The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Inverse Reinforcement Learning with Natural Language Goals

Li Zhou, Kevin Small

Amazon Alexa
{lizhouml, smakevin} @amazon.com

Abstract

Humans generally use natural language (NL) to communicate
task requirements to each other. Ideally, NL should also be us-
able for communicating goals to autonomous machines (e.g.,
robots) to minimize friction in task specification. However,
understanding and mapping NL goals to sequences of states
and actions is challenging. Specifically, existing work along
these lines has encountered difficulty in generalizing learned
policies to new NL goals and environments. In this paper, we
propose a novel adversarial inverse reinforcement learning al-
gorithm to learn a language-conditioned policy and reward
function. To improve generalization of the learned policy and
reward function, we use a variational goal generator to rela-
bel trajectories and sample diverse goals during training. Our
algorithm outperforms multiple baselines by a large margin
on a vision-based NL instruction following dataset (Room-2-
Room), demonstrating a promising advance in enabling the
use of NL instructions in specifying agent goals.

1 Introduction

Humans use natural language (NL) to communicate with
each other. Accordingly, a desired method for conveying
goals or assigning tasks to an autonomous machine (e.g., a
robot) is also by NL. For example, in household tasks, when
asking an agent to pick up a toolbox from the garage, we
do not assign the coordinates of the toolbox to the robot.
Instead, we state to the agent retrieve my toolbox from the
garage. This requires the agent to understand the semantics
of the natural language goals, associate states and actions
with the natural language goals, and infer whether the nat-
ural language goals are achieved or not — all of which are
very challenging tasks. Furthermore, we want to be able to
learn policies that are robust to lexical variation in goals and
generalize well to new goals and environments.

Inverse reinforcement learning (IRL) (Abbeel and Ng
2004; Fu, Luo, and Levine 2018), a form of imitation learn-
ing (Osa et al. 2018), is the task of learning a reward func-
tion and hence a policy based on expert demonstrations.
Imitation learning has been successfully applied to a wide
range of tasks including robot manipulation (Finn, Levine,
and Abbeel 2016), autonomous driving (Kuefler et al. 2017),
human behavior forecasting (Rhinehart and Kitani 2017),

Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

11116

video game Al (Tucker, Gleave, and Russell 2018). Gen-
erally, task goals are specified intrinsically by the environ-
ment and an agent is trained for each task. To generalize
the learned policy to new goals, goal-conditioned imitation
learning (Ding et al. 2019) and reinforcement learning (RL)
algorithms (Kaelbling 1993; Schaul et al. 2015; Nair et al.
2018) have been proposed where the policy is explicitly con-
ditioned on a goal. Normally, the goals either share the same
space with the states or can be easily mapped to the state
space. For example, in Ding et al. (2019), the goals and
states are both coordinates in the environment and the goals
are provided to the agent by specifying goal positions.

Fu et al. (2019) and Bahdanau et al. (2019) represent
two recent related works from the perspective of under-
standing NL goal specifications, where they propose learn-
ing a language-conditioned reward function under the max-
imum entropy inverse reinforcement learning (Ziebart et al.
2008) and generative adversarial imitation learning frame-
works (Ho and Ermon 2016). However, the NL goals are
produced by a preset template-based grammar. Fu et al.
(2019)’s policy is optimized exactly in a grid environment
with known dynamics and when the policy is optimized
by sample-based reinforcement learning algorithms such as
deep Q-learning (Mnih et al. 2015), the model performance
drops significantly. This reveals a sample efficiency chal-
lenge in this setting and implies that when the NL goals
and the environments are complicated, generalization to new
goals and environments becomes a very difficult problem.

One potential method for addressing these shortcomings
are goal relabeling techniques such as hindsight experience
replay (HER) (Andrychowicz et al. 2017) and latent goal
relabeling (Nair et al. 2018), which have been shown to im-
prove sample efficiency in RL settings. However, when the
goals are NL and are in a different space than the state space,
goal relabeling cannot be applied directly as we cannot eas-
ily relabel a state to a NL goal. Cideron et al. (2019) pro-
poses to build such a relabeling function with a SEQ2SEQ
model that takes a trajectory as input and outputs a rela-
beled NL goal. However, this uses the ground-truth reward
function and their experiments are again based on simple
template-based NL goals. Moreover, as we will show in this
paper, applying HER to IRL with NL goals doesn’t signifi-
cantly improve performance, as the reward function does not
generalize well to relabeled goals.

In this work, we propose a sample efficient IRL algorithm
with natural language (NL) goals. To the best of our knowl-
edge, our work is the first IRL algorithm that works with real
human generated NL goals (as opposed to template-based
language goals (Fu, Luo, and Levine 2018; Bahdanau et al.
2019)) in a real world vision-based environment. Our con-
tributions include: (1) proposing a NL goal-conditioned ad-
versarial inverse reinforcement learning algorithm, (2) spec-
ifying a variational goal generator that efficiently sample di-
verse NL goals given a trajectory, (3) utilizing goal relabel-
ing and sampling strategies to improve the generalization of
both the policy and the reward function to new NL goals and
new environments, (4) proposing a self-supervised learning
mechanism to further improve the generalization in new en-
vironments. Through these innovations, we show that our
algorithm significantly outperform strong baselines on the
Room-2-Room dataset (Anderson et al. 2018).

