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Abstract

Kidney transplant is the preferred method of treatment for pa-
tients suffering from kidney failure. However, not all patients
can find a donor that matches their physiological characteris-
tics. Kidney exchange programs (KEPs) seek to match such
incompatible patient-donor pairs together, usually with the
main objective of maximizing the total number of transplants.
Since selecting one optimal solution translates to a decision
on who receives a transplant, it has a major effect on the lives
of patients. The current practice in selecting an optimal solu-
tion does not necessarily ensure fairness in the selection pro-
cess. In this paper, the existence of multiple optimal plans
for a KEP is explored as a mean to achieve individual fair-
ness. We propose the use of randomized policies for selecting
an optimal solution in which patients’ equal opportunity to
receive a transplant is promoted. Our approach gives rise to
the problem of enumerating all optimal solutions, which we
tackle using a hybrid of constraint programming and linear
programming. The advantages of our proposed method over
the common practice of using the optimal solution obtained
by a solver are stressed through computational experiments.
Our methodology enables decision makers to fully control
KEP outcomes, overcoming any potential bias or vulnerabil-
ity intrinsic to a deterministic solver.

1 Introduction
Chronic kidney disease is an incurable condition that leads
to a slow loss of kidney function. The worldwide population
of patients suffering from this condition reached 700 million
in 2017 (Bikbov et al. 2020) and is increasing at an annual
rate of around 6% (Fresenius Medical Care 2018). These
patients require a renal replacement therapy: kidney trans-
plantation or dialysis. The former is generally the preferable
treatment because it reduces the economic burden of dialy-
sis, it has the potential to improve the patient life quality and
to yield longer lifespan.

A complicating factor in transplantation is that many pa-
tients have donors which are not medically compatible with
them. Kidney Exchange Programs (KEPs) allow such pa-
tients to exchange donors. These programs have been im-
plemented in several countries such as South Korea (Park
et al. 2004), The Netherlands (De Klerk et al. 2005), United
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Kingdom (Manlove and O’Malley 2012), and Canada (Ma-
lik and Cole 2014). The underlying idea in KEP is to form
cycles: a donor donates a kidney if their corresponding pa-
tient receives one. This motivates the problem of comput-
ing exchange plans that maximize the overall patients ben-
efit, which is usually tackled by Integer Programming ap-
proaches (Roth, Sönmez, and Ünver 2007; Abraham, Blum,
and Sandholm 2007; Klimentova, Alvelos, and Viana 2014;
Dickerson et al. 2016). The typical objective is to maximize
the number of transplants. However, some KEPs (like the
Dutch Program) use additional hierarchical criteria (Glorie
2014), while others associate weights to reflect the benefit
and priority of an exchange (UNOS 2020).

KEP is an example of algorithmic decision making with a
significant impact on the lives of individuals. This makes it
critical to ensure fairness in the process. To the best of our
knowledge, the literature has exclusively focused on group
fairness in KEPs, and the dominant perspective in this area
is to ensure fairness towards pre-defined groups of patients
(e.g. those deemed to be hard-to-match), leading to potential
deterioration of the maximum number of transplants (Dick-
erson, Procaccia, and Sandholm 2014). There is no previ-
ous work that studies individual fairness in KEPs. Individ-
ual fairness (Dwork et al. 2012) ensures similar treatment
for patients without grouping them a priori. This goal calls
for a new methodology. After all, in any exchange plan, only
some patients will receive a transplant. We address this prob-
lem by designing randomized policies for selecting a solu-
tion from a set of desirable solutions, such that individuals
have the same chances of receiving a transplant.

Existing works suggest that KEPs frequently have many
optimal solutions (Carvalho and Lodi 2019). Currently, the
KEP solution computed by the algorithms in place is the one
being carried out. Note that such a solution highly depends
on the order in which the instance is inputted in the system
and how the optimization is implemented. Such dependence
is not controlled by the user and thus, it can deeply affect
the evolution of the KEP pool (Canadian Blood Services
2014). Hence, solution selection has a significant impact on
the lives of the patients and special care must be taken to en-
sure fairness in this process. Designing a randomized policy
to select a solution from the set of optimal solutions allows
us to enforce individual fairness without compromising op-
timality. However, constructing the set of all optimal solu-
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tions is a challenging task that requires new approaches to
enumerate them.

This paper makes several contributions: 1) We introduce
for the first time individual fairness as the supporting policy
for solution selection in KEPs. We introduce several defini-
tions of individual fairness in KEPs and propose randomized
policies for enforcing them. 2) We present and evaluate alter-
native methods for enumerating the solutions of KEPs, using
Integer Linear Programming (ILP) and Constraint Program-
ming (CP). 3) We design a specialized CP propagator for ef-
ficient enumeration of solutions. 4) We present extensions of
our method which allow to control the trade-off of fairness
vs. scalability or optimality. 5) We evaluate the performance
of our method through extensive experiments. We compare
our method against the current practice of deploying the op-
timal solution returned by the solver. We also inspect the
effect of individual fairness on a well-known group fairness
criterion, that is, the welfare of highly-sensitized (hard-to-
match) patients.

