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Abstract

We present a scalable and effective multi-agent safe motion
planner that enables a group of agents to move to their desired
locations while avoiding collisions with obstacles and other
agents, with the presence of rich obstacles, high-dimensional,
nonlinear, nonholonomic dynamics, actuation limits, and dis-
turbances. We address this problem by finding a piecewise
linear path for each agent such that the actual trajectories fol-
lowing these paths are guaranteed to satisfy the reach-and-
avoid requirement. We show that the spatial tracking error
of the actual trajectories of the controlled agents can be pre-
computed for any qualified path that considers the minimum
duration of each path segment due to actuation limits. Us-
ing these bounds, we find a collision-free path for each agent
by solving Mixed Integer-Linear Programs and coordinate
agents by using the priority-based search. We demonstrate
our method by benchmarking in 2D and 3D scenarios with
ground vehicles and quadrotors, respectively, and show im-
provements over the solving time and the solution quality
compared to two state-of-the-art multi-agent motion planners.

1 Introduction
Multi-agent motion planning has a wide range of real-world
applications, but it is notoriously difficult. Even navigating
a single robot from an initial location to a goal location
while avoiding collisions with obstacles is terribly challeng-
ing with the presence of rich obstacles, high-dimensional
state space, nonlinear, nonholonomic dynamics, actuation
limits, and disturbances. Not to say that when such complex
robotic systems can interfere with each other in a shared en-
vironment, the scale of this problem is beyond the capability
of most existing methods.

In this paper, we present Scalable and Safe Multi-agent
Motion (S2M2) planner, a novel multi-agent motion plan-
ner that can fast and effectively generate provably safe plans
for agent models with high-dimensional nonlinear dynam-
ics and bounded disturbances in continuous time and space.
Instead of directly planning dynamically-feasible trajecto-
ries, which are extremely computationally expensive, S2M2
exploits a separation-of-concerns approach: We first design
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piecewise linear (PWL) paths Si for each dynamical agent
Ai to follow, with the understanding that the agents can-
not follow those PWL paths exactly. However, we show that
with appropriate tracking controllers, the actual trajectories
of each agent under disturbances can converge to Si with
guaranteed bounds on the spatial tracking error. More impor-
tantly, we show that such error bound can be pre-computed
for any qualified PWL path. The secrete sauce behind the
high efficiency of S2M2 is that we are able to formulate the
problem of finding PWL paths for a single agent as a Mixed
Integer-Linear Program (MILP), which can be solved effi-
ciently using off-the-shelf MILP solvers.

To avoid inter-agent collisions, we wrap our single-agent
motion planner with the priority-based search (Ma et al.
2019) that explores the space of priority orderings using sys-
tematic search. When priorities are specified, lower-priority
agents replan their paths while treating higher-priority
agents as moving obstacles. Together with the MILP-based
path planner and guaranteed tracking controller, S2M2 can
efficiently find plans that are provably safe and robust to dis-
turbances during execution. Moreover, by planning paths for
multiple agents on a continuous map over continuous time,
our method finds high-quality solutions with low flowtime
(i.e., makespan sum of all single-agent plans).

Consider an example of two disc-shaped vehicles mak-
ing u-turns, as shown in Figure 1. Given the partially known
initial locations and bounded disturbances, we first compute
the spatial error bound of tracking a path segment, which is
a line, and then consider this error together with the agent
shape to obtain the possible swept area of the path seg-
ment. The swept area of agent A1 during its second seg-
ment (p12, p13) is shown in light blue. We also consider the
minimum duration for each segment such that the agent has
enough time to adjust its position after turning, which is 3
seconds in our example. When our single-agent motion plan-
ner plans such paths for the agents, the obstacles are bloated
with respect to the spatial tracking error and the agent shape,
as shown in light red. The planner also constrains each seg-
ment to respect the minimum segment duration. As we can
see, when passing the corridor, both agents slow down and
use this 3 seconds to adjust their trajectories. After pass-
ing the corridor, agent A2 uses its full speed to approach its
goal location. When potential collisions are detected, some
agents are assigned higher priorities and thus are treated as
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Figure 1: Example of two disc-shaped vehicles making u-
turns. The initial and goal position sets are in blue and green,
respectively. The obstacles are in red. The bloated obstacles
are in light red. The paths of agents A1 and A2 are shown
in solid black lines, and examples of their actual trajectories
are shown in dashed purple lines. The swept area of agent
A1 during its second segment is in light blue.

moving obstacles for others. In our example, agent A1 is
assigned higher priority and thus passes the corridor before
agent A2.

We compare the performance of S2M2 with ECBS-CT
(Cohen et al. 2019) and MAPF/C+POST (Hönig et al. 2018)
on 2D and 3D scenarios with ground vehicles and quadro-
tors, respectively. Results show that S2M2 outperforms both
planners in terms of solution qualities with 15 ∼ 70% re-
duction for most instances. Moreover, S2M2 requires sev-
eral magnitudes less time on pre-processing and also shows
competitive runtime performance compared to the other two
planners.

