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Abstract

Multiagent systems can use commitments as the core of a
general coordination infrastructure, supporting both coop-
erative and non-cooperative interactions. Agents whose ob-
jectives are aligned, and where one agent can help another
achieve greater reward by sacrificing some of its own reward,
should choose a cooperative commitment to maximize their
joint reward. We present a solution to the problem of how co-
operative agents can efficiently find an (approximately) opti-
mal commitment by querying about carefully-selected com-
mitment choices. We prove structural properties of the agents’
values as functions of the parameters of the commitment
specification, and develop a greedy method for composing a
query with provable approximation bounds, which we empir-
ically show can find nearly optimal commitments in a fraction
of the time methods that lack our insights require.

1 Introduction
Commitments are a proven approach to multiagent coor-
dination (Singh 2012; Cohen and Levesque 1990; Castel-
franchi 1995; Mallya and Huhns 2003; Chesani et al. 2013;
Al-Saqqar et al. 2014). Through commitments, agents know
more about what to expect from others, and thus can plan
actions with higher confidence of success. That said, com-
mitments are generally uncertain: an agent might abandon
a commitment if it discovers that it cannot achieve what it
promised, or that it prefers to achieve something else, or that
others will not uphold their side of the commitment (Jen-
nings 1993; Xing and Singh 2001; Winikoff 2006).

One way to deal with commitment uncertainty is to insti-
tute protocols so participating agents are aware of the sta-
tus of commitments through their lifecycles (Venkatraman
and Singh 1999; Xing and Singh 2001; Yolum and Singh
2002; Fornara and Colombetti 2008; Baldoni et al. 2015;
Günay, Liu, and Zhang 2016; Pereira, Oren, and Meneguzzi
2017; Dastani, van der Torre, and Yorke-Smith 2017). An-
other has been to qualify commitments with conditional
statements about what must (not) be true in the environment
for the commitment to be fulfilled (Singh 2012; Agotnes,
Goranko, and Jamroga 2007; Vokrı́nek, Komenda, and Pe-
choucek 2009). When such conditions might not be fully
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observable to all agents, agents might summarize the likeli-
hood of the conditions being satisfied in the form of a prob-
abilistic commitment (Kushmerick, Hanks, and Weld 1994;
Xuan and Lesser 1999; Witwicki and Durfee 2007).

Our focus is the process by which agents choose a proba-
bilistic commitment, which serves as a probabilistic promise
from one agent (the provider) to another (the recipient)
about establishing a precondition for the recipient’s pre-
ferred actions/objectives. We formalize how the space of
probabilistic commitments for the precondition captures dif-
ferent tradeoffs between timing and likelihood, where in
general the recipient gets higher reward from earlier tim-
ing and/or higher likelihood, while the provider prefers
later timing and/or lower likelihood because these leave
it less constrained when optimizing its own policy. Thus,
when agents agree to work together (e.g., (Han, Pereira, and
Lenaerts 2017)), forming a commitment generally involves a
negotiation (Kraus 1997; Aknine, Pinson, and Shakun 2004;
Rahwan 2004).

Sometimes, however, a pair of agents might have ob-
jectives/payoffs that are aligned/shared. For example, they
might be a chef and waiter working in a restaurant (see Sec-
tion 6.2). In a commitment-based coordination framework,
such agents should find a cooperative probabilistic commit-
ment, whose timing and likelihood maximizes their joint
(summed) reward, in expectation. Decomposing the joint re-
ward into local, individual rewards is common elsewhere as
well, like in the Dec-POMDP literature (Oliehoek, Amato
et al. 2016) and multi-agent reinforcement learning (Zhang
et al. 2018). This optimization problem is complicated by
two main factors: i) the information relevant to optimization
is distributed, and thus the agents need to exchange knowl-
edge, preferably with low communication cost; and ii) the
space of possible timing/probability combinations is large
and evaluating a combination (requiring each agent to com-
pute an optimal policy) is expensive, and thus identifying a
desirable probabilistic commitment is computationally chal-
lenging even with perfect centralized information.

The main contribution of this paper is an approach that ad-
dresses both challenges for cooperative agents to efficiently
converge on an approximately-optimal probabilistic com-
mitment. To address i), our approach adopts a decentralized,
query-based protocol for the agents to exchange knowledge
effectively with low communication cost. To get the effi-
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ciency for ii), we prove the existence of structural properties
in the agents’ value functions, and show that these can be
provably exploited by the query-based protocol.