The rest of the paper is structured as follows: We intro-
duce the KEP and review fairness in KEP in sections 2 and
3. After establishing the connection between individual fair-
ness and solution enumeration, we introduce several meth-
ods for enumerating solutions in Section 4. The randomized
policies for enforcing individual fairness are presented in
Section 5. We evaluate our proposed approach in Section 6.
We present conclusions and future directions in Section 7.

2 Kidney Exchange Program
In this section, the classic compatibility graph for KEP is
described, together with the standard integer program that
models the optimization of the patients’ benefit.

A KEP instance can be represented as a graph G =
(V,A), where V is the union of the set of incompatible pairs
P and the set of altruistic donors N , and A is the set of arcs
representing compatibilities. There are two types of possible
exchanges: cycles and chains. A cycle in G among vertices
in P guarantees that the patient associated with a donor (do-
nating a kidney) also receives a transplant. A chain is a path
(v0, v1, . . . , vK) in G starting in an altruistic donor v0 ∈ N
and with {v1, . . . , vK} ⊂ P . The donor of the last involved
pair in a chain becomes an altruistic donor for the next KEP
or he/she donates in the waiting list for deceased donation.
In the right of Figure 1, (1, 3, 2, 1) is a cycle of length 3 and
(5, 3, 4) is a chain of length 3.

Selected chains and cycles must be disjoint since donors
can only donate one kidney. In Europe, their lengths are typ-
ically limited to three or four while, e.g. in the US, there is
no limit on chains length (Biró et al. 2019). Roth, Sönmez,
and Ünver (2007) showed that most of the cycles potential is
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Figure 1: Compatibility graph for a KEP.

achieved by limiting their length to 3 and Dickerson, Procac-
cia, and Sandholm (2012) argued that there is no advantage
on considering chains larger than 3. Therefore, based on the
practical interest of cycles and chains of length at most 3
and for the sake of simplicity, in this paper, we concentrate
on this case. Nevertheless, our framework can be general-
ized to any length limit, although large length bounds can
result in slower running times.

The goal of KEPs is to determine a set of disjoint chains
and cycles representing the kidney exchanges to be per-
formed such that the benefit of the patients receiving a trans-
plant is maximized. ILPs have been broadly used to model
KEPs: e.g. cycle formulation (Abraham, Blum, and Sand-
holm 2007; Roth, Sönmez, and Ünver 2007), edge formula-
tion (Roth, Sönmez, and Ünver 2007), position-indexed for-
mulation (Dickerson et al. 2016). The cycle formulation is
the simplest to describe. Let C be the set of all allowed cy-
cles and chains of G, and wc for c ∈ C, the benefit of the
exchange c. Then, the formulation is the following:

P(C) : max
∑
c∈C

wcxc (1a)

s.t.
∑
c:v∈c

xc ≤ 1 ∀v ∈ V (1b)

xc ∈ {0, 1} ∀c ∈ C. (1c)

The decision variables xc take value 1 if c is a selected ex-
change and 0 otherwise. Constraints (1b) enforce each donor
to participate in at most one exchange. Constraints (1c) in-
troduce the binary requirement for x. The objective func-
tion (1a) maximizes the benefit of the selected exchanges.
The main goal is to maximize the number of transplants
(wc = |c|). Additionally, KEPs frequently account for the
optimization of other utilitarian and equity criteria. This is
implemented either through hierarchical optimization or a
match-point system establishing the value of wc (Biró et al.
2017; Biró et al. 2019).

Definition 1. The optimality criteria of a KEP is defined
by a rank W =

(
w1, . . . ,wm

)
of |C|-dimensional vec-

tors. The optimal value of the optimality criteria is a list
P∗ = (OPT1, . . . , OPTm) obtained through the hierarchi-
cal optimization of the linear objectives given byW . A |C|-
dimensional vector x is said to be an optimal solution if it is
feasible and (wi)Tx = OPTi, for i = 1, . . . ,m.

The most commonly used utilitarian criteria are the num-
ber of transplants, the number of back-arcs on selected cy-
cles and chains, and the number of cycles. See (Farnadi et al.
2021) for an illustration.

Definition 2. A |C|-dimensional vector x is said to be a t-
relaxed solution if it is feasible and (wi)Tx ≥ OPTi − t,
for i = 1, . . . ,m.

The framework proposed in this paper takes the optimality
criteria as input and proposes mechanisms for the selection
of an optimal solution promoting individual fairness.