2 Related Work
Many works have approached the Multi-agent Motion Plan-
ning (MAMP) problem from the perspectives of AI or
robotics. These works can be generally divided into two cat-
egories with discrete and continuous settings, respectively.
In the discrete setting, time and space are discretized into
time steps and grids, respectively. Each agent occupies ex-
actly one grid and can only move to adjacent grids at each
time step. This problem is known as Multi-agent Path Find-
ing (MAPF) (Stern et al. 2019). Researchers in the past years
have made substantial progress in finding high-quality so-
lutions to various scenarios with hundreds of agents and
high congestion as described in surveys (Ma et al. 2016;
Felner et al. 2017). Prioritized planning is a popular and
widely-used class of MAPF algorithms that coordinate mul-
tiple agents by specifying priorities among agents and forc-
ing lower-priority agents to avoid collisions with higher-
priority agents by treating their paths as dynamic obstacles
(Velagapudi, Sycara, and Scerri 2010; Čáp, Vokřı́nek, and
Kleiner 2015). The most recent prioritized planning algo-
rithm Priority-based Search (PBS) (Ma et al. 2019) system-
atically explores the space of priority orderings, which can
lead to near-optimal solutions and possibly scale to a thou-
sand agents. Our method adapts PBS to a continuous setting

and thus can efficiently coordinate a large number of agents.
While the classical MAPF assumes synchronized and dis-

cretized time, zero-volume shapes, constant velocities, and
rectilinear movements, several notable attempts have been
made towards closing the gap between the classical MAPF
and MAMP using more realistic models. This includes con-
sidering the continuous timeline, different-size agent shapes,
kinematic constraints, robustness, and any-angle moving di-
rections (Walker, Sturtevant, and Felner 2018; Li et al. 2019;
Cohen et al. 2019; Andreychuk et al. 2019; Ma, Kumar, and
Koenig 2017; Atzmon et al. 2020; Yakovlev and Andrey-
chuk 2017). To obtain robust, executable, and high-quality
solutions, our method also supports these features.

In the continuous setting, sampling-based motion plan-
ners are often used (Le and Plaku 2018; Hönig et al. 2018).
They first generate a probabilistic roadmap and then ap-
ply MAPF algorithms to it. These MAPF solutions are ei-
ther used to guide the motion tree expansion (Le and Plaku
2018) or post-process to valid continuous trajectories (Hönig
et al. 2018). Similar to our approach, these algorithms can
handle high-order, nonlinear dynamics, and arbitrary com-
plex geometries. Some optimization-based planners tend to
solve a large optimization problem in which the decision
variables define the trajectories for all agents (Augugliaro,
Schoellig, and D’Andrea 2012; Mellinger, Kushleyev, and
Kumar 2012), which are only demonstrated on small agent
teams. Our motion planner also uses optimization problems
for generating trajectories. However, we only coordinate dif-
ferent agents on demand. To find a feasible plan for each
agent, we focus on finding a PWL path satisfying certain
duration and boundary requirements, which are encoded as
MILPs and solved efficiently.

As a safety guarantee is important to successful execu-
tion, safe motion planning is receiving more attention re-
cently. Several approaches are studied in a reference track-
ing framework, which uses the idea of bounding tracking
errors through pre-computation based reachability analy-
sis (Herbert et al. 2017; Singh et al. 2017; Vaskov et al.
2019; Fan, Miller, and Mitra 2020; Majumdar and Tedrake
2017). Other safe motion planners employ barrier func-
tions (Barry, Majumdar, and Tedrake 2012; Agrawal and
Sreenath 2017) or use robust model predictive control with
chance constraints (Blackmore, Ono, and Williams 2011;
Jasour and Williams 2019; Yu et al. 2013). Some of these
works have been extended to the multi-robot setting (Wang,
Ames, and Egerstedt 2016; Panagou, Stipanovič, and Voul-
garis 2013; Srinivasan, Coogan, and Egerstedt 2018; Desai
et al. 2019; Huang, Ayton, and Williams 2018; Richards and
How 2004).