2 Related Work
Commitments are a widely-adopted framework for multi-
agent coordination (Kushmerick, Hanks, and Weld 1994;
Xuan and Lesser 1999; Singh 2012). We build on prior
research on probabilistic commitments (Xuan and Lesser
1999; Bannazadeh and Leon-Garcia 2010), where the tim-
ing and likelihood of achieving a desired outcome are ex-
plicitly specified. Choosing a probabilistic commitment thus
corresponds to searching over the combinatorial space of
possible commitment times and probabilities. Prior work
on such search largely relies on heuristics. Witwicki et al.
(2007) propose the first probabilistic commitment search al-
gorithm that initializes a set of commitments and then per-
forms local adjustments on time and probability. Later work
(Witwicki and Durfee 2009; Oliehoek, Witwicki, and Kael-
bling 2012) further incorporates the commitment’s feasibil-
ity and the best response strategy (Nair et al. 2003) to guide
the search. In contrast to these heuristic approaches, in this
paper we analytically reveal the structure of the commitment
space, which enables efficient search that provably finds the
optimal commitment.

Because the search process is decentralized, it will in-
volve message passing. The message passing between our
decision-theoretic agents serves the purpose of preference
elicitation, which is typically framed in terms of an agent
querying another about which from among a set of choices
it most prefers (Chajewska, Koller, and Parr 2000; Boutilier
2002; Viappiani and Boutilier 2010). We adopt such a query-
ing protocol as a means for information exchange between
the agents. In particular, we draw on recent work that uses
value-of-information concepts to formulate multiple-choice
queries (Viappiani and Boutilier 2010; Cohn, Singh, and
Durfee 2014; Zhang, Durfee, and Singh 2017), but as we
will explain we augment prior approaches by annotating of-
fered choices with the preferences of the agent posing the
query. Moreover, we prove several characteristic properties
of agents’ commitment value functions, which enables effi-
cient formulation of near-optimal queries.

3 Decision-Theoretic Commitments
The provider’s and recipient’s environments are modeled as
two separate Markov Decision Processes (MDPs). An MDP
is defined as M = (S,A, P,R,H, s0) where S is the finite
state space, A the finite action space, P : S × A → ∆(S)
the transition function (∆(S) denotes the set of all proba-
bility distributions over S), R : S × A → R the reward
function, H the finite horizon, and s0 the initial state. The
state space is partitioned into disjoint sets by the time step,
S =

⋃H
h=0 Sh, where states in Sh only transition to states

in Sh+1. The MDP starts in s0 and ends in SH . Given a
policy π : S → ∆(A), a random sequence of transitions
{(sh, ah, rh, sh+1)}H−1

h=0 is generated by ah ∼ π(sh), rh =
R(sh, ah), sh+1 ∼ P (sh, ah). The value function of π is
V πM (s) = E[

∑H−1
h′=h rh′ |π, sh = s] where h is such that

s ∈ Sh. The optimal policy π∗M maximizes V πM for all s ∈ S,
with value function V π

∗
M

M abbreviated as V ∗M .
Superscripts p and r denote the provider and recipient,

respectively. Thus, the provider’s MDP is Mp, and the re-
cipient’s MDP is M r, sharing the horizon H = Hp = Hr.
We assume that the two MDPs are weakly-coupled in one
direction in the sense that the provider’s action might af-
fect certain aspects of the recipient’s state but not the other
way around. As one way to model such an interaction,
we adopt the Transition-Decoupled POMDP (TD-POMDP)
framework (Witwicki and Durfee 2010). Formally, both the
provider’s state sp and the recipient’s state sr can be factored
into state features. The provider can fully control its state
features. The recipient’s state can be factored as sr = (lr, u),
where lr is the set of all the recipient’s state features locally
controlled by the recipient, and u is the set of state features
uncontrollable by the recipient but shared with the provider,
i.e. u = sp ∩ sr. Formally, the dynamics of the recipient’s
state is factored as P r = (P r

l , P
r
u):

P r
(
sr
h+1|sr

h, a
r
h

)
=P r

(
(lrh+1, uh+1)|(lrh, uh), ar

h

)
=P r

u(uh+1|uh)P r
l

(
lrh+1|(lrh, uh), ar

h

)
,

where the dynamics of u, P r
u, is controlled only by the

provider’s policy (i.e., it is not a function of ar
h). Prior work

refers to P r
u as the influence (Witwicki and Durfee 2010;

Oliehoek, Witwicki, and Kaelbling 2012) that the provider
exerts on the recipient’s environment. In this paper, we fo-
cus on the setting where u contains a single binary state fea-
ture, u ∈ {u−, u+}, with u initially taking the value of u−.
Intuitively, u+(u−) stands for an enabled (disabled) precon-
dition needed by the recipient, and the provider commits to
enabling the precondition. Further, we focus on a scenario
where the flipping is permanent (Hindriks and van Riems-
dijk 2007; Witwicki and Durfee 2009; Zhang et al. 2016).
That is, once feature u flips to u+, the precondition is per-
manently established and will not revert back to u−.

