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Abstract

Recently, the online matching problem has attracted much at-
tention due to its wide application on real-world decision-
making scenarios. In stationary environments, by adopting
the stochastic user arrival model, existing methods are pro-
posed to learn dual optimal prices and are shown to achieve a
fast regret bound. However, the stochastic model is no longer
a proper assumption when the environment is changing, lead-
ing to an optimistic method that may suffer poor performance.
In this paper, we study the online matching problem in dy-
namic environments in which the dual optimal prices are al-
lowed to vary over time. We bound the dynamic regret of on-
line matching problem by the sum of two quantities, includ-
ing a regret of online max-min problem and a dynamic re-
gret of online convex optimization (OCO) problem. Then we
propose a novel online approach named Primal-Dual Online
Algorithm (PDOA) to minimize both quantities. In particular,
PDOA adopts the primal-dual framework by optimizing dual
prices with the online gradient descent (OGD) algorithm to
eliminate the online max-min problem’s regret. Moreover, it
maintains a set of OGD experts and combines them via an
expert-tracking algorithm, which gives a sublinear dynamic
regret bound for the OCO problem. We show that PDOA
achieves an O(K

√
T (1 + PT )) dynamic regret where K is

the number of resources, T is the number of iterations and PT

is the path-length of any potential dual price sequence that re-
flects the dynamic environment. Finally, experiments on real
applications exhibit the superiority of our approach.

Introduction
The online matching problem has been widely applied in
many real-world tasks, e.g., internet advertising, resource al-
location, and dynamic pricing. There are M potential items
and K resources. The k-th resource possesses a budget Bk
representing the maximum amount that can be consumed.
The protocol is as follows: in each round, the t-th user is
revealed with a reward vector rt ∈ RM and a resource
consumption matrix Ct ∈ RM×K . Denote rti as the i-th
component of rt, Ctik as the i-th row and the k-th col-
umn component of Ct. When assigning the i-th item to the
t-th user, the reward and the consumption of the k-th re-
source can be represented by rti and Ctik, respectively. The
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learner chooses an item it according to the historical infor-
mation {(rτ ,Cτ )}tτ=1, obtaining the corresponding reward
and consuming the corresponding resources. Given the to-
tal number T of arrival users, our goal is to maximize the
cumulative reward while satisfying the budget constraints.

When all parameters of T users, i.e., {(rt,Ct)}Tt=1 are
available in advance, the matching problem can be formu-
lated as an offline linear program (LP). It is easy to see that
the solution of offline LP is an upper bound of its online ver-
sion since the online learner has to make irrevocable deci-
sions without complete information about subsequent users.
Moreover, the ratio of the cumulative reward obtained by an
online method to that obtained by offline LP is called Com-
petitive Ratio (C.R.). To make the online problem more fea-
sible, researchers introduce several assumptions regarding
user arrival fashion. In general, there are two common user
arrival models, i.e., the adversarial model and the stochastic
model. The adversarial model assumes that there is an adver-
sary who knows the strategy of the algorithm and generates
the worst user sequence accordingly, which is usually pes-
simistic in practice. The stochastic model, on the contrary,
assumes that the users are drawn from a stationary distribu-
tion, which is often in accordance with the real data.

Adopting the stochastic user arrival model, most exist-
ing methods are based on the primal-dual framework, where
dual optimal prices are learned by solving a fractional
matching problem on the revealed users and are used for
subsequent assignments. In stationary environments, these
methods achieved a near-optimal solution. Recently, (Li,
Sun, and Ye 2020) proposed online algorithms by establish-
ing the dual convergence result. Rather than learning dual
prices on fractional data, they run an OGD algorithm on the
dual problem to update the dual prices online. Since the dual
optimal prices are stable in stationary environments, their
proposed online methods converge at a fast rate.

However, the stochastic model may derive optimistic
methods that suffer from poor performance when the envi-
ronment is changing. In particular, the dual optimal prices
can be non-stable, which leads to the failure of the dual con-
vergence result. Alternatively, minimizing the dynamic re-
gret with respect to any feasible sequence of dual prices is a
better choice in a dynamic environment. Similar works have
been established in OCO problems (Zhang, Lu, and Zhou
2018; Zhao et al. 2020a).
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In this paper, we study the online matching problem in
dynamic environments where the dual optimal prices are al-
lowed to vary over time. The main contributions of this paper
are summarized as follows:

• We bound the dynamic regret of online matching problem
by the sum of two quantities, including a regret of online
max-min problem and a dynamic regret of OCO problem.