3 Preliminaries and Problem Statement
For an n-dimensional vector x ∈ Rn, x(i) is its ith entry, ‖x‖
is its Euclidean norm, and Bε(x) ≡ {y ∈ Rn‖ ‖y − x‖ ≤
ε} is the ε-ball centered at x with ε > 0. Given a matrixH ∈
Rn×m and a vector b ∈ Rn, an (H, b)-polytope Poly(H, b)
is the set {x ∈ Rm‖ Hx ≤ b}. Each row of the polytope
defines a halfspace H(i)x ≤ b(i), and each face is defined
by H(i)x = b(i). dP(H) is the number of its faces.
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Definition 1 (Agent Model). An agent model Ai =
〈Xi,Ui,Di, fi,Pi〉 is defined by its state space Xi ∈ Rn,
input space Ui ⊆ Rm, disturbance space Di ∈ Rl, dynamic
function fi : Xi × Ui × Di → Xi, and geometric shape
Pi : Xi → 2R

δ

.1

The semantics of agent dynamics are defined by trajec-
tories, which describe the evolution of states over time. An
input trajectory u over duration T is a continuous function
u: [0, T ] → Ui, which maps each time t ∈ [0, T ] to a con-
trol signal u(t) ∈ Ui. Similarly, a disturbance trajectory d
over duration T is a continuous function d: [0, T ] → Di.
Given an input trajectory u over Ui, a disturbance trajectory
d over Di, and an initial state x0 ∈ Xi, its state trajectory ξi
satisfies ξi(x0, u, d, 0) = x0 and for all t > 0,

ξ̇i(x0, u, d, t) = fi(ξi(x0, u, d, t), u(t), d(t)).

Example 1. Consider a nonholonomic differential two-
wheeled vehicle (Rodrı́guez-Seda et al. 2014) as an exam-
ple. Its state ξi(t) consists of three components: p(t) =
[px(t), py(t)]T is the Cartesian coordinate of the center of
inertia, θ(t) is the angular orientation, and v(t) is the lin-
ear velocity. We also consider the bounded disturbances dx
on px, dy on py , and dθ on θ. The dynamic function fi
consists of five components: ṗx(t) = v(t) cos θ + dx(t),
ṗy(t) = v(t) sin θ + dy(t), v̇(t) = u1(t) − kv(t), ω̇(t) =

u2(t) − kω(t), and θ̇(t) = ω(t) + dθ(t), where k is a con-
stant, and u1(t) and u2(t) are control force and torque as
inputs, which can be used to compute the torques for the left
and right wheels.

Definition 2 (MAMP). A multi-agent motion planning
(MAMP) problem is defined by 〈W , O,A,X init,X goal〉,
where workspaceW ⊆ Rδ is a bounding box in Rδ; δ = 2
for ground vehicles and δ = 3 for aerial and underwater
vehicles, and ξi(t) ↓ W is the projection of ξi(t) to the
workspace; obstacles O = {oi}i ⊆ W are polytopes inW;
A = {A1, ..,AN} is a set of agent models; X init

i ⊆ Xi
and X goal

i ⊆ Xi are the initial set and the goal set of Ai.
The planning problem is to find inputs (u1, .., uN ) for every
(xinit1 , .., xinitN ) ∈ X init

1 × · · · X init
N and every distur-

bance trajectories (d1, .., dN ) such that the state trajectories
(ξ1, .., ξN ) satisfy the reach-and-avoid requirement:

1. (Dynamics) ∀Ai ∈ A, ξi(t) ≡ ξi(xiniti , ui, di, t);

2. (Reach goal set) ∃t ≥ 0, ∀Ai ∈ A, ξi(t) ∈ X goal
i ;

3. (Avoid obstacles) ∀t ≥ 0, ∀Ai ∈ A, Pi(ξi(t)) ∈ W and
Pi(ξi(t)) ∩O = ∅.

4. (Avoid inter-agent collisions) ∀t ≥ 0, ∀Ai,Aj ∈ A and
i 6= j, Pi(ξi(t)) ∩ Pj(ξj(t)) = ∅
In this work, we will solve the MAMP problem by find-

ing a piecewise linear (PWL) path for each agent. The
PWL paths for the agents will be sufficiently far away from
the obstacles and from each other so that agents’ tracking
controllers can drive them to follow their PWL paths to

1A state is usually made up of positions, orientations, and ve-
locities while an input refers to the input of the controller, such as
accelerations and steering rates.

reach their goals without collisions. Here we define PWL
paths, tracking controllers, and reachability envelopes of
each agent with a given tracking controller.
Definition 3 (Piecewise Linear Path). A PWL path Si in the
workspaceW for an agent Ai is a function Si : R≥0 → W
that maps a time point to a position Si(t) ∈ W , which
can be constructed from a sequence of time-stamped way-
points Si = Path({(tk, pk)}k) such that Si(t) = pk−1 +
pk−pk−1

tk−tk−1
(t − tk−1) for t ∈ [tk−1, tk]. (tk, pk) ∈ R≥0 ×W

is called the kth waypoint of path Si, and Si(t) when t ∈
[tk−1, tk] is called the kth segment of Si and denoted by
S
(k)
i .

Definition 4 (Decentralized Tracking Controller). A track-
ing controller for an agent Ai is a (state feedback) function
gi : Xi×W → Ui. At any time t, a tracking controller takes
in a current state of the system x ∈ Xi and a desired position
Si(t) ∈ W , and gives an input gi(x, Si(t)) ∈ Ui for Ai.