3 Related Literature
As mentioned before, the main goal of KEPs is to maxi-
mize the benefit of the patients. The baseline is to associate
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weights that allow to maximize the number of transplants
while prioritizing certain groups of patients. For instance,
highly-sensitized patients have a low probability of being
compatible with a random kidney. In this context, Dick-
erson, Procaccia, and Sandholm (2014) concentrate on the
trade-off of moving from maximizing the number of trans-
plants (utilitarian objective function) towards maximizing
the number of highly-sensitized patients receiving a kidney.
However, McElfresh, Bidkhori, and Dickerson (2018) show
that such an approach can sacrifice efficiency significantly
and thus propose the use of a threshold to balance group fair-
ness and the number of transplants. Freedman et al. (2018)
focus on the fact that such prioritization can depend on hu-
man values and use it to break ties between solutions achiev-
ing the maximum number of transplants.

Anticipation of future kidney exchanges is taken into
account in (Dickerson and Sandholm 2014) by assigning
weights to certain exchanges, such as the ones involving
highly-sensitized patients, and also assigning a chance of
failure to arcs in a matching.

In (Klimentova et al. 2020; Biró et al. 2020), cross-border
programs are considered. Instead of patient fairness, these
works concentrate on fairness between countries, namely
in terms of the contribution of each country to an interna-
tional KEP pool. Likewise, e.g. (Sönmez and Ünver 2013;
Ashlagi and Roth 2014; Carvalho and Lodi 2019) inves-
tigate multi-agent programs but through the lens of non-
cooperative game theory.

The majority of current studies on fairness in KEPs focus
on group fairness. The closest work to individual fairness
is on egalitarian mechanisms seeking the so-called Lorenz-
dominance1(e.g., (Roth, Sönmez, and Utku Ünver 2005; Li
et al. 2014)), which, simply put, focuses on equalizing the
patients individual matching probabilities. Our work is more
general since it is not particularly tailored for exploring
the mathematical structure of pairwise exchanges and we
present a variety of fairness selection policies.

4 Individual Fairness by Enumeration
In many optimization problems, deploying different optimal
solutions leads to different a distribution of benefits among
some individuals. For example, when a KEP has multiple
optimal solutions (in terms of the patients who receive trans-
plants), by picking any solution we are inevitably favoring
the individuals included in that solution over the excluded
ones who appear in another solution.

Our purpose is to design a randomized process for select-
ing an optimal solution which promotes similar chances of
receiving a transplant among the individuals. For a KEP in-
stance maxx∈X f(x) with optimal value OPT, this process
involves two steps: 1) Constructing the set of optimal solu-
tions S = {x ∈ X : f(x) = OPT}. 2) Assigning a weight to
each solution in such a way that random selection according
to those weights results in similar chances for the individu-
als. It is worth noting that if we are willing to pay a price in

1A Lorenz-dominant policy is not guarantee to exist for KEPs
considering exchanges larger than 2.

terms of optimality, we can relax the definition of the solu-
tion set by including the set of t-relaxed solutions.

The computationally-demanding part of this process is the
first step, i.e. enumeration of the optimal solutions. Even in
the simple forms of KEPs (exchanges of length 2 and op-
timizing for number of transplants), this task is known to
be #P-complete (Valiant 1979). We will next study different
methods for tackling this challenging problem.

In this section, we propose three approaches based on ILP
and CP methodologies. For the sake of simplicity, in what
follows, we assume a single optimality criterion: the number
of transplants (denoted by OPT).

4.1 Enumeration through No-Good Cuts in ILP
All optimal solutions (i.e., S) can be determined in an itera-
tive way by solving the following problem in iterationK+1:∑

c∈C

|c|xc = OPT (2a)

∑
c∈C:xkc=0

xc +
∑

c∈C:xkc=1

(1− xc) ≥ 1 k = 1, . . . ,K (2b)

(1b) and (1c)

where xk is an optimal solution in S determined in a pre-
vious iteration k. Constraint (2a) implies that the computed
solution must be optimal. Constraints (2b) are the so-called
no-good cuts (Balas and Jeroslow 1972) and, in order to be
satisfied, the solution must differ in at least one entry for
each xk. Once Problem (2) becomes infeasible, then all op-
timal solutions have been determined. Since there is a finite
number of feasible exchanges, this iterative method will stop
in finite time. We implemented the no-good cuts using lazy
constraints. In this way, the solver takes advantage of the
search tree being built, avoiding to reset the search for each
iteration.

An alternative to adding the no-good cuts is to systemati-
cally exhaust the search tree. This functionality is supported
by constraint satisfaction paradigms such as CP.