The provider’s commitment semantics. Borrowing
from the literature (Witwicki and Durfee 2007; Zhang et al.
2016), we define a probabilistic commitment w.r.t. the
shared feature u via a tuple c = (T, p), where T is the
commitment time and p is the commitment probability. The
provider’s commitment semantics is to follow a policy πp

that, starting from initial state sp
0 (in which u is u−), sets u

to u+ by time step T with at least probability p:

Pr
(
u+ ∈ sp

T |s
p
0 , π

p
)
≥ p. (1)

For a commitment c, let Πp(c) be the set of all possi-
ble provider policies respecting the commitment semantics
(Eq. (1)). We call commitment c feasible if and only if Πp(c)
is non-empty. For a given commitment time T , there is a
maximum feasible probability p(T ) ≤ 1 such that commit-
ment (T, p) is feasible if and only if p ≤ p(T ). This p(T )
can be computed by solving the modified reward function:
+1 where the commitment is realized at T , and 0 otherwise.

Given a feasible c, the provider’s optimal policy maxi-
mizes the value with its original reward function of its initial
state while respecting the commitment semantics:

vp(c) = maxπp∈Πp(c) V
πp

Mp(sp
0). (2)
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We call vp(c) the provider’s commitment value function,
and πp(c) denotes the provider’s policy maximizing Eq. (2).

The recipient’s commitment modeling. Abstracting the
provider’s influence using a single time/probability pair re-
duces the complexity and communication between the two
agents, and prior work has also shown that such abstraction,
by leaving other time steps unconstrained, helps the provider
handle uncertainty in its environment (Zhang et al. 2016;
Zhang, Durfee, and Singh 2020c). Specifying just a single
time/probability pair, however, increases the uncertainty of
the recipient. Given commitment c, the recipient creates an
approximation P̂ r

u(c) of influence P r
u, where P̂ r

u(c) hypoth-
esizes the flipping probabilities at other timesteps. Formally,
given P̂ r

u(c), let M̂ r(c) be the recipient’s approximate model
that differs fromM r only in terms of the dynamics of u. The
recipient’s value of commitment c is defined to be the opti-
mal value of the initial state in M̂ r(c):

vr(c) = maxπr∈Πr V π
r

M̂r(c)
(sr

0). (3)

We call vr(c) the recipient’s commitment value function,
and πr(c) the recipient’s policy maximizing Eq. (3) .

Previous work (Witwicki and Durfee 2010; Zhang, Dur-
fee, and Singh 2020a) has chosen an intuitive and straight-
forward strategy for the recipient to create P̂ r

u(c), which
models the flipping with a single branch at the commit-
ment time with the commitment probability. In this paper,
we adopt this commitment modeling strategy in Eq. (3) for
the recipient, where the strategy determines the transition
function of M̂ r(c) through P̂ r

u(c).
The optimal commitment. Let T = {1, 2, ...,H} be the

space of possible commitment times, [0, 1] be the continuous
commitment probability space, and vp+r = vp + vr be the
joint commitment value function. The optimal commitment
is a feasible commitment that maximizes the joint value, i.e.

c∗ = arg maxfeasible c∈T ×[0,1] v
p+r(c). (4)

Since commitment feasibility is a constraint for all our op-
timization problems, for notational simplicity we omit it for
the rest of this paper. A naı̈ve strategy for solving the prob-
lem in Eq. (4) is to discretize the commitment probability
space, and evaluate every feasible commitment in the dis-
cretized space. The finer the discretization is, the better the
solution will be. At the same time, the finer the discretiza-
tion, the larger the computational cost of evaluating all the
possible commitments. Next, we prove structural properties
of the provider’s and the recipient’s commitment value func-
tions that enable us to develop algorithms that efficiently
search for the exact optimal commitment.

4 Commitment Space Structure
4.1 Properties of the Commitment Values
We show that, as functions of the commitment probability,
both commitment value functions are monotonic and piece-
wise linear; the provider’s commitment value function is
concave, and the recipient’s is convex. We provide proof
sketches for Theorems 1 and 2 on these properties. Formal
proofs of all the theorems and the lemmas are included in the
full version of this paper (Zhang, Durfee, and Singh 2020b).

Theorem 1. Let vp(c) = vp(T, p) be the provider’s com-
mitment value as defined in Eq. (2). For any fixed commit-
ment time T , vp(T, p) is monotonically non-increasing, con-
cave, and piecewise linear in p.

Proof of monotonicity. By the commitment semantics of
Eq. (1), Πp(c) = Πp(T, p) is monotonically non-increasing
in p for any fixed T , i.e. Πp(T, p′) ⊆ Πp(T, p) for any
p′ > p. Therefore, vp(T, p) is monotonically non-increasing
in p.