Fix a tracking controller gi and a PWL path Si for an
agent Ai, the resulting closed-loop controlled agent be-
comes an autonomous system. We use ξgii (x0, Si, di, t) =
ξi(x0, gi(x0, Si(t)), di, t) to represent the trajectory of the
controlled agent Ai starting from x0 with disturbance di.
The reachablity envelope of a controlled agent is a set of
states around the PWL path that contains all possible actual
trajectories of the controlled agent, defined as follows.
Definition 5 (Reachability Envelope). Given an agent
model Ai = 〈Xi,Ui,Di, fi,Pi〉, an initial set X init

i ⊆ Xi,
a PWL path Si, and a tracking controller gi, the reachablity
envelope at time t is ReachAi(X init

i , Si, gi, Di, t) =
{ξgii (x0, Si, di, t) ∈ Xi | ∃x0 ∈ X init

i , ∃di : R≥0 → Di}.
Example 2. Let a S(t) = [p∗x(t), p∗y(t)]T be a PWL path
of waypoint sequence {(tk, pk)}k. From (Rodrı́guez-Seda
et al. 2014), a valid tracking trajectory for Example 1 can be
constructed as[
u1

u2

]
=

[
cos θ sin θ

− sin θ/L cos θ/L

] [
u′1 + vω sin θ + Lω2 cos θ
u′2 − vω cos θ + Lω2 sin θ

]
,

where L is a positive constant and u′1, u
′
2 are computed as[

u′1
u′2

]
=

[
v∗ cos θ∗ − L sin θ∗ω∗

v∗ sin θ∗ + L cos θ∗ω∗

]
+G

z2p−1

1 + ‖z‖2p−1
,

where G is a positive constant, p is a positive integer, z =[
(px − p∗x) + L(cos θ − cos θ∗)
(py − p∗y) + L(sin θ − sin θ∗)

]
and ∀t ∈ [tk−1, tk], v∗(t) =

‖pk−pk−1‖
tk−tk−1

, θ∗(t) = atan2(pk − pk−1). The dashed purple
lines in Figure 1 illustrate such two trajectories of the closed-
loop agents.

4 Approach
Figure 2 gives an overview of our approach S2M2, consist-
ing of three key modules: (a). (Figure 2 left): Given a track-
ing controller gi for each agentAi, pre-compute reachability
envelopes for any PWL path Si using symmetry transfor-
mations and cashed reachability envelopes, to get two key
parameters: (1) an upper bound of the spatial tracking error
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Figure 2: Schematic illustration of the approach.

between the actual trajectory ξgii (x0, Si, di, t) ↓ W and Si,
and (2) the minimum duration of each path segment S(k)

i
such that the spatial tracking error bound is always valid
(Section 4.1). (b). (Figure 2 middle): Given two parame-
ters from (a), the safe motion planning problem for each
agent is reduced to finding a PWL path that is sufficiently
far from the obstacles and other agents, which is further en-
coded as a MILP problem (Section 4.2). (c). (Figure 2 mid-
dle): To coordinate multiple agents, employ priority-based
search to avoid inter-robot collisions, in which some agents
treat other agents as moving obstacles and replan their paths
optimally (Section 4.3). Putting them all together (Figure 2
right), S2M2 finds a PWL path for each agent in the multi-
agent system, so the closed-loop agents driven by tracking
controllers can move along the PWL paths to safely achieve
the reach-and-avoid requirement.

4.1 Computing Reachability Envelopes
Beyond the fact that a PWL path can be computed efficiently
through solving a MILP problem (see Section 4.2), another
key idea behind the use of PWL paths is that the reachability
envelopes can be pre-computed independent of the concrete
values of the PWL paths’ waypoints. In this way, we pre-
compute the following two parameters of these envelopes,
which are used as constraints in finding the PWL paths: (1)
an upper-bound of the distance between the actual trajectory
projected to the workspace and the reference PWL path; and
(2) the minimum duration bound for each path segment to
guarantee such distance bound.

Various methods can be used to pre-compute reachability
envelopes, including Contraction Metrics (Singh et al. 2017;
Tsukamoto and Chung 2020), Lyapunov functions (Fan,
Miller, and Mitra 2020), Funnels (Majumdar and Tedrake
2017), and Hamilton-Jacobi analysis (Herbert et al. 2017).
In this section, we take an alternative approach called sym-
metry transformation. Symmetry transformations on dynam-
ical systems are defined as the ability to compute new tra-
jectories (reachable states) of the same dynamics by apply-
ing symmetry operators (e.g., translation and rotation) on
existing trajectories (reachable states) (Russo and Slotine
2011). We show that under mild assumptions, using symme-
try transformation, the reachability envelope of an agent fol-
lowing a PWL path can be constructed from a finite number
of reachability envelopes. These envelopes are of the same
agent following a single straight line along the x-axis de-
fined by waypoints (0, [0, 0]T ) and (T, [σ, 0]T ). Then, with-
out knowing the waypoints of a PWL path, we can pre-

compute these envelopes around the x-axis and extract the
spatial error bound and the minimum segment duration from
them.