4.2 Enumeration through CP
We will now present a CP model for the problem of enu-
merating the optimal solutions of KEP. A CP problem is
a tuple (V, D, C) where V is a set of finite-domain vari-
ables, D specifies the set of values that each variable can
take (i.e. their domains), and C is a set of constraints. Each
constraint is defined over a subset of variables and dictates
the valid assignments for that subset. A solution is an as-
signment to each variable from its domain such that all con-
straints are satisfied. A CP problem is solved by a combina-
tion of search and propagation. Search consists of assigning
values to variables from their domains. Assigning a value to
a variable triggers propagation by constraints which include
that variable. This involves eliminating values from the do-
mains of variables that

cannot appear in a solution. Each constraint is equipped
with a propagator, which is a specialized algorithm for per-
forming those eliminations.

We will now present the CP formulation. First, to facilitate
modeling, we slightly modify the KEP compatibility graph
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by adding a self-loop to every vertex. We define an array of
variables X indexed by the vertices v ∈ V . The variable
X[v] represents the successor of v in some path, and its do-
main is defined as {v} ∪ {u : (v, u) ∈ A}. A self-loop is
represented by assigning v to X[v]. In Figure 1, the array
X has 6 entries and domain of X[v3] is {v2, v3, v4}. The
constraints of the CP model are as follows:

AllDifferent (X) (3)(
X[v] = v

)
∨
(
X[X[v]] = v

)
∨
(
X[X[X[v]]] = v

)
∀v ∈ V (4)∑

v∈V

(
X[v] 6= v

)
= OPT. (5)

The constraint AllDifferent(X) requires that all variables in
X take different values. It is easy to show that under this
constraint, the successor variables define a set of cycles (in-
cluding self-loops). Observe that when a vertex appears in a
self-loop, it is excluded from the matching.

The constraint set (4) enforces that each vertex is either
in a self-loop or a cycle of length two or three. Finally, con-
straint (5) ensures that the solution of the model is an optimal
matching.

This formulation can be extended to KEP instances which
include chains starting with an altruistic donor. One way to
do this is to add a dummy vertex for each altruistic donor,
with incoming arcs from all vertices in P and only one out-
going arc to its corresponding altruistic donor.

Algorithm 1: Class KepConstraint
1 method updateCycles()
2 foreach v ∈ V do
3 mask← 0
4 foreach u ∈ ∆v \ {v} do
5 mask← mask | contains[v, u]

6 mask←∼ mask
7 validCycles← validCycles & mask

8 method filterDomains()
9 foreach v ∈ V do

10 foreach u ∈ dom(X[v]) \ {v} do
11 if validCycles & contains[v, u] = 0 then
12 dom(X[v])← dom(X[v]) \ {u}

13 method propagate()
14 updateCycles()
15 if validCycles = 0 then
16 return Backtrack

17 UB← relaxedKEP()
18 if UB < OPT then
19 return Backtrack

20 filterDomains()

4.3 A Global Constraint for KEP
We will now introduce a new constraint which we have
designed specifically for KEP problems. This constraint
will replace constraints (3)-(4) in the CP model. Using our

knowledge of the problem structure, we introduce a propa-
gator which shrinks the domains of the variables and prunes
the search space more efficiently than the combination of
simpler constraints.

The propagation mechanism is performed by the
KepConstraint class. At initialization, all cycles with length
two and three are generated, and the bitset contains[v, u]
is calculated for each arc (u, v) ∈ A. This bitset indicates
the cycles that contain that arc. Figure 2 illustrates this on
the running example. Another important data structure is the
validCycles bitset. At any node of the search tree, this
bitset maintains the cycles which can be part of the solution
given the current domains of variables.

arc c1 c2 c3 c4

(1, 3) 1 0 0 0
(2, 1) 1 0 0 0
(2, 3) 0 1 1 0
(3, 2) 1 0 0 0
(3, 4) 0 0 1 1

. . .

c1: (1− 3− 2)
c2: (2− 3)
c3: (2− 3− 4)
c4: (3− 4− 6)

Figure 2: The entries of the contains array for some of the
arcs in the running example. Each entry is a bitset represent-
ing the cycles which contain the arc.

Algorithm 1 shows the main methods of the
KepConstraint class. The propagation starts at the
propagate() method. Note that removing the value u
from the domain of X[v] is equivalent to removing the arc
(v, u). This in turn invalidates every cycle that contains this
arc. In method updateCycles, we identify such cycles and
set their bit in validCycles to zero. We assume that ∆v

stores the values removed from the domain of X[v] since
the last call to the propagator (at this node or upstream
in the search tree). Next, in the method relaxedKEP(), we
obtain an upper bound on the number of vertices covered
by any solution given the current domains of variables.
This bound is obtained by solving the linear relaxation of
problem P(C) (1). Before solving this relaxation, we set the
xc variables corresponding to invalid cycles (according to
validCycles bitset) to zero.

