 2018. CPLEX Optimizer — IBM. URL https:
//www.ibm.com/analytics/cplex-optimizer. Accessed Sep.
9th, 2020.

Janzing, D.; Balduzzi, D.; Grosse-Wentrup, M.; and
Schölkopf, B. 2013. Quantifying causal influences. Annals
of Statistics 41(5): 2324–2358.

Kanamori, K.; Takagi, T.; Kobayashi, K.; and Arimura, H.
2020. DACE: Distribution-Aware Counterfactual Explana-
tion by Mixed-Integer Linear Optimization. In Proceedings
of the 29th International Joint Conference on Artificial In-
telligence, 2855–2862.

Karimi, A.-H.; Barthe, G.; Balle, B.; and Valera, I. 2020a.
Model-Agnostic Counterfactual Explanations for Conse-
quential Decisions. In Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics, volume
108, 895–905.

Karimi, A.-H.; von Kügelgen, J.; Schölkopf, B.; and Valera,
I. 2020b. Algorithmic recourse under imperfect causal
knowledge: a probabilistic approach. In Proceedings of the
34th International Conference on Neural Information Pro-
cessing Systems, 265–277.

Koh, P. W.; and Liang, P. 2017. Understanding Black-Box
Predictions via Influence Functions. In Proceedings of the
34th International Conference on Machine Learning - Vol-
ume 70, 1885–1894.

Lundberg, S. M.; and Lee, S.-I. 2017. A Unified Approach
to Interpreting Model Predictions. In Proceedings of the 31st
International Conference on Neural Information Processing
Systems, 4765–4774.

Mahajan, D.; Tan, C.; and Sharma, A. 2019. Preserving
Causal Constraints in Counterfactual Explanations for Ma-
chine Learning Classifiers. In CausalML: Machine Learning
and Causal Inference for Improved Decision Making Work-
shop, NeurIPS 2019.

Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence 267: 1
– 38.

Moore, J.; Hammerla, N.; and Watkins, C. 2019. Explaining
Deep Learning Models with Constrained Adversarial Exam-
ples. In Proceedings of the 16th Pacific Rim International
Conference on Artificial Intelligence, 43–56.

Mothilal, R. K.; Sharma, A.; and Tan, C. 2020. Explain-
ing Machine Learning Classifiers through Diverse Counter-
factual Explanations. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, 607–617.

Munro, I. 1971. Efficient determination of the transitive clo-
sure of a directed graph. Information Processing Letters
1(2): 56 – 58.

Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Morgan Kaufmann Publish-
ers Inc.

Pearl, J. 2009. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2nd edition.

11573



Poyiadzi, R.; Sokol, K.; Santos-Rodriguez, R.; De Bie, T.;
and Flach, P. 2020. FACE: Feasible and Actionable Coun-
terfactual Explanations. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, 344–350.
Ramakrishnan, G.; Lee, Y. C.; and Albarghouthi, A. 2020.
Synthesizing Action Sequences for Modifying Model Deci-
sions. In Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence, 5462–5469.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. “Why
Should I Trust You?”: Explaining the Predictions of Any
Classifier. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 1135–1144.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2018. Anchors:
High-Precision Model-Agnostic Explanations. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial In-
telligence, 1527–1535.
Russell, C. 2019. Efficient Search for Diverse Coherent Ex-
planations. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, 20–28.
Serra, T.; Tjandraatmadja, C.; and Ramalingam, S. 2018.
Bounding and Counting Linear Regions of Deep Neural
Networks. In Proceedings of the 35th International Con-
ference on Machine Learning - Volume 80, 4558–4566.
Shimizu, S.; Inazumi, T.; Sogawa, Y.; Hyvärinen, A.; Kawa-
hara, Y.; Washio, T.; Hoyer, P. O.; and Bollen, K. 2011.
DirectLiNGAM: A Direct Method for Learning a Linear
Non-Gaussian Structural Equation Model. Journal of Ma-
chine Learning Research 12: 1225–1248.
Ustun, B.; Spangher, A.; and Liu, Y. 2019. Actionable
Recourse in Linear Classification. In Proceedings of the
Conference on Fairness, Accountability, and Transparency,
10–19.
Wachter, S.; Mittelstadt, B.; and Russell, C. 2018. Counter-
factual Explanations Without Opening the Black Box: Au-
tomated Decisions and the GDPR. Harvard Journal of Law
& Technology 31: 841–887.

11574