For the rest of this section, we abuse the notation and use
ReachgiAi(X

init
i,k , S

(k)
i , t) to denote the reachability enve-

lope of agent Ai following path segment S(k)
i from initial

set X init
i,k at time tk−1. The initial set is defined recursively

as X init
i,k = ReachgiAi(X

init
i,(k−1), S

(k−1)
i , tk−1).

By using a symmetry operator γ constructed by trans-
lation and rotation, the reachability envelopes of segment
S
(k)
i can be constructed from that of segment Sx-axis

i with
the same length and time duration, which is as follows:

Reach
gi
Ai(X

k
i , S

(k)
i , t) = γ

(
Reach

gi
Ai

(
γ−1(X ki ), Sx-axis

i , t)
))
,

where for a set Y ⊆ X , γ(Y) = {γ(x) | x ∈ Y} and
γ−1(Y) = {y | ∃x ∈ Y, γ(y) = x}.

Since the translation and rotation transformations pre-
serve vector lengths, γ (Reach(·, ·, ·)) has the same size
as Reach(·, ·, ·). Thus, as long as (1) we pre-compute the
reachability envelope that follows a path Sx-axis

i from X init
i

with duration T and length σ for sufficiently long T and
all σ ∈ [vminT, vmaxT ]; and (2) γ−1(X ki ) ⊆ X init

i for
all k = {1, ..,K} (K is the number of path segments
in Si), we can always construct the reachability envelope
of following PWL paths using the symmetry operator γ
on these pre-computed envelopes. These envelopes can be
computed using any nonlinear reachability toolbox (Chen,
Ábrahám, and Sankaranarayanan 2013; Althoff, Grebenyuk,
and Kochdumper 2018; Fan et al. 2017). The reachability
envelope construction for aerial vehicles or underwater ve-
hicles is similar.

To understand how far the reference path Si needs to be
away from the obstacles, we define the maximum spatial
tracking error ei,max as follows:

ei,max = argmine∀σ ∈ [vminT, vmaxT ], ∀t ∈ [0, T ],

Be(S
x-axis
i (t)) ⊇ Reachgi

Ai

(
X init

i , Sx-axis
i , t

)
↓ W,

where Sx-axis
i = Path({(0, [0, 0]T ), (T, [σ, 0]T )}). We im-

plement this equation by first discretizing [vminT, vmaxT ]
with ∆ and calculating the error bound e for each reacha-
bility envelopes with length σj = (vminT + j∆). Then, we
choose the maximum value over all these errors as ei,max.

To guarantee that, for any segment S(k)
i , the trajectories

can converge close enough to it before switching to the next
segment, the tracking controller needs to be applied for a
sufficiently long time. So we identify the minimum segment
duration Ti,min such that tk − tk−1 > Ti,min guarantees
γ−1(X ki ) ⊆ X init

i , for k = 1, . . . ,K . Similarly, for the
last line segment S(K)

i , we also find the minimum duration
T ′i,min < tK − tK−1 such that the final reachable states of

the trajectory following path S(K)
i have enough time to be

sufficiently small to fit into the goal set X goal
i .

Notice is that for agents with relatively larger actuation
limits compared to their velocity ranges, the obtained ei,max
and T ′i,min will be smaller, and our planner will generate
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paths that are closer to obstacles and make turns more of-
ten to minimize the plan makespan. It is also of our users’
choices to specify smaller accelerations when computing
reachability envelopes, which leads to smoother trajectories
but may result in over-conservative plans or even failures. In
addition, we can restrict the velocity ranges to have smaller
ei,max and T ′i,min, which mitigates the problem of being over-
conservative but may lead to plans with longer makespans.

4.2 Finding Paths for Single Agents
In this section, we describe the method for finding a PWL
path for a single agent Ai with the presence of static obsta-
cles and moving obstacles. To obtain a valid path, we solve
a MILP problem. The decision variables of this MILP are
(p0, p1, .., pK) with domain W and (t0, t1, .., tK) with do-
main R≥0, which represent the waypoint positions and their
time stamps, respectively. The objective is to minimize the
makespan tK . We constrain the initial position to be at the
center of the initial set Siniti and the initial time to be 0:
(p0 = Center(Siniti ↓ W)) ∧ (t0 = 0).

In the rest of this section, we introduce the other sets of the
constraints that ensure the instantiated trajectory of the ob-
tained path is valid with respect to the system dynamics, spa-
tial tracking error ei,max, minimum segment duration Ti,min,
and minimum duration for the last segment T ′i,min.