Proof of concavity. Consider the linear program (LP), pat-
terned on the literature (Altman 1999; Witwicki and Durfee
2007), solving the provider’s problem in Eq. (2):

maxx
∑
sp,ap x(sp, ap)Rp(sp, ap) (5)

s.t. ∀sp, ap x(sp, ap) ≥ 0; (6)

∀sp′ ∑
ap′ x(sp′, ap′) (7)

=
∑
sp,ap x(sp, ap)P p(sp′|sp, ap) + δ(sp′, sp

0);∑
sp∈s+T

∑
ap x(sp, ap) ≥ p (8)

where δ(sp′, sp
0) is the Kronecker delta that returns 1 when

sp′ = sp
0 and 0 otherwise, and s+

T = {sp : sp ∈ Sp
T , u

+ ∈
sp} is the subset of the provider’s states at commitment time
T in which u = u+. If x satisfies constraints (6) and (7),
then it is the occupancy measure of policy πp, πp(ap|sp) =
x(sp, ap)/

∑
ap′ x(sp, ap′), where x(sp, ap) is the expected

number of times action ap is taken in state sp by following
policy πp. Constraint (8) is the commitment semantics of
Eq. (1). The expected cumulative reward is in the objective
function (5). Therefore, vp(c) is the optimal value of this LP.

For a fixed commitment time T and any two commitment
probabilities p and p′, let x∗p, x

∗
p′ be the optimal solutions to

the LP, respectively. For any η ∈ [0, 1], let pη = ηp′ + (1−
η)p. Consider xη that is the η-interpolation of x∗p, x

∗
p′ ,

xη(sp, ap) = ηx∗p′(s
p, ap) + (1− η)x∗p(s

p, ap).

Note that xη satisfies constraints (6) and (7), and so it is the
occupancy measure of policy πp

η defined as πp
η(ap|sp) =

xη(sp, ap)/
∑
ap xη(s, ap). Since the occupancy measure of

πp
η is the η-interpolation of x∗p and x∗p′ , it is easy to verify

that πp
η is feasible for commitment probability pη . Therefore,

the concavity holds.

Proof sketch of piecewise linearity. It is well known (Luen-
berger and Ye 1984) that an optimal solution for a linear
program can always be found in the extreme points (or ba-
sic feasible solutions). Intuitively, the extreme points move
linearly with the commitment probability so that the optimal
objective moves piecewise linearly.

We introduce Assumption 1 that formalizes the notion that
u+, as opposed to u−, is the value of u that is desirable for
the recipient, and then state the properties of the recipient’s
commitment value function in Theorem 2.

Assumption 1. Let M r+(M r−) be defined as the recipi-
ent’s MDP identical to M r except that u is always set to
u+(u−). For any M r and any locally-controlled feature lr,
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letting sr+ = (lr, u+) and sr− = (lr, u−), we assume
V ∗Mr−(sr−) ≤ V ∗Mr+(sr+).

Theorem 2. Let vr(c) = vr(T, p) be the recipient’s commit-
ment value as defined in Eq. (3). For any fixed commitment
time T , under Assumption 1, vr(T, p) is monotonically non-
decreasing, convex, and piecewise linear in p.

Proof sketch of monotonicity. We fix the commitment time
T . For any recipient policy πr, let vπ

r

T,1 be the initial state
value of πr when u is flipped from u− to u+ with probability
1 at T , and let vπ

r

T,0 be the initial state value of πr when u
never flips to u+. It is useful to notice that

V π
r

M̂r(c)
(sr

0) = pvπ
r

T,1 + (1− p)vπ
r

T,0 (9)

In words, the initial state value can be expressed as the
weighted sum of the two scenarios, with the weight deter-
mined by the commitment probability. Consider the optimal

policy π∗
M̂r(c)

for M̂ r(c). It is guaranteed that v
π∗
M̂r(c)

T,1 ≥

v
π∗
M̂r(c)

T,0 because, intuitively, u+ is more desirable than u−

to the recipient, which leads to vr(T, p) ≤ vr(T, p′) if
p′ > p.

Proof of convexity and piecewise linearity. Let Πr
D be the

set of all the recipient’s deterministic policies. It is well
known (Puterman 2014) that the optimal value can be at-
tained by a deterministic policy,

vr(T, p) = max
πr∈Πr

D

V π
r

M̂r(c)
(sr

0) = max
πr∈Πr

D

pvπ
r

T,1 + (1− p)vπ
r

T,0

which indicates that vr(T, p) is the maximum of a finite
number of value functions that are linear in p. Therefore,
vr(T, p) is convex and piecewise linear in p.