Finally, the method filterDomains() checks for each arc
(v, u) whether it is included in a valid cycle. If not, u is
removed from the domain of X[v].

Our propagator builds on the ideas and principles em-
ployed by the Compact-Table (CT) algorithm for filtering
the Table constraint. Similar to CT, our propagator relies
on the reversible bitset data structure which is optimized
for backtracking search in CP solvers. We refer the reader
to (Demeulenaere et al. 2016) for details.

4.4 Finding a Covering Set of Solutions
For the sake of comparison and scalability, we describe a
greedy approach. Here, we restrict enumeration of solutions
to a covering S ′, i.e. a subset of S such that if v ∈ P appears
in some solution of S , it also appears in S ′.

Next, we show how to adapt the CP methodology to gen-
erate a cover. Let V ′ denote the set of indices of vertices
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δ v1 v2 v3 v4 v5 v6

0.4 S1 1 1 1 0 0 0
0.2 S2 0 1 1 1 0 0
0.4 S3 0 0 1 1 0 1

pδ 0.4 0.6 1 0.6 0 0.4

Table 1: Optimal solutions for the compatibility graph of
Figure 1. The selection strategy (left) determines the vertex
probabilities (bottom).

which are not yet covered by any solution during the search.
After finding each solution, we update V ′ and add the fol-
lowing constraint

∨
v∈V ′ X[v] 6= v which requires that the

next solution contains some vertex which has not appeared
in the previous solutions. We can also adapt the KEP con-
straint to this setting by adding the following constraint∑
c:V ′∩c6=∅ xc ≥ 1 to the linear relaxation after finding each

solution.

5 Fair Selection Strategy
When a KEP instance has multiple solutions (such that they
differ in terms of patients who receive transplants and ex-
changes established), by picking any solution we are in-
evitably favoring the individuals included in the solution
over the excluded individuals. Our proposal for enforcing
fairness in this process is to design a randomized process for
selecting an optimal solution which promotes equal chances
of receiving a transplant among the patients. Next, we intro-
duce a selection strategy that allows us to design a random-
ized process.

Definition 3. Let S be the set of optimal solutions of a KEP
instance. A selection strategy δ is a distribution over S . The
probability that the patient v receives a transplant according
to the strategy δ is called a vertex probability and is denoted
by pδ(v) =

∑
S:v∈S δS .

Table 1 shows a selection strategy for the running exam-
ple. The common practice is to select the first optimal solu-
tion returned by a solver. We call this the first-best strategy.
The strategy which assigns equal probabilities to all solu-
tions (i.e. δS = 1

|S| ) is called the uniform strategy.
Intuitively, we prefer a selection strategy which yields

similar chances for the patients. We can quantify this qual-
ity in terms of the dispersion between the vertex proba-
bilities. An example is the mean absolute deviation, i.e.∑
v |pδ(v) − m| where m = 1

|V |
∑
v pδ(v). Alternatively,

one can measure the quality of a strategy in terms of the ver-
tex with the lowest probability, i.e. minv pδ(v).

A strategy can be defined over a subset of solutions by
assigning zero to every solution which is not included in the
subset. This is the case for coverings. In Table 1, {S1, S3}
is a covering subset, while {S1, S2} is not. Any strategy de-
fined over the latter will reduce the chances of v6 to zero.

5.1 Computing the Strategies
Assuming that we have the set of optimal solutions, we are
interested in obtaining the best strategy according to some

criterion that reflects fairness. Next, we describe popular cri-
teria that can drive the selection strategy.

Minimizing the Lp-norm. The goal is to determine
the selection strategy δ such that it minimizes the Lp-
norm mean deviation of each vertex. In other words,
we aim to find the distribution δ that minimizes(∑

v∈P |pδ(v)− 1
|P |
∑
v∈P pδ(v)|p

) 1
p . Let variables δS and

yv denote the probabilities of solution S and vertex v. Let
z represent the mean vertex probability and dv represent the
deviation of yv from the mean. The optimal strategy is ob-
tained by solving the following optimization program:

min

(∑
v∈P

dpv

) 1
p

(6a)

s.t.
∑
S∈S

δS = 1 (6b)

yv =
∑
S:v∈S

δS ∀v ∈ P (6c)

∑
v∈P

yv = |P | · z (6d)

dv ≥ yv − z ∀v ∈ P (6e)

dv ≥ z − yv ∀v ∈ P (6f)

0 ≤ δS ≤ 1 ∀S ∈ S (6g)

0 ≤ yv ≤ 1 ∀v ∈ P. (6h)

Constraints (6b) and (6g) ensure that δ is a probability
distribution over S . Constraints (6c) and (6h) establish yv
equal to pδ(v). Constraint (6d) makes z equal to the mean
over y. Finally, Constraints (6e) and (6f) lead to dv ≥ |yv −
z|, which together with the minimization of the objective
function implies dv = |yv − z|. Since minimizing L1 and
L2 correspond to a linear and convex programs, respectively,
we will use them in our experiments.