• A novel online approach, named Primal-Dual Online Al-
gorithm (PDOA), is proposed to minimize both quantities.
In particular, PDOA adopts the primal-dual framework by
optimizing the dual prices with OGD to eliminate the on-
line max-min problem’s regret. Moreover, it maintains a
set of OGD experts and combines them via an expert-
tracking algorithm, which gives a sublinear dynamic re-
gret bound for the OCO problem.

• The proposed PDOA achieves an O(K
√
T (1 + PT )) dy-

namic regret where K is the number of resources, T is
the number of iterations and PT is the path-length of any
potential sequence of dual prices that reflect the dynamic
environment. It is markable that with a sublinear path-
length, our approach achieves a sublinear dynamic regret.

• The experiments on real applications exhibit the superior-
ity of our approach. In the application from the interna-
tional online retailer, PDOA completes 11.7% more tasks
than OGD and achieves comparable total purchase num-
bers. Moreover, in the application from the e-commerce
grocery retailer, PDOA increases 9.5% total GMV and re-
duces 3.3% inventory loss than OGD.

Related Works
Online Matching In the past decades, the online matching
problem has attracted a surge of attention due to the increas-
ing demand for social applications (Mehta 2013). There are
two kinds of different assumptions on user arrival models,
i.e., the adversarial model and the stochastic model. Exist-
ing methods fall into two categories accordingly.

The adversarial user arrival model assumes that there is
an adversary who knows the strategy of the algorithm and
generates the worst user sequence accordingly. It is a proper
model when the user sequence is totally unpredictable. Un-
der the small bid assumption, it has been proved that the up-
per bound of the C.R. of algorithms designed for the adver-
sarial model is 1− 1/e (Karp, Vazirani, and Vazirani 1990).
Several algorithms, e.g., Perturbed Greedy (Aggarwal et al.
2011) and Balance Algorithm (Kalyanasundaram and Pruhs
2000) have been proposed to achieve the optimal value. For
the most general bid problems, 1/2-C.R. is a long-standing
barrier achieved by the trivial greedy algorithm. Recently,
(Fahrbach et al. 2020) proposed a novel online algorithm to
break the barrier, where the most interesting ingredient is
a subroutine called online correlated selection (OCS). The
adversarial model is often pessimistic in practice.

The stochastic user arrival model assumes that users are
drawn from a stationary distribution or arrive at a ran-
dom order, which is often in accordance with the real data.
Most existing methods based on the stochastic model fol-
low the primal-dual framework, where dual optimal prices
are learned by solving a fractional matching problem on

the revealed users and used for assigning items to subse-
quent users. In the stationary environment, these methods
achieved a near-optimal solution (Agrawal, Wang, and Ye
2014; Buchbinder and Naor 2009; Feldman et al. 2010).
Moreover, (Agrawal and Devanur 2014; Agrawal, R, and Li
2016; Li, Sun, and Ye 2020) proposed online algorithms by
establishing the dual convergence result. Rather than learn-
ing dual prices on fractional data, they run an OGD algo-
rithm on the dual problem to update dual prices online. Since
the dual optimal prices are stable in stationary environments,
their proposed methods converge to the optimal solution at a
fast rate, concretely, O(log T log log T ). Moreover, an idea
to generalize online matching is to increase the capacities
of vertices. For instance, the online bipartite matching prob-
lem has been studied extensively in the literature (Aggarwal
et al. 2011; Kesselheim et al. 2013; Huzhang et al. 2017).

Although algorithms for the stochastic model are near-
optimal when users arrive randomly as expected, it is notable
that they could have a sharply degenerated performance
when the user sequence is adversarial (Esfandiari, Korula,
and Mirrokni 2015). Since both adversarial and stochastic
models have significant limitations, (Zhou et al. 2019) con-
sidered a novel user arrival model where users are drawn
from a drifting distribution. They proposed a new approach
named RDLA to deal with such an assumption, in which
the distributionally robust optimization (DRO) technique is
leveraged to learn dual prices. Due to the feature of DRO,
the RDLA is more suitable for the case where there exists
some spikes in the user sequence and can not be expected to
perform better when the environment changes gradually.

Online Convex Optimization Online convex optimiza-
tion (OCO) has become a well-established learning frame-
work both on theory and practice (Hazan 2019). In static
environment, OGD achieves an O(

√
T ) regret bound for

general convex functions. When the functions have a prop-
erty of strong convexity, the regret bound of OGD becomes
O(log T ) (Shalev-Shwartz et al. 2011). For exp-convex
functions, a second-order method named Online Newton
Step has an O(n log T ) regret bound, where n is the dimen-
sion of functions (Hazan, Agarwal, and Kale 2007).