2 Problem Formulation

A task is defined as a pair (E, G), where E is an environ-
ment that the agent can interact with and G is a NL goal
that the agent has to fulfill. G = {w;,ws, ..., wy} consists
of N words. For example, in our experiments, F is a re-
alistic 3D indoor environment and G is a human-generated
navigation instruction. The true reward function of each task
is unknown, but there exists a set of expert demonstrations
consisting of a task (F, G) and a trajectory 7. The trajec-
tory 7 = {s1,a1, S2, az, ..., ST, ar} consists of a sequence
of T states perceived by the experts and the actions taken
by the experts given the states. For example, in our experi-
ments the states are first-person views in a 3D indoor envi-
ronment and the actions are movements towards a direction
in the environment. While our proposed methods can be ap-
plied to both continuous and discrete action spaces, we focus
on discrete action spaces in this paper. The objective of the
algorithm is to learn a policy that imitates expert demonstra-
tions such that given a new NL goal in an existing or new
environment, the agent can perform a sequence of actions
to achieve that goal. In this paper, we use G to represent
an arbitrary goal, G to represent the set of goals in expert
demonstrations, and G; to represent the i-th goal in G. The
same notation style applies to ' and 7 too.

3 Method

3.1 Preliminary: Adversarial Inverse
Reinforcement Learning (AIRL)

AIRL (Fu, Luo, and Levine 2018) is based on maximum en-
tropy inverse reinforcement learning (MaxEntIRL) (Ziebart
et al. 2008). In MaxEntIRL, the probability of a trajectory
is defined as py(7) = + exp(fo(7)), where fj is the reward
function to learn and Z =) _exp(fq(7)) is the partition
function. MaxEntIRL learns the reward function from ex-
pert demonstrations by maximizing the likelihood of trajec-
tories in the expert demonstrations: maxg E,p(logpe(T)).
Maximizing this likelihood is challenging because the par-
tition function Z is hard to estimate. AIRL maximizes
this likelihood by using a generative adversarial network

11117

(GAN) (Goodfellow et al. 2014). The GAN generator is the
policy 7 to learn and the GAN discriminator is defined as

exp{fo,6(s,a,5")}
exp{fo.4(s,a,s)} + w(als)

where fo,4(s,a,") = go(s,a) +ho(s') — hs(s), go(s. a)
is the reward function to learn, and hy(s") — hg(s) is the
reward shaping term. The policy 7 and the discriminator are
updated alternately.

D9,¢(S7aa5l) = (1)

3.2 Inverse Reinforcement Learning with Natural
Language Goals

Our AIRL-based solution builds on language-conditioned
reward learning (LC-RL) (Fu et al. 2019) by adding
template-free NL capabilities and continuous state space
support. In this problem setting, the policy and the reward
function are conditioned on a NL goal G, so we first extend
the discriminator in Equation (1) to have fp 4(s,a,s’,G) =
go(s,a,G) +vhy(s', G) — he(s, G) such that

go(s,a,G) = MLP([e®; Att(s, G); e?])
hg(s, G) = MLP([e®; Att(s, G)])

where MLP(-) is a multilayer Perceptron, e® and e®
are the embeddings of state s and action a, respec-
tively, and Att(s, G) is an attention function. Att(s,G) =
> el where e is the word embedding of w; in
G, «; (Linear(e®) - €}) / (>_, Linear(e®) - €}) and
Linear(-) is a single-layer Perceptron. We use soft actor-
critic (SAC) (Haarnoja et al. 2018), one of the state-of-the-
art off-policy RL algorithms, to optimize policy 7 given the
reward function gy (s, a, G). SAC includes a policy network
to predict an action given a state and a goal, and a Q-network
that estimate the Q-value of an action given a state and a
goal. We define the policy network as

Tw (8, a, G) = Softmax(e® - MLP([e®; Att(s, G)]))

and we define the Q-network ¢y (s, a, G) as the same net-
work architecture as ggp. Compared with on-policy algo-
rithms such as TRPO (Schulman et al. 2015), SAC uti-
lizes a replay buffer to re-use sampled trajectories. The re-
play buffer is beneficial to training both the discrimina-
tor and the policy. To update the discriminator, we sam-
ple negative (s,a,s’,G) examples from the replay buffer
and sample positive (s, a, s’, G) examples from the expert
demonstrations. 7o update the policy, we sample a batch of
(s,a,s’,G) from the replay buffer and use gy to estimate
their rewards; then we update the Q- and policy network
using these reward-augmented samples. We modify SAC
slightly to support discrete action spaces. Appendix B con-
tains details about model architecture and optimization.

3.3 A Variational Goal Generator for Improved
Generalization and Sample Efficiency

While SAC has better sample efficiency than many on-
policy RL algorithms, as we will show in our experiments,
in environments with complicated NL goals and high dimen-
sional state spaces (e.g., vision-based instruction following),

AIRL with SAC performs only slightly better than super-
vised learning based behavior cloning and the learned pol-
icy and discriminator doesn’t generalize well to new goals
or new environments. In this section, we show that by learn-
ing a variational goal generator, we can enrich the training
data for both the discriminator and the policy, which leads to
large improvements in sample efficiency and generalization
for both the discriminator and policy in NL settings.