Time-Position Constraints We first add constraints over
the duration (tk − tk−1) and the spatial difference
(pk − pk−1) for each segment to make sure its velocity
pk−pk−1

tk−tk−1
respects the velocity bound. Let vmin and vmax

be the minimum and maximum allowable velocities of
the agent model, respectively. Then, the feasible velocity
set is Bvmax(0)/Bvmin(0). We further under-approximate
Bvmax(0) to polytope Poly(Hvmax, bvmax), and over-
approximate Bvmin(0) to polytope Poly(Hvmin, bvmin).
The constraints to ensure each segment to satisfy such dy-
namic relations are:

(∨dP(Hvmin)
j=1 H

(j)
vmin(pk − pk−1) ≥ b(j)vmin(tk − tk−1))

∧(Hvmax(pk − pk−1) ≤ bvmax(tk − tk−1)) ∀k = 1, 2, ..,K

We handle disjunctive linear constraints (∨dP(H)
j=1 H(j)x ≤

b(j) by using the big-M method. We define a dP(H)-vector
of binary variables α, and α(j) = 1 if and only if H(j)x ≤
b(j) holds for x. LetM be a very large positive number, then
the constraints is encoded as (∧dP(H)

j=1 H(j)x+M(1−α(j)) ≤
b(j)) ∧ (

∑dP(H)
j=1 α(j) ≥ 1).

Reach-and-Avoid Constraints As the actual tracking tra-
jectories deviate from the PWL paths due to inertia, actua-
tion limits, disturbances, and uncertain initial position, we
should consider this deviation when encoding constraints
related to obstacles and goals. We have shown that the er-
ror between the actual trajectory and the PWL path can
be bounded within ei,max for each agent Ai. In addition to
the position deviation, we should consider the agent shape,
and the swept area should not intersect with obstacles as
well. Then, we know all the possible swept area at posi-
tion p is R = p ⊕ Bl(0), where l = ei,max + ri, and ri

is the radius of the ball containing agent Ai. For obstacle
o = Poly(Ho, bo) ∈ O, the bloated obstacle with respect
to R is Poly(Ho, bo + ‖Ho‖ l). As long as the path is away
from these bloated obstacles, the actual tracking trajectories
are guaranteed to be collision-free.

To constrain the segments to be away from an obstacle,
which is an polytope, we force the end points of every seg-
ment to be at least on one face of this polytope, which is a
sufficient condition of being collision-free. The constraint is
then as follows: ∀k = 1, 2, ..,K, ∀o ∈ O,

∨dP(Ho)j=1 ((H(j)
o pk−1 > bo + ‖Ho‖ l) ∧ (H(j)

o pk > bo + ‖Ho‖ l)).

For the moving obstacle o ∈ O′ defined by its occupied
region Poly(Ho, bo) and the occupying duration [lbo, ubo],
we require the agent to either avoid colliding with o or mov-
ing through this region out of the duration [lbo, ubo]:

∨dP(Ho)j=1 ((Hopk−1 > bo + ‖Ho‖ l) ∧ (Hopk > bo + ‖Ho‖ l))
∨(tk−1 < lbo) ∨ (tk > ubo), ∀k = 1, 2, ..,K, ∀o ∈ O′.

To make sure the spatial error is small enough before
switching to the next segment and indeed bounded by
ei,max, we add a constraint to force the duration of nonzero-
duration segments to be at least Ti,min time:

(tk − tk−1 = 0) ∨ (tk − tk−1 ≥ Ti,min) ∀k = 1, 2, ..,K.

We also require the agent to be at the goal set Sgoali
at time tK , and the last segment should be at least T ′i,min
such that the agent has enough time to fit in: (pK =
Center(Sgoal

i ↓ W)) ∧ (tK − tK−1 ≥ T ′i,min).
In our MILP encoding with K segments in a δ-dimension

workspace, we have (K+1)(δ+1) or (K+1)(δ+1) contin-
uous decision variables to represent the states in 2D or 3D
state space, respectively. The number of linear constraints
and Boolean variables increases linearly in the product of
segment number K and the maximum face number of the
polytopes that represent the velocity set and obstacles.

4.3 Coordinating Multiple Agents
We deploy Priority-based Search (PBS) (Ma et al. 2019) to
coordinate agents and avoid inter-agent collisions. PBS is
an efficient two-level search algorithm designed for solv-
ing MAPF near-optimally. When it detects a collision be-
tween two agents, it constrains one of the agents to have a
lower priority than the other and replans its path by treating
the paths of the higher-priority agents as dynamic obstacles.
As we coordinate the agent trajectories over the continuous
timeline and continuous space, which is nontrivial or ineffi-
cient to summarize collisions as conflicts, PBS is a more nat-
ural candidate to effectively coordinate agents than conflict-
based algorithms such as CBS (Sharon et al. 2015). Though
PBS does not offer completeness or optimality guarantees, it
can explore all the possible priority orderings in theory and
find a high-quality solution in few iterations in practice.