When the environment is changing, the traditional regret
is no longer a suitable measure for online learners, since it
compares the learners to a static point. To break this lim-
itation, researchers have introduced a new measure called
dynamic regret recently. There are two different dynamic
regrets, i.e., the general dynamic regret and the restricted
dynamic regret. The general dynamic regret was first intro-
duced by (Zinkevich 2003) where the cumulative reward of
the learner is compared to any sequence of comparators. The
restricted dynamic regret, on the other hand, compares the
cumulative reward of the learner to the restricted comparator
sequence consisting of local minimizers of online functions
(Besbes, Gur, and Zeevi 2015). Since the general dynamic
regret includes the static regret and the restricted dynamic
regret as special cases, minimizing the general dynamic re-
gret can adapt to both stationary and dynamic environments.
In this paper, we focus on the general dynamic regret.

The first study investigating the general dynamic regret
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is (Zinkevich 2003). They introduced the definition of path-
length PT that reflects the dynamic environment and showed
that the OGD with a constant step size achieves a dynamic
regret of O(

√
T (1 + PT )). (Zhang, Lu, and Zhou 2018)

established a lower bound of Ω(
√
T (1 + PT )) and devel-

oped a novel online method named Ader to achieve the opti-
mal dynamic regret. Furthermore, (Zhao et al. 2020a) stud-
ied the bandit convex optimization in dynamic environments
and proposed an algorithm achieving O(T 3/4(1 + PT )1/2)
and O(T 1/2(1 + PT )1/2) dynamic regret respectively for
the one-point and two-point feedback models. To exploit the
smoothness condition, (Zhao et al. 2020b) proposed algo-
rithms leveraging smoothness and replaced the dependence
on T in the dynamic regret by problem-dependent quantities
that are o(T ) and much tighter in benign environments.

It is notable that the protocol of online matching problem
is different from OCO in some places. For the online match-
ing problem, a key challenge is that the learner is required
to allocate items under the long-term constraints of budgets.
Moreover, in the t-th round, the information of the t-th user
is accessible to the learner before making a decision, follow-
ing the fashion of online linear programming.

Preliminaries
We introduce some notations and definitions. There are M
potential items and K resources. The k-th resource pos-
sesses a budget Bk. Denote B = [B1; ...;Bk] ∈ RK as
the vector of budgets. In each round, the t-th user is revealed
with a reward vector rt ∈ RM and a resource consumption
matrix Ct ∈ RM×K . According to the historical informa-
tion {(rτ ,Cτ )}tτ=1, the online learner chooses a one-hot
decision vector x̂t ∈ RM where the it-th component equals
to 1 representing the it-th item is assigned to the t-th user.
The reward and the amount of consumed resources in the t-
th round can be calculated as r>t x̂t andC>t x̂t, respectively.
Therefore the online learner’s cumulative reward is given by

R(x̂1, ..., x̂T ) =

T∑
t=1

(
r>t x̂tI[

t∑
τ=1

C>τ x̂τ ≤ B]
)

(1)

where I(·) is the indicator function and T is the total number
of arrival users.

When all parameters of T users, i.e., {(rt,Ct)}Tt=1 are
available in advance, the matching problem can be relaxed
as an LP problem:

max
x1,...,xT

{ T∑
t=1

r>t xt, s.t.
T∑
t=1

C>t xt ≤ B
}

(2)

Denote (x∗1, ...,x
∗
T ) as the optimal solution of (2) and let

R∗ = R(x∗1, ...,x
∗
T ) be the cumulative reward of the opti-

mal solution, then the regret for the online matching problem
can be defined as

Regret(x̂1, ..., x̂T ) , R∗ −R(x̂1, ..., x̂T ) (3)

With the goal of minimizing the regret (3), the primal-dual
framework has been adopted by many algorithms, where the
dual prices are learned by optimizing the dual problem of the

original LP and then used for the online assignment. Specif-
ically, the dual form of LP (2) is

min
λ≥0

B>λ+
T∑
t=1

‖rt −Ctλ‖∞ (4)

where λ ∈ RK is the dual variable. The k-th component of
λ, denoted by λk, represents the amount of increased reward
when one unit of the k-th resource is allowed to be added to
its budget, which is the reason why λ is called dual price in
the literature of online matching problem. Moreover, λ can
be learned by solving a fractional dual problem with the re-
vealed information (Agrawal, Wang, and Ye 2014) or adopt-
ing OCO algorithms on the dual problem (4) directly (Li,
Sun, and Ye 2020). Let λ̂t be the dual prices used in the t-th
round, with the help of strong duality and K.K.T conditions
we derive the decision rule from dual prices as

x̂ti =

{
1, i = arg max{rti −

∑K
k=1 ctikλ̂tk}

0, otherwise.
(5)

where λ̂tk is the k-th component of λ̂t and x̂ti is the i-th
component of x̂t.