A goal generator takes a trajectory 7 (sequence of states
and actions) as input and outputs a NL goal G. Given ex-
pert demonstrations, a straightforward way of learning a
goal generator is to train an encoder-decoder model that en-
codes a trajectory and decodes a NL goal. However, in real-
ity, there are many possible ways to describe a specific tra-
jectory using NL, and the description will likely be biased
due to variance in people’s expression preferences. For ex-
ample, consider a trajectory in which the agent goes to the
kitchen and washes the dishes. Two possible goal descrip-
tions for this trajectory can be go to the kitchen and wash
the dishes or clean the dishes on the dining table. To better
model variations and generate more diverse NL goals, we
learn a variational encoder-decoder model as goal generator.
The generative process of the variational goal generator is

MHprior, Uf)rior = fprior (T)
z N (Mprio’r‘a UgriorI)
G = fdec (Z7 T)

where fprior is @ LSTM-based trajectory encoder and fgec
is an attention-based goal decoder. The posterior distribution
of latent variable z is approximated by

Hposterior, O—gostem’or = fposterim’ (Ta G)

q (Z\T, G) = N (Z‘Nposteriorv U;Zaostem‘orl)
where fposterior 1S @ LSTM-based trajectory and goal
encoder. We then maximize the variational lower bound
—Dir(a(zI7,G)[p(2) + Egeir.collogp(Glz,7)]. Net-
work architecture and optimization details are in Appendix
B. Given the learned variational goal generator, we propose

using three goal relabeling and sampling strategies to im-
prove generalization as itemized below.

Expert Goal Relabeling (EGR). As discussed previ-
ously, multiple goals can be mapped to the same trajectory.
We propose to augment expert demonstrations by generat-
ing N other goals for each expert trajectory 7;: Gy, ~
GoalGenerator(7;), n = {1,2,..., N}, where G, ,, is the n-
th generated goal for 7, and GoalGenerator(-) is the learned
variational goal generator. For expository and experimen-
tal simplicity, we set N = 2, which works well for this
dataset. Model performance under different values of N
are shown in Appendix D. These newly generated tuples
{(Ei, Gin, i)}, are also treated as expert demonstra-
tions for training. We represent the set of goals in the aug-
mented expert demonstrations by G'* where the superscript
of G represents the round of generation as described shortly.

Hindsight Goal Relabeling (HGR) for the Discrimina-
tor. In the AIRL framework, the quality of the discrimi-
nator is crucial to the generalization of the learned policy. A

11118

good discriminator learns a good reward function that gen-
eralizes well to new goals and new environments such that
the learned policy can also well generalize to new goals and
new environments (Fu et al. 2019). To improve the discrim-
inator, we propose to augment the positive examples of the
discriminator by relabeling the goals of the sampled trajec-
tories. More specifically, during the training, given a goal
(Ej, G;), the agent interacts with the environment and sam-
ples a trajectory le. We then use the variational goal gener-

ator to sample a goal for lez
1 1
Tj o~ m(Ej, Gj)

2 1
G; ~ GoalGenerator(7;)

2)
3)

The tuples (E, G?,71) are treated as positive examples for
the discriminator, as a supplement to the positive examples
from expert demonstrations (E, G, T).

Hindsight Goal Sampling (HGS) for Policy Optimiza-
tion. When optimizing the policy with SAC, we have to
sample NL goals to train the policy. One natural way is to
sample goals from expert demonstrations. However, expert
demonstrations are relatively scarce, expensive to acquire,
and it is difficult to cover goal variance encountered in the
testing. Meanwhile, as we will show in our experiments,
training with a diverse set of goals is beneficial to the gener-
alization of the policy. Therefore, we propose to also sample
goals from G? so that the policy can train with goals beyond
these in the expert demonstrations.

7 ~7(E;,G3)

3 2
G ~ GoalGenerator(7;’)

“4)
&)

Of course, training the policy with G2 relies on the discrim-
inator’s generalization ability to provide reasonable reward
estimates for states and actions sampled under G?. This is
ensured by HGR in Section 3.3, as (E, G2, T1) are provided
as positive examples for the discriminator.

The process from Equation (2) to Equation (5) can be seen
as using G* and T as seed, and iteratively sample 7 from
G" using the policy, and then sample G**! from 7 using
the goal generator. We can go deeper in this loop to sample
more diverse NL goals and trajectories for policy and dis-
criminator training. More specifically, fo train the discrimi-
nator, positive examples are sampled from (E, G*,) with
probability 0.5, and are sampled from {(E, G'*!,79)|v >
1} with probability 0.5; negative examples are sampled from
{(E,G",%)|v > 1}. To train the policy, goals are sam-
pled from (E,G") with probability 0.5 and are sampled
from {(E,G"*!)|v > 1} with probability 0.5. Algorithm
1 shows the overall description for LangGoalIRL.

Hindsight Experience Replay (HER) for Policy Opti-
mization. A closely related approach, hindsight experi-
ence replay (Andrychowicz et al. 2017), has been shown
to work very well in RL settings with sparse rewards. In
principle, we could easily incorporate HER into our train-
ing procedure. That is, when sampling from replay buffer
to optimize policy w, we sample batches not only from
{(E,G",7") |v > 1}, but also from {(E, G"*!, 1Y) [v >

Algorithm 1 Inverse Reinforcement Learning with Natural
Language Goals (LangGoalIRL)

Input: GoalGenerator: the variational goal generator from section
3.3; D: expert demonstrations; R = &: replay buffer; b: batch
size; N: number of expert relabeling goals.
D=0,6=0
: for each (E;, Gi, ;) € D do
forn=1,2, .., Ndo
> Expert Goal Relabeling (EGR)
Gi,n ~ GoalGenerator(T;)
end for ~
add (E;, G, 7:) and {(E;, Gin, i) }Jhey to D
: end for
: while not converged do
10: 1,72 ~ Uniform(0, 1)
11: if r1 < 0.5 then

R R

12: Sample a goal (E;,G;) ~ D

13: else

14: > Hindsight Goal Sampling (HGS)
15: Sample a goal (E;,G;) ~ G

16: end if

17: Sample a trajectory 7; ~ m(Ej, G;)