Formally, we coordinate agents and resolve collisions by
exploring a priority tree (PT). We start with the root PT node,
which contains a set of individually optimal paths, not nec-
essarily collision-free, and an empty priority ordering. We
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Figure 3: Examples of moving obstacles in 2D and 3D
workspaces. All the possible swept area is in blue, and is
over approximated to polytopes as shown with dashed line
boundaries.

explore the PT in a depth-first manner, breaking ties in fa-
vor of the node with smaller flowtime. During expansion,
we identify the pair of agents Ai and Aj with the earliest
collision and generate two child PT nodes that inherit the
priority ordering of the current PT node plus an additional
ordered pairs (j ≺ i) and (i ≺ j), respectively. For each
child PT node, we pick the lower-priority agent, i.e., Ai or
Aj , and replan an individually optimal path for it by treating
all agents that have higher priorities than it as moving obsta-
cles. This procedure is terminated when we find a PT node
whose paths are collision-free.

Compared to the original PBS in (Ma et al. 2019), we
make two modifications: (1) the single-agent planner in
S2M2 uses our MILP encoding since our sub-problem is
to find a sequence of time-stamped waypoints in a continu-
ous map over a continuous timeline rather than a graph over
discrete time steps; (2) when a new priority is added to re-
solve a collision, we lazily update the paths by replanning
for only the lower-priority agent involved in this collision
instead of all the lower-priority agents that have collisions,
which shows better scalability in our practical experiments.

During replanning, some agents are treated as moving
obstacles for other agents. Here we introduce our method
for encoding the possible swept area of a path segment as
a moving obstacle. Consider a segment from (tk−1, pk−1)
to (tk, pk). As we know all the swept area at position p is
R = p ⊕ Bl(0), we can calculate its moving obstacle as
(tk−1, tk,Poly(Hk, bk)), where Poly(Hk, bk) is a poly-
gon containing all the possible swept area during duration
(tk−1, tk). Thus, if other agents do not swept Poly(Hk, bk)
during (tk−1, tk), their paths are guaranteed to be collision-
free. The central axis of this moving obstacle is in the di-
rection atan2(pk − pk−1) with length 2l + ‖pk − pk−1‖. In
a 2D workspace, the cross section of this tube is a line that
is vertical to the central axis, and its width is 2l. In a 3D
workspace, the cross section is a circle with radius l. We
further over approximate this circle as a polygon such as a
octagon. Figure 3 shows examples in 2D and 3D workspace.

5 Experimental Results
We present experimental results on both 2D and 3D envi-
ronments with ground vehicles and quadrotor models, re-
spectively. We used DryVR (Fan et al. 2017) to generate
reachability envelopes and Gurobi 9.0.1 (Gurobi Optimiza-
tion 2020) as the MILP solver. We compared S2M2 with the
state-of-the-art 2D planner ECBS-CT (Cohen et al. 2019)
and 3D planner MAPF/C+POST (Hönig et al. 2018). All ex-

(a) Arena. (b) Den502d. (c) Wall.

Figure 4: Maps and scenarios.

periments were run on a 3.40GHZ Intel Core i7-6700 CPU
with 36GB RAM with a runtime limit of 100s. We repeated
each experiment 25 times for each agent number using ran-
domly generated initial and goal locations for the agents.
We report the average runtime, success rates (i.e., the per-
centages of solved instances within the runtime limit), and
flowtime (i.e., makespan sum of all single-agent plans) for
each agent number on each map.

2D Experiment We compare S2M2 against ECBS-CT
on two benchmark maps from the Grid-Based Path Plan-
ning Competition (GPPC)2, namely Arena (49 × 49) and
Den502d (251 × 211). We assume a disc-shaped agent
with a radius of 0.5. While agent dynamics for ECBS-
CT is approximated with sixteen discrete orientations and
five primitives, which is taken from the Search-based Plan-
ning Laboratory (SBPL)3, S2M2 considers a vehicle model
with continuous, nonholonomic, nonlinear dynamics from
(Rodrı́guez-Seda et al. 2014) with additional bounded dis-
turbances. The cost multiplier for the motion primitive
model is set to 1, which means no preferred action is spec-
ified. We set the maximum velocity in both planners to be
1. We set the focal weight ω (i.e., suboptimality ratio) for
ECBS-CT to 1.2 and 1.5. The average runtimes and success
rates of our method and ECBS-CT on these two maps are
given in Figure 5(a)-(d). The corresponding solution quali-
ties are given in Table 1. Note that the pre-computation time
is discussed separately and not added to the average runtime.

First of all, we observe that S2M2 is several magnitudes
faster than ECBS-CT in terms of the pre-processing time.
While S2M2 takes 0.33s to pre-compute the spatial error
bound and the minimum duration for all agents, the time for
ECBS-CT to pre-compute the heuristic is 0.27s on Arena
and 18.18s on Den502d for each agent, which makes the to-
tal pre-processing time for ECBS-CT very large. For exam-
ple, for each instance on Den502d with 60 agents, ECBS-CT
spends roughly 1, 100s to compute these heuristics.