4.2 Efficient Optimal Commitment Search
As an immediate consequence of Theorems 1 and 2, the joint
commitment value is piecewise linear in the probability, and
any local maximum for a fixed commitment time T can be
attained by a probability at the extremes of zero and p(T ), or
where the slope of the provider’s commitment value function
changes. We refer to these probabilities as the provider’s lin-
earity breakpoints, or breakpoints for short. Therefore, one
can solve the problem in Eq. (4) to find an optimal commit-
ment by searching only over these breakpoints, as formally
stated in Theorem 3.
Theorem 3. Let P(T ) be the provider’s breakpoints for a
fixed commitment time T . Let C = {(T, p) : T ∈ T , p ∈
P(T )} be the set of commitments in which the probability
is a provider’s breakpoint. We have

maxc∈T ×[0,1] v
p+r(c) = maxc∈C v

p+r(c).

Further, the property of convexity/concavity assures that,
for any commitment time, the commitment value function is
linear in a probability interval [pl, pu] if and only if the value
of an intermediate commitment probability pm ∈ (pl, pu)
is the linear interpolation of the two extremes. This en-
ables us to adopt the binary search procedure in Algorithm

Algorithm 1: Binary search for breakpoints
Input: The provider’s Mp, commitment time T .
Output: P(T ): the provider’s breakpoints for T .

1 p(T )← the maximum feasible probability for T
2 q← A FIFO queue of probability intervals
3 q.push([0, p(T )])
4 Compute and save the provider’s commitment value

for p = 0, p(T ), i.e. vp(T, 0) and vp(T, p(T ))
5 Initialize P(T )← {}
6 while q not empty do
7 [pl, pu]← q.pop(); P(T )←P(T ) ∪ {pl, pu}
8 pm ← (pl + pu)/2; compute and save vp(T, pm)
9 if vp(T, pm) is not the linear interpolation of

vp(T, pl) and vp(T, pu) then
10 q.push([pl, pm]); q.push([pm, pu])
11 end
12 end

1 to efficiently identify the provider’s breakpoints. For any
fixed commitment time T , the strategy first computes the
maximum feasible probability p(T ). Beginning with the en-
tire interval of [pl, pu] = [0, p(T )], it recursively checks
the linearity of an interval by checking the middle point,
pm = (pl + pu)/2. The recursion continues with the two
halves, [pl, pm] and [pm, pu], only if the commitment value
function is verified to be nonlinear in interval [pl, pu]. Step-
ping through T ∈ [H] and doing the above binary search for
each will find all probability breakpoint commitments C.

This allows for an efficient centralized procedure to
search for the optimal commitment: construct C as just de-
scribed, compute the value of each c ∈ C for both the
provider and recipient, and return the c with the highest
summed value. We will use it to benchmark the decentral-
ized algorithms we develop in Section 5.

5 Commitment Queries
We now develop a querying approach for eliciting the
jointly-preferred (cooperative) commitment in a decentral-
ized setting where neither agent has full knowledge about
the other’s environment. In our querying approach, one
agent poses a commitment query consisting of information
about a set of feasible commitments, and the other responds
by selecting the commitment from the set that best satisfies
their joint preferences. To limit communication cost and re-
sponse time, the set of commitments in the query is often
small. A query poser thus should optimize its choices of
commitments to include, and the responder’s choice should
reflect joint value. In general, either the provider or recipient
could be responsible for posing the query, and the other for
responding, and in future work we will consider how these
roles could be dynamically assigned. In this paper, though,
we always assign the provider to be the query poser and the
recipient to be the responder. We do this because the agents
must assuredly be able to adopt the responder’s selected
choice, which means it must be feasible, and per Section 3,
only the provider knows which commitments are feasible.
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Specifically, we consider a setting where the provider
fully knows its MDP, and where its uncertainty about the re-
cipient’s MDP is modeled as a distribution µ over a finite set
of N candidate MDPs containing the recipient’s true MDP.
Given uncertainty µ, the Expected Utility (EU) of a feasible
commitment c is defined as :

EU(c;µ) = Eµ
[
vp+r(c)

]
, (10)

where the expectation is w.r.t. the uncertainty about the re-
cipient’s MDP. If the provider had to singlehandedly select
a commitment based on its uncertainty µ, the best commit-
ment is the one that maximizes the expected utility:

c∗(µ) = arg maxcEU(c;µ). (11)

But through querying, the provider is given a chance to re-
fine its knowledge about the recipient’s actual MDP. For-
mally, the provider’s commitment query Q consists of a fi-
nite number k = |Q| of feasible commitments. The provider
offers these choices to the recipient, where the provider also
annotates each choice with the expected local value of its
optimal policy respecting the commitment (Eq. (2)). The re-
cipient computes (using Eq. (3)) its own expected value for
each commitment offered in the query, and adds that to the
annotated value from the provider. It responds with the com-
mitment that maximizes the summed value (with ties broken
by selecting the smallest indexed) to be the commitment the
two agents agree on. Therefore, our motivation for a small
query size k is two-fold: it avoids large communication cost;
and it induces short response time of the recipient evaluating
each commitment in the query.