18: Sample a relabeled goal G; ~ GoalGenerator(7;)
19: Add (E;,G;, G%, 7}) to replay buffer R

20 Add (E;,G))t0 ¢

21: if r2 < 0.5 then

22: Sample a batch Py = {(sk, al, st™, Gi) ooy ~ D
23: else

24 > Hindsight Goal Relabeling (HGR)

25: Sample a batch Py = {(s},al, si™, G Yooy ~ R
26: end if

27: Sample a batch P_ = {(s}, al, st Gi)}ooy ~ R

28: Update discriminator parameters with P4 and /P_ as pos-

itive and negative examples, respectively.
29: Sample a batch Q = {(sk,al, st Gi) Yooy ~ R
30: Expand each entry of Q with reward v}, = go (s, a,, Gx)
31: Optimize 7 using Soft Actor-Critic with Q
32: end while

1}. The difference between HER and HGR is that the for-
mer is goal relabeling for the policy while the latter is goal
relabeling for the discriminator. HER is most efficient when
rewards are sparse; however, in our setting, the rewards pro-
vided by the discriminator are not sparse and we do not ob-
serve a boost of performance after applying HER. This is
discussed in greater detail in Section 4.

3.4 Self-Supervised Learning in New
Environments

In this section, we specifically examine the scenario where
the learned policy is deployed to a new environment. For ex-
ample, after training an embodied agent to perform tasks in a
set of buildings, we may deploy this agent to a new building
with different floor plans. We assume that we have access
to these new environments, but we do not have any expert
demonstrations nor any NL goals in new environments. Note
that we can not directly apply NL goals from existing envi-
ronments to new environments, because goals are tied to the
environments. For example, in instruction-following tasks,
an example goal is go downstairs and walk pass the living

room. However, there may be no stairs in a new environ-
ment. As a result, we can not just sample goals from expert
demonstrations to train in the new environments.

The high-level idea of our method is to first learn a policy
mp that is goal-agnostic. That is, the policy selects an action
purely based on the state without conditioning on a goal.
This model gives us a prior of how the agent will act given a
state. We use behavior cloning to train this policy on expert
demonstrations. More details are available in Appendix B.
We then sample trajectories in the new environments using
this policy and sample goals of these trajectories using the
goal generator:

TTLEU) ~ 7Tp (ETLS’UJ)

G"®" ~ GoalGenerator(7"“")

(Emew G™ev W) are treated as expert demonstrations
in the new environments. We then fine-tune the discrimina-
tor and the policy in new environments using Algorithm 1
(wlo expert goal relabeling). The self-supervised learning
signals come from both the generated expert demonstrations
for the new environments, and the hindsight goal relabeling
and sampling proposed in Section 3.3. The generated expert
demonstrations can be seen as seeds to bootstrap hindsight
goal relabeling and sampling.

4 Experiments

While LangGoallRL works on any natural language (NL)
goal based IRL problems, our experiments focus on a
challenging vision-based instruction following problem.
We evaluate our model on the Room-2-Room (R2R)
dataset (Anderson et al. 2018), a visually-grounded NL nav-
igation task in realistic 3D indoor environments. The dataset
contains 7,189 routes sampled from 90 real world indoor
environments. A route is a sequence of viewpoints in the
indoor environments with the agent’s first-person camera
views. Each route is annotated by humans with 3 navigation
instructions. The average length of navigation instructions
is 29 words. The dataset is split into train (61 environments
and 14,025 instructions), seen validation (61 environments
same as train set, and 1,020 instructions), unseen validation
(11 new environments and 2,349 instructions), and test (18
new environments and 4,173 instructions). We don’t use the
test set for evaluation because the ground-truth routes of the
test set are not released. Along with the dataset, a simula-
tor is provided to allow the embodied agent to interact with
the environments. The observation of the agent is the first-
person camera view, which is a panoramic image. The ac-
tion of the agent is the nearby viewpoints that the agent can
move to. For details about the dataset, please see Appendix
A. The R2R dataset has become a very popular testbed for
language grounding in visual context (Tan, Yu, and Bansal
2019; Wang et al. 2019; Fried et al. 2018; Zhu et al. 2020).
We evaluate the model performance based on the trajec-
tory success rate. Each navigation instruction in the R2R
dataset is labeled with a goal position. Following Anderson
et al. (2018), the agent is considered successfully reaching
the goal if the navigation error (the distance between the
stop position and the goal position) is less than 3 meters.

Note that the goal position is not available to our model, as
we use navigation instructions as goals.