Maximizing the minimum vertex probability. In this
case, the goal is to maximize the probability of the ver-
tex with the least chance of being in a selected solu-
tion (Maxmin). Mathematically, it means to find the selec-
tion strategy δ that maximizes minv∈P

∑
S∈S δS .

Next, we formulate the maximization of the mininum ver-
tex probability as a linear program. Keeping the same def-
inition as above for variable δS and letting variable z de-
note the probability of the least well-off vertex. The strategy
which maximizes this smallest probability is obtained using
the following formulation:

max z (7a)

s.t. z ≤
∑
S:v∈S

δS ∀v ∈ P (7b)

(6b) and (6g).

Constraints (7b) enforce z to be upper bounded by the
smallest probability for a vertex v, while the objective func-
tion (7a) maximizes z (thus, the lowest vertex probability).
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5.2 Projection: Removing Redundancy
In Section 4, we present three approaches to determine all
optimal solutions (i.e., S). Next, we show that S can be re-
duced without any lost in the optimality of the selection poli-
cies described in this section. To this end, we need the fol-
lowing definition characterizing redundancy among optimal
solutions.
Definition 4. Two solutions in S are said to be KEP-
equivalent if they contain exactly the same set of trans-
planted patients. A set S̄ ⊆ S is said to be a projection of
S , if no two solutions in S̄ are KEP-equivalent and for any
solution in S there is a KEP-equivalent solution in S̄ .

If an optimal selection strategy δ∗ for problems (6) or (7)
assigns a strictly positive probability to some strategy S ∈
S \ S̄ , i.e. δ∗S > 0, then this value can be passed to δ∗

Ŝ
for

some Ŝ ∈ S̄ which is KEP-equivalent to S. Consequently,
the following result holds, contributing to the scalability of
the fairness selection policies described earlier; See (Farnadi
et al. 2021) for a detailed proof:
Lemma 5.1. Let S̄ be a projection of S . The optimal value
of problems (6) (Lp-norm) and (7) (Maxmin) is equal to
their optimal value when restricted to S̄ .

In this way, we can adapt both our ILP and CP method-
ologies to restrict the enumeration to projections. Note that
a projection is a covering, but the reverse does not hold.

6 Experimental Evaluation
In this section, we show the effectiveness of our proposed
methods by performing an empirical evaluation.

For all the empirical evaluations that are presented in
this section, we use two datasets which we name the US
dataset (Saidman et al. 2006) and the Canada dataset (Car-
valho and Lodi 2019). In both of our datasets, the number of
graph vertices ranges over 6 values: 20, 30, . . . , 70. There are
50 different instances per graph size, amounting to a total of
600 different graphs in total. The code and data is available
online2. See (Farnadi et al. 2021) for further details on our
experimental setup and datasets used. We investigate five re-
search questions in our experiments:
Q1: How scalable are our optimal solution enumera-
tion approaches? We proposed four approaches to enu-
merate the optimal solutions. These include the no-good-
cut approach of Section 4.1 (MIP-lazy-cut), the CP model
of Section 4.2 (CP-standard), the CP model equipped with
a specialized propagator as described in Section 4.3 (CP-
specialized), and the CP approach for greedy covering (CP-
greedy) of Section 4.4. The performance profiles of these
methods are presented in Figure 3.

Among the three methods which enumerate all optimal
solutions, CP-specialized performs the best and enumerates
the solutions of graphs with as many as 70 vertices. This is
a considerable improvement over the MIP-lazy-cut method
which scales to graphs with at most 40 vertices. However,
for half of the instances of larger graphs, enumerating all
optimal solutions within the timeout (30 minutes) is still not

2https://github.com/stawaway/IF-KEP

Figure 3: Performance profiles.

possible. This is alleviated by enumerating a subset of solu-
tions using the CP-greedy method. Figure 3 shows that this
method successfully finds a solution set for the majority of
instances within a short amount of time.
Q2: What is the effect of graph size on the number of op-
timal solutions? We inspect the optimal solutions obtained
by CP-specialized: the average number of all solutions over
graphs of different sizes is reported in the first row of Ta-
ble 2. For both datasets, increasing the graph size is accom-
panied by a significant increase in the count of optimal so-
lutions, which in turn correlates with the increased difficulty
of the enumeration task. We observe that two different so-
lutions can be KEP-equivalent, i.e.. the same set of patients
receive transplants in different cycles. For this reason, in the
second row of Table 2, we present the projected solutions.