More formally, let Q c denote the recipient’s response
that selects c ∈ Q. With the provider’s prior uncertainty µ,
the posterior distribution given the response is denoted as
µ | Q  c, which can be computed by Bayes’ rule. When
the query size k = |Q| is limited, the response usually can-
not fully resolve the provider’s uncertainty. In that case, the
value of a query Q is the EU with respect to the poste-
rior distribution averaged over all the commitments in the
query being a possible response, and, consistent with prior
work (Viappiani and Boutilier 2010), we refer to it as the
query’s Expected Utility of Selection (EUS):

EUS(Q;µ) = EQ c;µ [EU(c;µ | Q c)] .

Here, the expectation is with respect to the recipient’s re-
sponse under µ. The provider’s querying problem thus is to
formulate a query Q ⊆ T × [0, 1] consisting of |Q| = k
feasible commitments that maximizes EUS:

maxQ⊆T ×[0,1],|Q|=k EUS(Q;µ). (12)

Importantly, we can show that EUS(Q;µ) is a submod-
ular function of Q, as formally stated in Theorem 4. Sub-
modularity serves as the basis for a greedy optimization al-
gorithm (Nemhauser, Wolsey, and Fisher 1978), which we
describe after Theorem 5.
Theorem 4. For any uncertainty µ, EUS(Q;µ) is a sub-
modular function of Q.

Submodularity means that adding a commitment to the
query can increase the EUS, but the increase is diminishing

with the size of the query. An upper bound on the EUS of
any query of any size k can be obtained when k ≥ N such
that the query can include the optimal commitment of each
candidate recipient’s MDP, i.e.

EUS = Eµ
[
maxc∈T ×[0,1] v

p+r(c)
]
. (13)

As the objective of Eq. (12) increases with size k, in practice
the agents could choose size k large enough to meet some
predefined EUS. We will empirically investigate the effect
of the choice of k in Section 6.

Structure of the Commitment Query Space. Due to
the properties of individual commitment value functions
proved in Section 4, the expected utility EU(c;µ) defined
in Eq. (10), as calculated by the provider alone, becomes
a summation of the non-increasing provider’s commitment
value function and the (provider-computed) weighted av-
erage of the non-decreasing recipient’s commitment value
functions. With the same reasoning as for Theorem 3, the
optimality of the breakpoint commitments can be general-
ized to any uncertainty, as formalized in Lemma 1.
Lemma 1. Let C be defined as in Theorem 3. We have
maxc∈T ×[0,1]EU(c;µ) = maxc∈C EU(c;µ).

As a consequence of Lemma 1, for EUS maximization,
there is no loss in only considering the provider’s break-
points, as formally stated in Theorem 5.
Theorem 5. For any query size k and uncertainty µ, we have

max
Q⊆T ×[0,1],|Q|=k

EUS(Q;µ) = max
Q⊆C,|Q|=k

EUS(Q;µ).

Theorem 5 enables an efficient procedure for solving
the query formulation problem (Eq. (12)). The provider
first identifies its breakpoint commitments C and evaluates
them for its MDP and each of the N recipient’s possible
MDPs. Due to the concavity and convexity properties, C
can be identified and evaluated efficiently with the binary
search strategy we described in Section 4.2. Finally, a size
k query is formulated from commitments C that solves the
EUS maximization problem either exactly with exhaustive
search, or approximately with greedy search (Viappiani and
Boutilier 2010; Cohn, Singh, and Durfee 2014). The greedy
search begins with Q0 as an empty set and iteratively per-
forms Qi ← Qi−1 ∪ {ci} for i = 1, ..., k, where ci =
arg maxc∈C,c/∈Qi−1

EUS(Qi−1 ∪ {c};µ). Since EUS is a
submodular function of the query (Theorem 4), the greedily-
formed size k query Qk is within a factor of 1 − (k−1

k )k of
the optimal EUS (Nemhauser, Wolsey, and Fisher 1978).

6 Empirical Evaluation
Our empirical evaluations focus on these questions:
• For EUS maximization, how effective and efficient is the

breakpoints discretization compared with alternatives?
• For EUS maximization, how effective and efficient is

greedy query search compared with exhaustive search?
To answer these questions, in Section 6.1, we conduct em-
pirical evaluations in synthetic MDPs with minimal assump-
tions on the structure of transition and reward functions, and
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we use an environment in Section 6.2 inspired by the video
game of Overcooked to evaluate the breakpoints discretiza-
tion and the greedy query search in this more grounded and
structured domain.