We compare our model with the following baselines: (1)
LangGoallRL_BASE, which corresponds to our proposed
model in Section 3.2 without the goal relabeling/sampling
strategies proposed in Section 3.3. (2) Behavior Cloning,
which is imitation learning as supervised learning. The
model shares the same architecture as the policy network of
LangGoallRL and is trained to minimize cross entropy loss
with actions in the expert demonstrations as labels. (3) LC-
RL (Sampling) (Fu et al. 2019), which also uses MaxEn-
tIRL (Ziebart et al. 2008) to learn a reward function. It opti-
mizes the policy exactly in a grid environment, which is not
scalable to our experimental setting, so we use AIRL with
SAC for LC-RL to optimize the policy. In this case, LC-RL
is very similar to LangGoallRL_BASE, except that LC-RL
simply concatenates state and goal embeddings as input to
the policy and reward function, while LangGoallRL_BASE
uses the attention mechanism Att(s, G) in Section 3.2. (4)
AGILE (Bahdanau et al. 2019), which proposes to learn a
discriminator (reward function) that predicts whether a state
is the goal state for a NL goal or not. The positive examples
for the discriminator are the (NL goal, goal state) pairs in
expert demonstrations, and the negative examples are sam-
pled from the replay buffer of SAC. (5) HER (Andrychow-
icz et al. 2017; Cideron et al. 2019), which uses our learned
variational goal generator to relabel trajectories. This corre-
sponds to the final strategy in Andrychowicz et al. (2017)
applied to LangGoalIRL_BASE. (6) Upper Bound (Tan, Yu,
and Bansal 2019). Recently, there are a few vision-language
navigation models (Tan, Yu, and Bansal 2019; Wang et al.
2019; Fried et al. 2018; Zhu et al. 2020) developed and eval-
uated on R2R dataset. However, they assume the goal po-
sitions or the optimal actions at any states are known, and
assume the environments can be exhaustively searched with-
out sample efficiency considerations in order to do training
data augmentation. As a result, their problem settings are
not really comparable, but we include Tan, Yu, and Bansal
(2019)’s result a potential upper bound. Note that without
the additional information described above, their model per-
formance reverts to our Behavior Cloning baseline. We will
discuss this more in Section 5. For implementation details of
our algorithms and the baselines, please refer to Appendix B.

The performance of our algorithm and baselines are
shown in Figure 1, Table 1, and Table 2. From the results,
we would like to highlight the following observations.

1. LangGoallRL outperforms baselines by a large
margin. From Table 1 and Figure 1(a) we can see that
LangGoallRL achieves a 0.530 success rate on seen vali-
dation set, a 47.63% improvement over LC-RL (sampling)
and a 129% improvement over AGILE. Rewards learned
by AGILE are binary and sparse, which may be one of the
main reasons why AGILE performs even worse than Behav-
ior Cloning. The difference between LC-RL (sampling) and
LangGoallIRL_BASE is just the lack of attention mechanism
over NL goals, which simply indicates that attention mech-
anism is important when NL goals are complicated. Other
powerful attention mechanisms such as the Transformer ar-
chitecture (Vaswani et al. 2017) could also be easily con-

11120

seen validation

unseen validation

Behavior Cloning
LC-RL (sampling)
AGILE

0.445 £ 0.0122
0.359 £0.0117
0.231 £0.0173

0.300 £ 0.0114
0.216 £ 0.0081
0.253 £ 0.0269

HER 0.464 +0.0126 0.306 £+ 0.0173
LangGoallRL_.BASE | 0.449 +0.0130 0.308 £ 0.0087
LangGoalIRL 0.530 +£0.0138 0.357 £ 0.0089
+self-supervised - 0.491 £+ 0.0065
Upper Bound 0.621 0.645

Table 1: Success rate after 1 million environment interac-
tions. LangGoalIRL+self-supervised is further fine-tuned in
unseen environment for 1 million environment interactions
(explained in Figure 1(c)).

seen validation
success rate
0.449 £+ 0.0130
0.450 4+ 0.0122
0.427 £+ 0.0048
0.399 +0.0124
0.504 £+ 0.0185
0.444 + 0.0134
0.503 +0.0117
0.530 £0.0138

EGR HGR HGS

N

NS
NSNS
NSNS

Table 2: Ablation study of the three proposed strategies on
seen validation set. A complete ablation study which in-
cludes HER is in Table 1 of Appendix D.

sidered. The success rate of LangGoalIRL is 18.04% and
15.91% higher than LangGoallRL_BASE on seen valida-
tion and unseen validation, respectively, which shows that
the three proposed strategies efficiently improve the gener-
alization of the policy to new NL goals and new environ-
ments. From Figure 1(b) we see that, when combined with
HER, LangGoallRL converges slower and performs worse
than LangGoalIRL alone. HER has been shown to efficiently
deal with reward sparsity; however, the rewards learned by
AIRL are not sparse. From Table 1 we see that HER alone
barely outperforms LangGoallRL_BASE. As we will dis-
cuss shortly, HER only improves the sample efficiency of the
generator (policy), however, the generalization of the dis-
criminator (reward function) is what is crucial to the overall
performance of the policy. Finally, from Figure 1(b) we can
also see that LangGoalIRL_BASE consistently outperforms
Behavior Cloning after about 200k interactions, which ef-
fectively indicates the benefit of using inverse reinforcement
learning over behavior cloning.

2. Hindsight goal relabeling and expert goal relabel-
ing improve the generalization of the discriminator (re-
ward function); such generalization is crucial to the per-
formance of the policy. From Table 2 and Figure 1(f), we
see that if we take out HGR, the success rate drops signifi-
cantly from 0.530 to 0.444. This shows that HGR plays a key
role in learning a better reward function by enriching posi-
tive examples of the discriminator. Meanwhile, when apply-
ing HGS without HGR, the success rate drops from 0.503
to 0.399. This is because the discriminator cannot general-

LangGoallRL
—— LangGoallRL+HER

LangGoallRL_BASE

HER
—— Behavior Cloning

success rate
success rate

s

LangGoallRL
—— Behavior Cloning
—— LC-RL(sampling)
AGILE

0 200 400 600 800

number of environment interactions (x103)

1000 0 200

(a) Baseline performance in seen val.

400
number of environment interactions (x 10%)

(b) HER variants performance in seen val.

05

o
b

success rate

LangGoallRL_SS (15K)
Random Explore (15K)
YL LangGoallRL_SS (5K)

—— Random Explore (5K)
HER
Behavior Cloning

600 800 1000 0 200 400 600 800

number of environment interactions (x103)

1000

(c) Self-supervised learning in unseen val.