The Proposed Algorithm
Assumptions
In this paper, we adopt the following assumptions: There
exist constants r, c, λ, b, b ∈ R+ such that rti ≤ r, ctik ≤ c,
‖λ‖∞ ≤ λ and bk = Bk/T ∈ [b, b]. Moreover, we also
assume that b ≤ c.

Motivations
We first reduce the online matching problem (2) to the on-
line max-min problem. Then by introducing dual compara-
tor sequences, we bound the dynamic regret (3) with two
quantities, including a regret of the online max-min problem
and a dynamic regret of the OCO problem. The proposed
approach is designed to minimize both quantities.

The online matching can be reduced to an online max-min
problem by introducing the function

Lt(xt,λ) , r>t xt + λ>
(
B/T −C>t xt

)
(6)

To make the Slater condition hold for LP (2), we assume
there exists a null item that gains no reward and consumes
no resources. Then, by using the strong duality we have

R∗ = max
x1,...,xT

min
λ≥0

{ T∑
t=1

r>t xt + λ>
(
B/T −C>t xt

)}
= max
x1,...,xT

min
λ≥0

T∑
t=1

Lt(xt,λ)

(7)

It can be seen that (7) is an online max-min problem in-
volving a two-player zero-game. In each round, the function
Lt(·) is accessible to the online learner before making a de-
cision, which is different from the protocol of online saddle
point problem (Rivera, Wang, and Xu 2018).
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To further bound the online matching problem’s regret,
we involve variables to represent the maximum reward that
can be gained by adding one unit of resource, which is also
the upper bound of the dual price. Specifically, by defining
Λt =

∏K
k=1[0, λmax

tk ] where λmax
tk is the maximum dual price

for the k-th resource in the t-th round, the learner’s cumula-
tive reward for each sequence of x̂1, ..., x̂T is bounded by

R(x̂1, ..., x̂T ) ≥
T∑
t=1

(
r>t x̂t + min

λ∈Λt

λ>
(
B/T −C>t x̂t

))
(8)

To see this, consider a modified online matching problem
where the resource constraints can be violated while the on-
line learner must pay additional λmax

tk for each unit of the k-th
resource used over budget. Reminding that λmax

tk is the maxi-
mum reward gained by adding one unit of resource, the total
reward earned by the online learner in the modified problem
is given by the right-hand side of (8), which can be no more
than the cumulative reward in the original problem. Further-
more, let λ∗t = minλ∈Λt

λ>
(
B/T −C>t x̂t

)
, we have

R(x̂1, ..., x̂T ) ≥
T∑
t=1

(
r>t x̂t + λ∗>t

(
B/T −C>t x̂t

))
=

T∑
t=1

Lt(x̂t,λ
∗
t )

(9)

Note that Λt is related to the revealed data, and λ∗t can
vary with Λt over time. When the environment changes
faster, the variation ofλ∗t will be larger accordingly, and vice
versa. Therefore, (Zinkevich 2003) introduced path length,
defined as PT =

∑T
t=2 ‖λt−1 − λt‖2, to reflect the evolu-

tion of the dynamic environments. Furthermore, by substi-
tuting (7) and (9) into (3), the dynamic regret for the online
matching w.r.t. λ∗1, ...,λ

∗
T is bounded by

Regret(x̂1, ..., x̂T ;λ∗1, ...,λ
∗
T )

≤ max
x1,...,xT

min
λ≥0

T∑
t=1

Lt(xt,λ) −
T∑
t=1

Lt(x̂t,λ
∗
t )

=
(

max
x1,...,xT

min
λ≥0

T∑
t=1

Lt(xt,λ)−
T∑
t=1

Lt(x̂t, λ̂t)
)

+
( T∑
t=1

Lt(x̂t, λ̂t)−
T∑
t=1

Lt(x̂t,λ
∗
t )
)

(10)

In (10), the dynamic regret for the online matching problem
is bounded by the sum of two quantities (each in a bracket).
In particular, the first term is related to the regret of online
max-min problem, which can be eliminated by a primal-dual
based algorithm, and the second term is equal to the dynamic
regret of the OCO problem on dual prices. This decomposi-
tion is inspired by (Rivera, Wang, and Xu 2018), and the
main difference is that we consider the dynamic regret in the
dynamic environment in this paper.