6.1 Synthetic MDPs
The provider’s environment is a randomly-generated MDP.
It has 10 states the provider can be in at any time step, one
of which is an absorbing state denoted as s+, and where the
initial state is chosen from the non-absorbing states. Fea-
ture u takes the value of u+ only in the absorbing state, i.e.
u+ ∈ sp if and only if sp = s+. There are 3 actions. For
each state-action pair (sp, ap) where sp 6= s+, the transition
function P p(·|sp, ap) is determined independently by fill-
ing the 10 entries with values uniformly drawn from [0, 1],
and normalizing P p(·|sp, ap). The reward Rp(sp, ap) for a
non-absorbing state sp 6= s+ is sampled uniformly and inde-
pendently from [0, 1], and for the absorbing state sp = s+ is
zero. Thus, the random MDPs are intentionally generated to
introduce a tension for the provider between helping the re-
cipient (but getting no further local reward) versus accumu-
lating more local reward. (Our algorithms also work fine in
cases without this tension, but the commitment search is less
interesting without it because no compromise is needed.)

The recipient’s environment is a one-dimensional space
with 10 locations represented as integers {0, 1, ..., 9}. In lo-
cations 1− 8, the recipient can move right, left, or stay still.
Once the recipient reaches either end (location 0 or 9), it
stays there. There is a gate between locations 0 and 1 for
which u = u+ denotes the state of open and u = u− closed.
Initially, the gate is closed and the recipient starts at an ini-
tial location L0. A negative reward of −10 is incurred by
bumping into the closed gate. For each time step the recipi-
ent is at neither end, it gets a reward of −1. If it reaches the
left end (i.e. location 0), it gets a one-time reward of r0 > 0.
The recipient gets a reward of 0 if it reaches the right end. In
a specific instantiation, L0 and r0 are fixed. L0 is randomly
chosen from locations 1 − 8 and r0 from interval (0, 10) to
create various MDPs for the recipient.

To generate a random coordination problem, we sample
an MDP for the provider, and N candidate MDPs for the
recipient, setting the provider’s prior uncertainty µ over the
recipient’s MDP to be the uniform distribution over the N
candidates. The horizon for both agents is set to be 20.
Since the left end has higher rewards than the right end, if
the recipient’s start position is close enough to the left end
and the provider commits to opening the gate early enough
with high enough probability, the recipient should utilize the
commitment by checking if the gate is open by the commit-
ment time, and pass through it if so; otherwise, the recipient
should simply ignore the commitment and move to the right
end. The distribution for generating the recipient’s MDPs is
designed to include diverse preferences regarding the com-
mitments, such that the provider’s query should be carefully
formulated to elicit the recipient’s preference.

The principal result from Section 4 was that the commit-
ment probabilities to consider can be restricted to break-
points without loss of optimality. Further, the hypothesis
was that the space of breakpoints would be relatively small,

Figure 1: Means and standard errors of the EUS (left) and
runtime (right) of the discretizations in Synthetic MDPs.

n = 10 n = 20 n = 50
Even 7.8± 0.1 15.1± 0.1 37.1± 0.1
DP 6.1± 0.2 12.0± 0.3 26.5± 0.7

Breakpoints 10.0± 0.1

Table 1: Averaged discretization size per commitment time
(mean and standard error) in Synthetic MDPs.

allowing the search to be faster. We now empirically con-
firm the optimality result, and test the hypothesis of greater
efficiency, by comparing the breakpoint commitments dis-
cretization to the following alternative discretizations:

Even discretization. Prior work (Witwicki and Durfee
2007) discretizes the probability space up to a certain
granularity. Here, the probability space [0, 1] is evenly dis-
cretized as {p0, ..., pn} where pi = i

n .

Deterministic Policy (DP) discretization. This discretiza-
tion finds all of the probabilities of toggling feature u at
the commitment time that can be attained by the provider
following a deterministic policy (Witwicki and Durfee
2007, 2010).

For the even discretization, we consider the resolutions n ∈
{10, 20, 50}. For DP, we found that the number of toggling
probabilities of all the provider’s deterministic policies is
large, and the corresponding computational cost of identi-
fying and evaluating them is high. To reduce the computa-
tional cost and for fair comparison, we group the probabili-
ties in the DP discretization that are within i

n of each other
for n ∈ {10, 20, 50}. Since the problem instances have dif-
ferent reward scales, to facilitate analyses we normalize for
each instance the EUS with the upper bound EUS defined
in Eq. (13) and the EUS of the optimal and greedy query of
the even discretization for k = 1, n = 10.