050 0.54 LangGoallRL 0.54 LangGoallRL
052 LangGoallRL_ONLY_EGR M/W/\A/WW LangGoallRL_NO_EGR
—— LangGoallRL_ONLY_HGS 052 —— LangGoallRL_NO_HGS r\A/\/\/\/‘f/\-A/\/\[\’\/J
048 \ /\/\V\vh'\/\/\/\/vf\f 050 —— LangGoallRL_ONLY HGR —— LangGoallRL_NO_HGR

o
=
3

o
X
>

P I A

A
— LangGoallRL_SS (15K)
LangGoallRL_SS_G2 (15K)
LangGoallRL_SS (10K)
LangGoallRL_SS_G2 (10K)
LangGoallRL_SS (5K)
LangGoallRL_SS_G2 (5K)

o
&
>

success rate
o
b
S

success rate

y:

o
Ie
IS

)
e
S

042

)
=
3

040
0

o
@
&

200 400 600 800
number of environment interactions (x10%)

1000 0

200
number of environment interactions (x 10%)

(d) Self-supervised learning in unseen val.

LangGoallRL_BASE

400

(e) Ablation study in seen val.

LangGoallRL_BASE \/\WW\/
)

F i

200 400 600 800 1000
number of environment interactions (x10%)

success rate
o o o
& & =
~ =3 ®

o
IS
S

600 800 1000 0

(f) More ablation study in seen val.

Figure 1: Model performance on both seen and unseen validation. LangGoallRL_SS in Figure (c) and (d) represents self-
supervised learning in unseen environments. LangGoalIRL_SS (15K) means that 15,000 demonstrations are sampled by the
goal-agnostic policy 7,. Random Explore means that a random policy instead of m,, is used to sample demonstrations. Lang-
GoallRL_SS_G2 means that the policy does not iteratively sample goals from {(E, G")|v > 2} as described in Section 3.3.3.

ize well to sampled goals when HGR is not applied, which
shows the importance of discriminator generalization. How-
ever, from Table 2 and Figure 1(e) we can also see that if
we only keep HGR, the success rate drops to 0.427 which
is even lower than LangGoallRL_BASE. We observe that in
this case the goals generated by the variational goal genera-
tor only appear in the positive examples of the discriminator,
so the discriminator easily identify these goals, and simply
assigns high rewards to these goals regardless of what ac-
tion is taken. When EGR and HGR are applied together, re-
labeled goals appear in both positive and negative examples,
and the success rate improves from 0.427 to 0.504.

3. Self-supervised learning largely improves perfor-
mance in unseen environments. Table 1 shows that with
self-supervised learning, LangGoallRL achieves a suc-
cess rate of 0.491, a 59.42% improvement over Lang-
GoallRL_BASE and a 37.54% improvement over Lang-
GoallRL w/o self-supervised learning. This shows that the
proposed self-supervised learning algorithm can signifi-
cantly improve policy performance even though neither ex-
pert demonstrations nor NL goals in new environments are
given. The number of trajectories sampled by the goal-
agnostic policy 7, in new environments by default is 15,000.
In Figure 1(c), we show the performance of a baseline model
where the embodied agent randomly explores the new envi-
ronments (randomly selects an action at any states, but does

11121

not visit any visited viewpoints) rather than using ;, to sam-
ple trajectories. We set the number of sampled trajectory to
15,000 and 5,000. We see that the agent performance drops
during early stages, as randomly explored trajectories are
not good seeds to bootstrap Algorithm 1 in new environ-
ments. After early stages, the model performance gradually
increases as HGR and HGS provide some self-supervised
signals but the overall the performance remains lower than
LangGoallRL. More results are in Table 2 of Appendix D.
Finally, self-supervised learning can also be applied to exist-
ing environments by augmenting the expert demonstrations
in seen validation set. While this is not our target setting, we
include these results in Table 3 of Appendix D.

4. Hindsight goal sampling improves the generaliza-
tion of the policy by enabling the policy to explore a more
diverse set of goals. From Table 2 and Figure 1(f) we can
see that HGS further improves the policy performance from
0.504 to 0.530 on seen validation set. Figure 1(d) shows the
impact of HGS on self-supervised learning in new environ-
ments. The baseline, LangGoallRL_SS_G2 samples goals
only from G and G? defined in Section 3.3 and does not
iteratively sample goals from {(E,G")|v > 2}. As goals
sampled are less diverse, we see that LangGoallRL_SS_G2
performs worse than LangGoalIRL_SS given 5,000, 10,000
and 15,000 generated expert demonstrations in new environ-
ments. More experiments are in Table 2 of Appendix D.

LaneGoalIRL NL-conditioned State Goal SoTA models

anghoa IRL/RL -Conditioned IRL/RL on R2R dataset
Require Ground-Truth No No/Yes No/Yes Yes if use RL fine-tuning
Reward function
Goal Type NL NL/NL States/States NL
Use Student-forcing No No/No No/No Yes
Goals/Paths Augmentation | EGR, HGS, HGR No/HER HER/HER All shortest-paths

in environments

Table 3: Closely related problem settings. Please refer to the extended paper (Zhou and Small 2020) for the complete table.