Primal-Dual Online Algorithm
Motivated by the decomposition in (10), we propose a
novel online approach, named Primal-Dual Online Algo-

rithm (PDOA) to minimize both quantities. In particular,
PDOA follows the primal-dual framework by optimizing the
dual prices with OGD to eliminate the online max-min prob-
lem’s regret. Moreover, inspired by (Zhang, Lu, and Zhou
2018), PDOA maintains a set of OGD experts, each tracking
a potential path length of the dual price sequence, and com-
bines them via an expert-tracking algorithm, which gives a
sublinear dynamic regret bound for the second term. PDOA
consists of two sub-algorithms, i.e., expert-algorithm and
meta-algorithm, and the details of which are summarized in
Algorithm 1 and Algorithm 2 respectively.

Expert-Algorithm The expert-algorithm is the OGD that
regards the optimization of dual prices as an OCO problem,
in which the loss function can be defined as

gt(λ) , Lt(x̂t,λ) = r>t x̂t + λ>
(
B/T −C>t x̂t

)
(11)

We run a series of instances of expert-algorithm concur-
rently. Each expert, which is called an OGD expert, takes a
step size η as its input. As shown in Algorithm 1, the OGD
expert submits its dual prices λ̂

η

t to the meta-algorithm in
Step 3, and receives the gradient ∇gt(λ̂t) in Step 4. Then a
gradient descent step is carried out to update the dual prices
in Step 5:

λ̂
η

t+1 = max
{

0, λ̂
η

t − η∇gt(λ̂t)
}

(12)

Note that instead of∇gt(λ̂
η

t ), the OGD expert performs gra-
dient descent with the same gradient ∇gt(λ̂t) where λ̂t is
the weighted average of dual prices and is calculated by the
meta-algorithm. It is due to that we introduce a surrogate
loss lt(·) to replace gt(·), the detail of which is presented in
the meta-algorithm part.

Meta-Algorithm Learning from expert advice is a funda-
mental problem in the area of online decision making (Herb-
ster and Warmuth 1998). The proposed meta-algorithm is
built upon the Weighted Majority (Littlestone and Warmuth
1994; Hazan 2019), which is a weighted average learner
adopting the exponential update scheme.

As shown in Algorithm 2, the meta-algorithm takes a set
H of step size for OGD experts and its own step size β for
the exponential update as inputs. In the initializing phase,
we activate a set of OGD experts {Eη|η ∈ H} in Step 1 by
invoking the expert-algorithm for each η ∈ H, and set the
initial weights for each OGD expert in Step 2. In this regard,
we sort the step size in H and denote ηi as the i-th smallest
one, then the weight for Eηi is chosen as

wηi1 =
|H|+ 1

i(i+ 1)|H|
(13)

It is easy to verify that the sum of all weights is equal to 1,
and the OGD expert with a larger step size is initialized with
a smaller weight reasonably.

In each round, the t-th user’s parameters rt and Ct is
revealed. The meta-algorithm receives a set of dual prices
{λ̂

η

t |η ∈ H} from all OGD experts in Step 5, and calculates
the weighted average of dual prices in Step 6:

λ̂t =
∑
η∈H

wηt λ̂
η

t (14)
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Algorithm 1 PDOA: Expert-Algorithm

Require: T : total number of arrival users; η: step size
1: λη0 = 0
2: for t = 1 to T do
3: Submit λ̂

η

t to the meta-algorithm
4: Receive∇gt(λ̂t) from the meta-algorithm
5: Update dual prices

λ̂
η

t+1 = max
{

0, λ̂
η

t − η∇gt(λ̂t)
}

6: end for

Algorithm 2 PDOA: Meta-Algorithm

Require: T : total number of arrival users;B: resource bud-
gets; β: step size;H: set of step sizes for OGD experts

1: Active a set of OGD experts {Eη|η ∈ H} by invoking
the expert-algorithm for each η ∈ H

2: Sort the step size inH in the ascending order η1 ≤ η2 ≤
... ≤ ηN , and set wηi1 = |H|+1

i(i+1)|H|
3: for t = 1 to T do
4: Receive rt and Ct

5: Receive λ̂
η

t from each Eη
6: Calculate the weighted average

λ̂t =
∑
η∈H

wηt λ̂
η

t

7: Make decision x̂t where

x̂ti =

{
1, i = arg max{rti −

∑K
k=1 ctikλ̂tk}

0, otherwise.