Figure 1 gives the EUS for the seven discretizations over
50 randomly-generated problem instances, for N = 10 can-
didate MDPs for the recipient and k = 2 and 5. Figure 1
shows that, coupled with the greedy query algorithm, our
breakpoint commitments discretization yields the highest
EUS with the lowest computational cost. In Figure 1(left),
we see that, for the even and the DP discretizations, the EUS
increases with the probability resolution n, and only once we
reach n = 50 is the EUS comparable to our breakpoints dis-
cretization. Figure 1(right) compares the runtimes of form-
ing the discretization and evaluating the commitments in the
discretization for the downstream query formulation proce-
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Figure 2: Means and standard errors of the EUS (left) and
runtime (right) of the optimal, the greedy, and the random
queries formulated from the breakpoints in Synthetic MDPs.

dure, confirming the hypothesis that using breakpoints is
faster. Table 1 compares the sizes of these discretizations,
and confirms our intuition that the breakpoints discretization
is most efficient because it identifies fewer commitments
that are sufficient for the EUS maximization.

Next, we empirically confirm the greedy query search
is effective for EUS maximization. Given the results con-
firming the effectiveness and efficiency of the breakpoint
discretization, the query searches here are over the break-
point commitments. Figure 2(left) compares the EUS of
the greedily-formulated query with the optimal (exhaustive
search) query, and with a query comprised of randomly-
chosen breakpoints. The EUS is normalized with EUS and
the optimal EU prior to querying given uncertainty µ as de-
fined in Eq. (11). We vary the query size k, and report means
and standard errors over the same 50 coordination problems.
We see that the EUS of the greedy query tracks that of the
optimal query closely, while greedy’s runtime scales much
better.

6.2 Overcooked
We further test our approach in a more grounded domain,
Overcooked, introduced by (Wang et al. 2020). We reuse
one of their Overcooked settings with two high-level mod-
ifications: 1) instead of having global observability, each
agent observes only its local environment, and 2) we in-
troduce probabilistic transitions. These modifications induce
for the domain a rich space of meaningful commitments,
over which the agents should carefully negotiate for the op-
timal cooperative behavior. Figure 3 illustrates this Over-

Figure 3: Overcooked.

n = 10 n = 20 n = 50
Even 6.4± 0.1 11.8± 0.3 28.0± 0.7
DP 5.2± 0.2 8.5± 0.4 16.4± 0.9

Breakpoints 4.9± 0.2

Table 2: Averaged discretization size per commitment time
(mean and standard error) in Overcooked.

cooked environment. Two agents, the chef and the waiter,
together occupy a grid with counters being the boundaries.
The chef is supposed to pick up the tomato, chop it, and
place it on the plate. Afterwards, the waiter is supposed to
pick up the chopped tomato and deliver to the counter la-
belled by the star. Meanwhile, the chef needs to take care
of the pot that can probabilistically begin boiling, and the
waiter needs to take care of a dine-in customer (labelled
by the plate with fork and knife). This introduces interest-
ing tensions between delivering the food and taking care of
the pot and the customer. For coordination, the chef makes
a probabilistic commitment that it will place the chopped
tomato on the plate, which makes the chef the provider and
the waiter the recipient. Crucially, the commitment decou-
ples the agents’ planning problems, allowing the agents to
only model the MDP in their half of the grid. We repeat the
experiments in Section 6.1 that evaluate the breakpoints dis-
cretization and the greedy query over 50 problem instances.
Table 2 shows that the provider’s more structured transi-
tion in Overcooked leads to even greater efficiency (fewer
breakpoints) than in the synthetic MDPs (Table 1). As be-
fore, the Greedy query closely tracks optimal. We give more
details in the full version (Zhang, Durfee, and Singh 2020b),
along with a comparison between our approach and multia-
gent planning techniques previously studied in Overcooked,
where we saw that, even with small queries (k = 2), our de-
centralized query-based probabilistic commitment approach
got within 99.5% of the optimal value achieved through a
centrally constructed and executed joint policy.

7 Discussion
Built on provable foundations and evaluated in two separate
domains, our approach proves highly appropriate for settings
where cooperative agents coordinate their plans through
commitments in a decentralized manner, and could provide
a good performance/cost tradeoff even compared to coordi-
nation that is not restricted to being commitment-based.

For future directions, if the agents can afford the time and
bandwidth, querying need not be limited to a single round,
which then raises questions about how agents should con-
sider future rounds when deciding on what to ask in the cur-
rent round. The querying can also be extended to the setting
where the query poser is uncertain about both the respon-
der’s and its own environments. As dependencies between
agents get richer (with chains and even cycles of commit-
ments), continuing to identify and exploit structure in in-
tertwined value functions will be critical to scaling up for
efficient multi-round querying of connected commitments.
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