It is notable that even after removing the equivalent solu-
tions, we could still have hundreds of thousands of optimal
solutions. In the last row, we present the results when the
utilitarian hierarchical criteria mentioned in Section 2 are
used.

It is interesting to observe that even after applying this fil-
ter, thousands of optimal solutions exist which emphasizes
the importance of selection strategies such as those intro-
duced in Section 5; See (Farnadi et al. 2021) for additional
results.

Q3: To what extent does our individual fairness
method enhance the equality of chances for receiving a
transplant? The large number of solutions in Table 2 in-
dicates the importance of employing a selection procedure
to ensure fairness. To address this question, we compare
the enumeration-based policies uniform, Maxmin, L1 and
L2, with the first-best baseline. We use the enumeration
approaches CP-specialized and CP-greedy. The results are
summarized in the plots presented in Figure 4; See (Farnadi
et al. 2021) for additional comparison among the measures.

The two plots on the top compare different selection
strategies with respect to the probability of the most disad-
vantaged vertex (higher is better) These probabilities are av-
eraged over all solved instances per graph size; See (Farnadi
et al. 2021) for additional experiments that present the vari-
ances per graph sizes. It is observed that the enumeration-
based strategies significantly improve the chances of the
least well-off patients compared to the baseline (first-best),
especially in larger graphs where this chance approaches
zero.

The four plots on the bottom compare the strategies in
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Graph size 20 30 40 50 60 70

All (Canada) 35 2820 180155 363764 354277 616120
All (US) 256 8524 220181 352953 594217 788673
Projected (Canada) 12 30 92 658 1718 2750
Projected (US) 31 86 2522 6570 7001 10953
Hierarchical (Canada) 8 144 892 1487 3778 9318
Hierarchical (US) 76 495 54012 142137 62569 42478

Table 2: Average number of solutions per graph size.

Figure 4: Comparing different selection strategies.

terms of L1 and L2 norms (lower is better). Similar to
Maxmin, significant improvement over the baseline is ob-
served (Notice the logarithmic y axis). An interesting obser-
vation is the good performance of the uniform policy across
multiple fairness criteria.

It is worth pointing out that we considered changing the
solver’s random seed to obtain different solutions, however
we observed no variability in the returned solutions.

Q4: How does our individual fairness method com-
pare with existing work? We first remark that comparison
with the existent egalitarian mechanisms (Roth, Sönmez,
and Utku Ünver 2005; Li et al. 2014) is not possible, since
they 1) are restricted to cycles of length two, 2) use the
Lorentz-dominance metric which is not guaranteed to ex-
ist for KEPs with cycles of length greater than 2, and 3) can
only handle the number of transplants as the optimal criteria.

This leaves us with the group fairness approach which
is defined in terms of the number of hard-to-match pa-
tients (i.e. PRA - panel reactive antibody - above 80%) in-
cluded in a solution (Dickerson, Procaccia, and Sandholm
2014). To enforce group fairness according to this defini-
tion, we add the constraint

∑
c∈C h(c)xc ≥ α∗ |VH | to Prob-

lem (1), where VH = {v ∈ P : v has PRA ≥ 80%},
h(c) = |{v ∈ c : v ∈ VH}|, and α∗ is the maximum pos-

sible fraction of hard-to-match patients that can receive a
transplant among all solutions.

In Table 3, we compare our individual fairness selector
based on L2-norm (IF) with first-best and the group fairness
approach (GF). The table presents the expected value of the
group fairness measure (α: the number of hard-to-match pa-
tients in a solution), the optimally measure (expected max-
imum number of transplants), and the individual fairness
measure (logL2). We remark that the results of IF do not de-
grade the group fairness measure too much (α value). They
are similar to the first-best case and even slightly better in
some cases. We can see however that in terms of the indi-
vidual fairness measure, our approach significantly outper-
forms the first-best and group fairness while we do not pay
the price of fairness (Dickerson, Procaccia, and Sandholm
2014) wrt the total number of transplants; See (Farnadi et al.
2021) for similar comparison between other individual fair-
ness approaches, i.e., Maxmin and L1.

Q5: What is the price of enforcing both individual and
group fairness?

We use the enumeration of t-relaxed solutions to con-
trol the price of including hard-to-match patients. The main
challenge is that the number of such solutions can become
quite large, e.g., the number of solutions for a graph of size
40 expanded from 164 to 213,250 solutions. Thus, we used
CP-greedy to determine a covering of t-relaxed solutions.
Figure 5 presents these results for graphs of size 70; See
(Farnadi et al. 2021) for similar results based on the smaller
graphs. We observe that in all instances the 3-relaxed solu-
tions include all patients in the pool. Interestingly, by paying
a minimum cost, i.e., OPT-1, not only we are able to cover
98-99% of all patients in the pool, we also cover 98-99% of
the hard-to-match patients. This result suggests that we are
able to enforce both individual fairness and group fairness
by paying a minimum cost. Another interesting observation
is that by using our approach, we are able to give the equal
chance of receiving a transplants to %12 more patients that
were not in the optimal solutions while only 1% of them are
labeled as hard-to-match.