8: Calculate the gradient of gt(·) at λ̂t

∇gt(λ̂t) = B/T −C>t x̂t
9: Construct the surrogate loss

lt(λ) , ∇gt(λ̂t)>(λ− λ̂t)

10: Update the weight of each Eη

wηt+1 =
wηt exp(−βlt(λ̂

η

t ))∑
µ∈H w

µ
t exp(−βlt(λ̂

µ

t ))

11: Send the gradient∇gt(λ̂t) to each Eη
12: end for
Ensure: {x̂1, ..., x̂T }: online assignment

where wηt is the weight for Eη . Therefore, by adopting the
primal-dual approach, we derive the decision x̂t with the
dual prices λ̂t in Step 7:

x̂ti =

{
1, i = arg max{rti −

∑K
k=1 ctikλ̂tk}

0, otherwise.
(15)

where x̂ti is the i-th component of x̂t and λ̂tk is the k-th

component of λ̂t. It is important to point out that (15) gives
an optimal xt, i.e., Lt(x̂t, λ̂t) = maxLt(xt, λ̂t), which
makes convenience for our regret analysis.

In the next step, we expect to calculate the value and the
gradient of gt(·) at ληt for eachEη , which leads to an expen-
sive calculation cost. To reduce the cost, inspired by (Zhang,
Lu, and Zhou 2018) we define a surrogate loss lt(·) as

lt(λ) , ∇gt(λ̂t)>(λ− λ̂t) (16)
Proposition 1. The minimizer of the regret w.r.t. lt(·) can be
used to minimize that w.r.t. gt(·).

Proof. Proposition 1 can be proved with the first-order con-
dition of convexity (Boyd and Vandenberghe 2004). Since
gt(·) is convex, we have

gt(λ) ≥ gt(λ̂t) +∇gt(λ̂t)>(λ− λ̂t), ∀λ
Then, with the definition (16), we can see that the regret
w.r.t. gt(·) is bounded by that w.r.t. lt(·), i.e.,

gt(λ̂t)− gt(λ) ≤ −lt(λ) = lt(λ̂t)− lt(λ)

Therefore, the minimizer of the latter can be used to mini-
mize the former.

Since lt(·) is linear, for any η ∈ H we have ∇lt(λ̂
η

t ) =

∇gt(λ̂t). As a consequence, when we utilize the surrogate
loss lt(·), the meta-algorithm only need to calculate and send
the same gradient∇gt(λ̂t) in Step 8:

∇gt(λ̂t) = B/T −C>t x̂t (17)
and construct the surrogate loss lt(·) as (16) in Step 9. The
weight of each OGD expert is updated based on lt(λ̂

η

t ) fol-
lowing the exponential update scheme in Step 10:

wηt+1 =
wηt exp(−βlt(λ̂

η

t ))∑
µ∈H w

µ
t exp(−βlt(λ̂

µ

t ))
(18)

In Step 11, the gradient ∇gt(λ̂t) is sent to all experts for
their own updates.

Remark 1 In order to minimize the upper bound (10) of
the dynamic regret, we constructH as

H =
{
ηi =

λ 2i−1

max{b, c− b}

√
7

2T

∣∣∣ i = 1, , , .N
}

(19)

where N = d 1
2 log2(1 + 4T/7)e, and have the following

theorem.
Theorem 1. Set 1

β =
(
r+λ(b−b+c)K

)√
T/8 in Algorithm

2, then for each dual price sequence λ∗1, ...,λ
∗
T defined in

(9), the proposed PDOA’s dynamic regret satisfies
Regret(x̂1, ..., x̂T ;λ∗1, ...,λ

∗
T )

≤ 3

4
max

{
b, c− b

}√
2KT (7λ

2
K + 4λ

√
KPT )

+

(
r + λ(b− b+ c)K

)√
2T

4

(
1 + 2 ln(k + 1)

)
= O(K

√
T (1 + PT ))

(20)

where
k =

⌈1

2
log2

(
1 +

4PT

7λ
√
K

)⌉
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Figure 1: Statistics about user queries. Each point shows one of the statistics which is averaged over queries from the same bin.