Furthermore, S2M2 outperforms ECBS-CT in terms of
both runtimes and success rates, as shown in Figure 5(a)-(d).
While S2M2 halves the runtime of ECBS-CT on Arena for
most instances when ω = 1.5, it is roughly one-third of that
when ω = 1.2 (Figure 5(a)). In Figure 5(c), the runtime of
ECBS-CT does not change much with different weights on
Den502d. While S2M2 takes half the time than ECBS-CT
for most Den502d instances, S2M2 is one magnitude faster
when the agent number is less than 40. As shown in Fig-
ure 5(b)(d), the success rates of ECBS-CT drop much faster

2GPPC: https://movingai.com/GPPC
3SBPL: http://sbpl.net
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(a) Runtimes for Arena. (b) Success rates for Arena.

(c) Runtimes for Den502d. (d) Success rates for Den502d.

(e) Runtimes for Wall. (f) Success rates for Wall.

Figure 5: Runtimes and success rates.

than S2M2. When ECBS-CT fails half the instances, S2M2
still solves more than 90% of them. We do not include the
case when ω = 1 (i.e., search for optimal solutions) since
ECBS-CT merely solves instances even for 10 agents. We
also test with larger focal weights, but it does not show sig-
nificant improvement over runtimes or success rates.

In Table 1, we can see S2M2 reduces at least half the flow-
time for Arena instances, and this reduction is up to 70% as
the agent number increases. This is because S2M2 directly
plans high-fidelity models on a continuous map over con-
tinuous timeline, which provides more flexibility in avoid-
ing collisions, especially in smaller maps. On the larger map
Den502d, we can still observe roughly 15% cost reduction.

3D Experiment We use map Wall (13 × 13 × 5) from
(Hönig et al. 2018). In this scenario, a nano-quadrotor team
(Preiss et al. 2017) starts from one side of the wall with three
windows and is asked to fly to the other side. We compare
S2M2 with MAPF/C+POST (Hönig et al. 2018), which per-
forms a generalized-MAPF algorithm called MAPF/C on a
graph with sparse samples and then post-processes the dis-
crete solution to valid continuous trajectories. We set the
maximum velocity in both planners to be 1. We use the same
parameters for sampling and post-processing as the original
paper. The focal weight of MAPF/C is chosen to be 1.2. In
post-processing, we set the total iterations to 7 and conti-
nuity degree to 4. The average runtime and success rate of
our method and MAPF/C+POST are given in Figure 5(e)-(f)
while the solution qualities are given in Table 1.

#agents S2M2
ECBS-CT
(ω = 1.2)

ECBS-CT
(ω = 1.5)

A
re

na

10 382.02 867.83 868.00
20 741.20 1848.07 1948.07
30 1062.60 2929.95 3147.36
40 1366.23 NA 4554.60

D
en

50
2d

10 1292.01 1566.78 1567.87
20 2569.11 3135.57 3134.96
30 3962.72 4621.11 4620.03
40 5517.90 6202.30 6292.29
50 7289.37 7798.79 7821.35
60 8681.73 9452.26 9480.53

#agents S2M2 MAPF/C MAPF/C+POST

W
al

l

5 48.00 50.32 80.35
10 102.77 103.08 142.27
15 162.37 152.38 200.36
20 230.75 200.67 230.00
25 299.29 265.09 315.20

Table 1: Solution quality (i.e., average flowtime) for Arena
and Den502d (above) and Wall (below).

While it takes 0.83s for S2M2 to pre-compute the error
bound and minimum duration, the time to sample and anno-
tate roadmaps for MAPF/C+POST is 1570.94s in total. Its
sampling and annotating procedures, which are critical to its
efficiency and solution qualities, take such long because they
require computationally expensive distance checking on all
edge pairs. Thus, MAPF/C+POST is sensitive to the map
size and only scales to small maps. We also tested its sam-
pling module with the 3D Arena map (49×49×5) and failed
to get a reasonably connected roadmap in hours.

Although MAPF/C+POST is efficient on sparse, well-
connected roadmaps, S2M2 can still solve most instances
faster when #agents < 20. The runtime is less than 1s
for instances with 10 agents. In Table 1, we also ob-
serve that S2M2 has up to 40% cost reduction compared
to MAPF/C+POST trajectories. Even though the discrete
MAPF/C solution is bounded suboptimal, the quality of its
valid continuous trajectory is not guaranteed.

6 Conclusions
We presented S2M2, a fast and effective multi-agent motion
planner that generates provably safe plans for agent mod-
els with high-dimensional, nonlinear dynamics and bounded
disturbances. S2M2 plans piecewise linear paths that sat-
isfy certain safe bounds and coordinates multiple agents us-
ing the priority-based search. We show that S2M2 improves
both the solving time and the solution quality compared to
two state-of-the-art multi-agent motion planners. Especially,
S2M2 saves much time on pre-processing.
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