7 Conclusion & Future Directions
This work investigates for the first time the problem of in-
dividual fairness on KEPs. To balance patients’ likelihood
of being in a selected solution, we propose a two-phases
framework: (1) the enumeration of solutions not deterio-
rating the utilitarian goals of KEPs, and (2) the determi-
nation of a probability distribution among those solutions

11502



Graph size 20 30 40 50 60 70

Group fairness measure: α value

First best 0.30±0.31 0.29±0.24 0.43±0.18 0.46±0.16 0.44±0.16 0.46±0.17
IF 0.31±0.30 0.29±0.23 0.42±0.17 0.45±0.17 0.44±0.15 0.49±0.18
GF 0.37±0.32 0.34±0.23 0.52±0.17 0.54±0.16 0.49±0.15 0.58±0.17

Optimality measure: number of transplants

IF 8.05±4.02 11.81±3.46 16.03 ±5.36 21.16±5.02 24.08±6.51 24.33±2.50
GF 7.90±3.97 11.69±3.41 15.69±5.36 20.84±4.83 24.08±6.51 23.67±2.66

Individual fairness measure: Log L2

First best 4.02±0.95 6.77±0.90 8.91±1.34 11.73±1.06 13.76±1.48 15.80±0.78
IF 2.86±0.97 5.18±1.04 6.50±1.34 9.22±1.67 10.38±1.52 12.11±1.40
GF 4.01±0.95 6.76±0.89 8.84±1.41 11.71±1.09 13.76±1.48 15.58±0.85

Table 3: Comparing group fairness method (GF) with individual fairness method (IF), for US only.

Figure 5: Effect of t-relaxation on the (relative) number of
hard-to-match patients in solutions.

that optimizes an individual fairness metric. For the first
phase, 4 techniques are developed using integer and con-
straint programming. Whereas the second phase presents se-
lection strategies. The computational experiments demon-
strate the crucial role of our selection strategies in ensuring
fairness among patients. As a byproduct, our approach (i)
guarantees full control over selected solutions by decision
makers, instead of relying on a solver’s output, and (ii) it
does not significantly damage group fairness. In fact, for the
latter, a small relaxation of the utilitarian criteria can allow
our selection strategies to better incorporate group fairness.
Investigating other approaches that are able to scale to larger
graphs remains a promising direction for future work. Like-
wise, another interesting path to explore is on how our ap-
proach behaves over time: How much will it avoid the accu-
mulation of the most-disadvantaged patients and reduce the
overall health cost? Does individual fairness remains stable?
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by Calcul Québec (www.calculquebec.ca) and Compute
Canada (www.computecanada.ca).

Ethical Impact
Kidney exchange programs are running in several countries.
Their modus operandi, such as frequency, optimization cri-
teria and maximum length for chains, varies from country
to country. Nevertheless, the methodology described in this
work can be incorporated on top of the current practices as
all it requires is a description of the valid exchange plans (so-
lutions). Furthermore, this work contributes to our responsi-
bility as computer scientists to empower users (in this case,
physicians) with a complete control of the selected solution,
i.e.of the patients receiving a transplant.

It is worth highlighting the fact that our selection strate-
gies promoting individual fairness do not use an inputted
medical definition. Contrary to group fairness, which is de-
fined for patients satisfying certain characteristics indepen-
dent of the patient-donor pool, the individual fairness intro-
duced in this paper depends on the patient-donor pool and
not explicitly on patients’ attributes. This observation opens
an important dialog with practitioners about the identifica-
tion of the most disadvantaged patients by our mathemati-
cal procedure and hence, on the importance of context (KEP
pool) for this definition.

Gao (2019) has raised attention for priority rules involv-
ing patients in a critical situation (high mortality rate). Addi-
tionally, over time, the health status of patients can worsen.
These are elements that cannot be mathematically captured
by considering static KEPs. Therefore, it is of the utmost
importance to further investigate the impact of individual
fairness on KEP pools over time and to adapt our enumera-
tion procedures to capture dynamic solutions (i.e., exchange
plans over time). In this way, we can better anticipate and
control the impact of algorithms used by kidney exchange
programs.

Last but not least, healthcare is a protected domain un-
der the anti-discrimination law. However, there is no com-
prehensive guidance for healthcare research and subsequent
deployment yet, and studies such as ours are an opportunity

11503



to provide insight into fairness in KEP problems to facilitate
regulating models.
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