The complete proof of Theorem 1 can be found in
the appendix. For the OCO problem in dynamic environ-
ments, there exists a lower bound of the dynamic regret,
i.e., Ω(

√
T (1 + PT )), which is established by (Zhang, Lu,

and Zhou 2018). Intuitively, the online matching problem
is not easier than the OCO problem due to its additional
consideration of budget constraints, thus we can extend
Ω(
√
T (1 + PT )) as a lower bound for the online match-

ing problem in dynamic environments. Based on this dis-
cussion, the dynamic regret of our proposed method, i.e.,
O(K

√
T (1 + PT )), matches the lower bound for the prob-

lem. Moreover, Theorem 1 requires the advanced knowledge
of T . For the tasks where T can not be estimated in advance,
the doubling trick may be a helpful technique that has been
studied in the context of bandits or online convex optimiza-
tion (Cesa-Bianchi and Lugosi 2006; Erven et al. 2011).

Experiments
Settings
We evaluate the effectiveness of the proposed PDOA on two
real-world applications.
Problem1 is from one of the largest online retail plat-

forms over Asian and Europe. In international trades, the
timeliness of delivery is an important index that impacts
users’ satisfaction. The staff mark the commodities that had
been stored in the local warehouse. To reduce the delivery
time, algorithms are required to guarantee a certain number
of purchases for each marked commodity (called a task here)
when maximizing the total purchase amount of the platform.
Formally, denote crit as the conversion rate from exposing
the i-th commodity to the t-th user and gi as the guaranteed
purchase amount for i-th commodity, thus the problem can
be formulated as

max
x1,...,xT

T∑
t=1

M∑
i=1

critxit

s.t.
T∑
t=1

−crixit ≤ −gi, ∀i ∈ S

(21)

where S is the set for marked commodities.
Problem2 is from one of the largest e-commerce gro-

cery retailers. Among all commodities supplied on the mo-
bile application, there is plenty of fresh food such as veg-
etables, meat, and eggs, required to be sold out on the day.
The remaining inventory will be discarded at the mid-night.
Therefore, algorithms in this scenario aim at maximizing the
Gross Merchandise Volume (GMV) and minimizing the in-
ventory losses simultaneously. Formally, denote crit as the
conversion rate from exposing the i-th commodity to the t-
th user and ci as the cost of the i-th commodity, pi as the
profile of selling the i-th commodity and bi as the inventory
of the i-th commodity, the problem can be formulated as

max
x1,...,xT

T∑
t=1

M∑
i=1

crit(pi + γciIi)xit

s.t.
T∑
t=1

crixit ≤ bi, ∀i ∈ [M ]

(22)

where Ii indicates whether the i-th commodity is an fresh
food that need to be sold out, and γ is the trade-off parameter
between GMV and inventory losses.

It is easy to verified that both (21) and (22) are special
cases of the online matching problem (2), which are suitable
for our experiments.

Datasets In this paper, Dataset1 and Dataset2 are
constructed for Problem1 and Problem2, respectively.
Each dataset consists of millions of queries and 600 com-
modities, all of which are sampled from the real online data.
In Dataset1, there are 300 marked commodities stored
in the local warehouse, and the target of purchase num-
ber for each marked commodity is appointed by staff. In
Dataset2, there are 300 fresh foods to be sold out, and
the inventories of the day are provided by the supply system.
We collect the data from 5 days, each forming a matching
problem, thus there are 5 problems to be evaluated for each
application. Due to the limitation of commercial secrets, the
detailed information about the datasets is masked.
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Greedy Balance OLA OGD PDOA Greedy Balance OLA OGD PDOA
DAY1 67.0% NaN 79.3% 91.0% 91.3% 181983.0 NaN 181696.0 181440.0 181434.0
DAY2 45.7% NaN 55.0% 73.7% 89.7% 163176.0 NaN 162585.0 162079.0 161477.0
DAY3 46.0% NaN 66.0% 79.3% 93.0% 168679.0 NaN 167312.0 167471.0 167084.0
DAY4 55.7% NaN 63.7% 81.7% 92.7% 176353.0 NaN 175747.0 175464.0 174100.0
DAY5 60.3% NaN 69.0% 86.3% 93.7% 182635.0 NaN 182089.0 181932.0 181546.0
AVG. 54.9% NaN 66.6% 82.4% 92.1% 174565.2 NaN 173885.8 173677.2 173128.2

Dataset1: Completed Task Proportion Dataset1: Purchase Number
DAY1 24917.0 24284.0 23054.0 22811.0 21982.0 112671.0 134299.0 112664.0 120953.0 138213.0
DAY2 24987.0 24194.0 22890.0 22826.0 22153.0 119319.0 127309.0 119444.0 122418.0 131227.0
DAY3 23958.0 23649.0 21542.0 21526.0 21069.0 122070.0 129068.0 122231.0 123086.0 130704.0
DAY4 22518.0 21833.0 20121.0 19981.0 18846.0 122125.0 127672.0 121809.0 122052.0 129677.0
DAY5 22615.0 22227.0 20594.0 20472.0 19993.0 104048.0 116177.0 103172.0 104418.0 119310.0
AVG. 23799.0 23237.4 21640.2 21523.2 20808.6 116046.6 126905.0 115864.0 118585.4 129826.2

Dataset2: Inventory Loss Dataset2: GMV

Table 1: The results of PDOA and its compared methods over 5 days. Boldface highlights the significantly best performance.