5 Related Works

Our paper focuses on proposing a sample efficient algorithm
for IRL with natural language (NL) goals. Table 3 summa-
rizes the differences between our LangGoallRL algorithm
and recent closely related works on goal-conditioned RL and
imitation learning (IL). Goal-conditioned RL and IL have
been explored by many prior works (Schaul et al. 2015; Flo-
rensa et al. 2017; Nair et al. 2018; Plappert et al. 2018; Ding
et al. 2019). Usually, the task is to learn a policy that is pa-
rameterized by a goal and can generalize to new goals. In
most prior works, the goals and states are in a same space,
such as positions in a Cartesian coordinate system (Plappert
et al. 2018; Ding et al. 2019). This corresponds to column
4 in Table 3. However, in this paper we investigate a dif-
ferent setting where the goals are NL goals, which corre-
sponds to column 3 in Table 3. The closest prior works to our
algorithm are language-conditioned IRL and reward learn-
ing (Fu et al. 2019; Bahdanau et al. 2019; MacGlashan et al.
2015; Williams et al. 2018; Goyal, Niekum, and Mooney
2019). Goyal, Niekum, and Mooney (2019) propose to train
a model to predict whether a language instruction describes
an action in a trajectory, and use the predictions to per-
form reward shaping. Bahdanau et al. (2019) propose to use
GAN (Goodfellow et al. 2014; Ho and Ermon 2016) to learn
a discriminator that predicts whether a state is the goal state
of a NL instruction. Fu et al. (2019) propose to use the Max-
EntIRL (Ziebart et al. 2008) framework to learn a language-
conditioned reward function for instruction following tasks.
The language instructions in Bahdanau et al. (2019) and Fu
et al. (2019)’s experiments are generated by templates and
much easier to understand compared with our dataset. Mean-
while, LangGoalIRL demonstrates significantly better gen-
eralization than these two prior works. There are also many
prior works on goal relabeling to improve sample efficiency,
but none of them can be directly applied to the IRL with NL
goals setting. Andrychowicz et al. (2017) propose hindsight
experience replay that samples additional goals for each
transition in the replay buffer and can efficiently deal with
the reward sparsity problem. Nair et al. (2018) propose to
sample additional diverse goals from a learned latent space.
Ding et al. (2019) propose to relabel trajectories using the
states within the trajectories. These algorithms do not work
with NL goals. Cideron et al. (2019) and Jiang et al. (2019)
generalize HER to language setting and relabel trajectories
by hindsight language instructions. However, in this paper
we show that, when doing IRL, simply applying HER to pol-
icy optimization does not improve policy performance, and

11122

it is critical to improve the generalization of the reward func-
tion. Finally, there are multiple recent works (Tan, Yu, and
Bansal 2019; Wang et al. 2019; Fried et al. 2018; Zhu et al.
2020) on R2R dataset that focus on solving vision-language
navigation (Anderson et al. 2018). This corresponds to the
last column in Table 3. These works do not focus on sample
efficient IRL algorithms and use student-forcing (Anderson
et al. 2018) to train their supervised learning models or pre-
train their RL models. With student-forcing, the policy is
assumed to always have access to the optimal action at any
state it encounters during training, which is even a stronger
assumption than knowing the ground-truth reward function.
Fried et al. (2018) and Tan, Yu, and Bansal (2019) propose to
learn a speaker model that back-translate a given trajectory
to a NL goal, which is similar to our goal generator without
latent variables. However, the purpose of the speaker model
is to augment training data before the training, rather than
relabeling goals during training. To augment training data,
they generate the shortest path between any two viewpoints.
This requires knowing the topological graph of viewpoints
before the training. Moreover, they augment training set with
every shortest path that is not included in the original train-
ing set. This assumes the environments can be exhaustively
searched without sampling efficiency considerations. Other
proposed techniques in these papers such as environment
dropout (Tan, Yu, and Bansal 2019) and progress monitor-
ing (Zhu et al. 2020) are orthogonal to our work. For a sur-
vey of reinforcement learning with NL, please see Luketina
et al. (2019).

6 Conclusion

In this work, we propose a sample efficient algorithm for
IRL with NL goals. Observing limitations of existing works
regarding language-conditioned IRL, LangGoalIRL empha-
sizes template-free NL goal specification and sample effi-
ciency when generalizing to new goals and environments.
Specifically, we propose learning a variational goal gener-
ator that can relabel trajectories and sample diverse goals.
Based on this variational goal generator, we describe three
strategies to improve the generalization and sample effi-
ciency of the language-conditioned policy and reward func-
tion. Empirical results demonstrate that LangGoalIRL out-
performs existing baselines by a large margin and general-
izes well to new natural language goals and new environ-
ments, thus increasing flexibility of expression and domain
transfer in providing instructions to autonomous agents.

References

Abbeel, P; and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the

twenty-first international conference on Machine learning,
1.

Anderson, P.; Wu, Q.; Teney, D.; Bruce, J.; Johnson, M.;
Siinderhauf, N.; Reid, 1.; Gould, S.; and van den Hen-
gel, A. 2018. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 3674-3683.

Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, O. P;
and Zaremba, W. 2017. Hindsight experience replay. In
Advances in neural information processing systems, 5048—
5058.

Bahdanau, D.; Hill, E.; Leike, J.; Hughes, E.; Hosseini, A.;
Kohli, P.; and Grefenstette, E. 2019. Learning to understand
goal specifications by modelling reward. International Con-
ference on Learning Representations .

Cideron, G.; Seurin, M.; Strub, F.; and Pietquin, O. 2019.
Self-Educated Language Agent With Hindsight Experi-
ence Replay For Instruction Following. arXiv preprint
arXiv:1910.09451 .