In a dynamic environment, the distribution of arrival users
is changing over time. To verify that, we sort the queries of
all 5 days according to their arrival time and split them into
several bins with equal length, then several statistics about
user queries can be calculated for each bin. Note that ev-
ery bin has 20,000 queries for both datasets. Specifically,
the averaged conversion rates of the marked commodities,
non-marked commodities, and all commodities are analyzed
for Dataset1. The averaged conversion rates and the aver-
aged price of each category are performed for Dataset2.
The results are shown in Figure 1. It can be observed that
the distributions of queries are changing all the time, which
follows our expectations because the features of arrival users
are not stationary.

Methods We compare the following approaches:

• Greedy that maximizes the rewards without the consider-
ation of constraints.

• Balance that maximizes the rewards considering the con-
straints (Kalyanasundaram and Pruhs 2000).

• OLA (One-time Learning Algorithm) where dual prices
are learned by solving a fractional matching problem on
the first 1/4 queries (Agrawal, Wang, and Ye 2014).

• OGD with step size η = 0.01 (Li, Sun, and Ye 2020).
• PDOA where the step size β in Algorithm 2 is set as 0.1

and the setH of step sizes is performed as (19).

Moreover, since the values of the budgets in (21) are all
negative, Balance is not applicable for Dataset1.

Results
We adopt the Completed Task Proportion and the Purchase
Number as evaluation measurements for Dataset1, and
adopt the Inventory Loss and the GMV as evaluation mea-
surements for Dataset2. The results of all methods over 5
days are shown in Table 1.
Dataset1. For the Completed Task Proportion, PDOA

achieves the highest results on every single day, and OGD
is better than Greedy and OLA, since the latter two are pro-
posed for stationary environments. The results of OGD lack
stability, ranging from 73.7% to 91.0%, because the opti-
mal step sizes of OGD vary widely for different dynamic

environments. By contrast, PDOA completes 11.7% more
tasks than OGD over 5 days, which is more stable in prac-
tice. Note that Greedy has the best Purchase Number, merely
because of its ignorance of assigning tasks with an averaged
Completed Task Proportion of 54.9%, which is unaccept-
able in the real application. Actually, the Purchase Numbers
of all compared methods are comparable according to the
paired t-test at significance level 95%, thus the Completed
Task Proportion becomes the most discriminative measure-
ment for the dataset.
Dataset2. The results of PDOA show great superior-

ity to the compared methods, namely, PDOA achieves the
least Inventory Loss and the highest GMV on every single
day. The Inventory Losses of three primal-dual based meth-
ods are significantly less than Greedy and Balance. Since the
dual prices are fixed in the most assignments, OLA can not
adapt to the dynamic environment. On the contrary, OGD
benefits from the online update of dual prices and thus per-
forms better than OGD. Moreover, the value of step size η
is vital to the OGD’s performance, but we can not obtain the
optimal one in advance. By maintaining a set of OGD ex-
perts and combining them via an expert-tracking algorithm,
PDOA is able to get rid of this difficulty. In particular, PDOA
increases 9.5% total GMV and reduces 3.3% Inventory Loss
than OGD over 5 days.

Conclusion
We study the online matching problem in dynamic environ-
ments where the dual optimal prices are allowed to vary over
time. We bound the dynamic regret of online matching prob-
lem by the sum of two quantities, including a regret of online
max-min problem and a dynamic regret of OCO problem.
We proposed a novel approach named PDOA to minimize
both quantities, achieving an O(K

√
T (1 + PT )) dynamic

regret. In particular, PDOA adopts the primal-dual frame-
work by optimizing the dual prices with OGD to eliminate
the online max-min problem’s regret. Moreover, it maintains
a set of OGD experts and combines them via an expert-
tracking algorithm, which gives a sublinear dynamic regret
bound for the OCO problem. The experiments on real-world
applications exhibit the superiority of our approach.
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