Ding, Y.; Florensa, C.; Abbeel, P.; and Phielipp, M. 2019.
Goal-conditioned imitation learning. In Advances in Neural
Information Processing Systems, 15298—15309.

Finn, C.; Levine, S.; and Abbeel, P. 2016. Guided cost learn-
ing: Deep inverse optimal control via policy optimization. In
International conference on machine learning, 49-58.

Florensa, C.; Held, D.; Geng, X.; and Abbeel, P. 2017. Au-
tomatic goal generation for reinforcement learning agents.
arXiv preprint arXiv:1705.06366 .

Fried, D.; Hu, R.; Cirik, V.; Rohrbach, A.; Andreas, J.;
Morency, L.-P.; Berg-Kirkpatrick, T.; Saenko, K.; Klein, D.;
and Darrell, T. 2018. Speaker-follower models for vision-
and-language navigation. In Advances in Neural Informa-
tion Processing Systems, 3314-3325.

Fu, J.; Korattikara, A.; Levine, S.; and Guadarrama, S.
2019. From language to goals: Inverse reinforcement learn-
ing for vision-based instruction following. arXiv preprint
arXiv:1902.07742 .

Fu, J.; Luo, K.; and Levine, S. 2018. Learning Robust Re-
wards with Adverserial Inverse Reinforcement Learning. In
International Conference on Learning Representations.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672—2680.

Goyal, P;; Niekum, S.; and Mooney, R. J. 2019. Using Natu-
ral Language for Reward Shaping in Reinforcement Learn-
ing. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, 2385-2391.

11123

Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.;
Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P,; et al.
2018. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905 .

Ho, J.; and Ermon, S. 2016. Generative adversarial imita-

tion learning. In Advances in neural information processing
systems, 4565-4573.

Jiang, Y.; Gu, S. S.; Murphy, K. P.; and Finn, C. 2019. Lan-
guage as an abstraction for hierarchical deep reinforcement
learning. In Advances in Neural Information Processing
Systems, 9414-9426.

Kaelbling, L. P. 1993. Learning to achieve goals. In Pro-
ceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, 1094—1098.

Kuefler, A.; Morton, J.; Wheeler, T.; and Kochenderfer, M.
2017. Imitating driver behavior with generative adversar-
ial networks. In 2017 IEEE Intelligent Vehicles Symposium
(1v),204-211. IEEE.

Luketina, J.; Nardelli, N.; Farquhar, G.; Foerster, J.; An-
dreas, J.; Grefenstette, E.; Whiteson, S.; and Rocktischel,
T. 2019. A survey of reinforcement learning informed by
natural language. arXiv preprint arXiv:1906.03926 .

MacGlashan, J.; Babes-Vroman, M.; desJardins, M.;
Littman, M.; Muresan, S.; Squire, S.; Tellex, S.; Arumugam,
D.; and Yang, L. 2015. Grounding English Commands to
Reward Functions. In Proceedings of Robotics: Science and
Systems. Rome, Italy.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fid-
jeland, A. K.; Ostrovski, G.; et al. 2015. Human-level con-
trol through deep reinforcement learning. Nature 518(7540):
529-533.

Nair, A. V.; Pong, V.; Dalal, M.; Bahl, S.; Lin, S.; and
Levine, S. 2018. Visual reinforcement learning with imag-
ined goals. In Advances in Neural Information Processing
Systems, 9191-9200.

Osa, T.; Pajarinen, J.; Neumann, G.; Bagnell, J. A.; Abbeel,
P; Peters, J.; et al. 2018. An algorithmic perspective on im-
itation learning. Foundations and Trends®) in Robotics 7(1-
2): 1-179.

Plappert, M.; Andrychowicz, M.; Ray, A.; McGrew, B.;
Baker, B.; Powell, G.; Schneider, J.; Tobin, J.; Chociej, M.;
Welinder, P; et al. 2018. Multi-goal reinforcement learning:

Challenging robotics environments and request for research.
arXiv preprint arXiv:1802.09464 .

Rhinehart, N.; and Kitani, K. M. 2017. First-person activity
forecasting with online inverse reinforcement learning. In

Proceedings of the IEEE International Conference on Com-
puter Vision, 3696-3705.

Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal value function approximators. In International con-
ference on machine learning, 1312—1320.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In International
conference on machine learning, 1889-1897.

Tan, H.; Yu, L.; and Bansal, M. 2019. Learning to Navigate
Unseen Environments: Back Translation with Environmen-
tal Dropout. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics, 2610-2621.

Tucker, A.; Gleave, A.; and Russell, S. 2018. Inverse
reinforcement learning for video games. arXiv preprint
arXiv:1810.10593 .

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, 1. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998—6008.

Wang, X.; Huang, Q.; Celikyilmaz, A.; Gao, J.; Shen, D.;
Wang, Y.-F.; Wang, W. Y.; and Zhang, L. 2019. Reinforced
cross-modal matching and self-supervised imitation learn-
ing for vision-language navigation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 6629-6638.

Williams, E. C.; Gopalan, N.; Rhee, M.; and Tellex, S. 2018.
Learning to parse natural language to grounded reward func-
tions with weak supervision. In 2018 IEEE International
Conference on Robotics and Automation, 1-7.

Zhou, L.; and Small, K. 2020. Inverse Reinforcement
Learning with Natural Language Goals. arXiv preprint
arXiv:2008.06924 .

Zhu, F;; Zhu, Y.; Chang, X.; and Liang, X. 2020. Vision-
language navigation with self-supervised auxiliary reason-
ing tasks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 10012—10022.

Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, 1433-1438. Chicago, IL, USA.

11124

