Data Augmentation for Graph Neural Networks

Tong Zhao1*, Yozen Liu2, Leonardo Neves2, Oliver Woodford2, Meng Jiang1, Neil Shah2

1 University of Notre Dame, Notre Dame, IN 46556
2 Snap Inc., Santa Monica, CA 90405
{tzhao2, mjiang2}@nd.edu, {yliu2, lneves, oliver.woodford, nshah}@snap.com

Abstract
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAUG graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAUG improves performance across GNN architectures and datasets.

1 Introduction
Data driven inference has received a significant boost in generalization capability and performance improvement in recent years from data augmentation techniques. These methods increase the amount of training data available by creating plausible variations of existing data without additional ground-truth labels, and have seen widespread adoption in fields such as computer vision (CV) (DeVries and Taylor 2017; Cubuk et al. 2019; Zhao et al. 2019; Ho et al. 2019), and natural language processing (NLP) (Fadaee, Bisazza, and Monz 2017; Şahin and Steedman 2019). Such augmentations allow inference engines to learn to generalize better across those variations and attend to signal over noise. At the same time, graph neural networks (GNNs) (Hamilton, Ying, and Leskovec 2017; Kipf and Welling 2016a; Veličković et al. 2017; Xu et al. 2018a; Zhang et al. 2019a; Chen, Ma, and Xiao 2018; Wu et al. 2019; Zhang, Cui, and Zhu 2018; Xu et al. 2018b) have emerged as a rising approach for data-driven inference on graphs, achieving promising results on tasks such as node classification, link prediction and graph representation learning.

Despite the complementary nature of GNNs and data augmentation, few works present strategies for combining the two. One major obstacle is that, in contrast to other data, where structure is encoded by position, the structure of graphs is encoded by node connectivity, which is irregular. The hand-crafted, structured, data augmentation operations used frequently in CV and NLP therefore cannot be applied. Furthermore, this irregularity does not lend itself to easily defining new augmentation strategies. The most obvious approaches involve adding or removing nodes or edges. For node classification tasks, adding nodes poses challenges in labeling and imputing features and connectivity of new nodes, while removing nodes simply reduces the data available. Thus, edge addition and removal appears the best augmentation strategy for graphs. But the question remains, which edges to change.

Three relevant approaches have recently been proposed. DROPEDGE (Rong et al. 2019) randomly removes a fraction of graph edges before each training epoch, in an approach reminiscent of dropout (Srivastava et al. 2014). This, in principle, robustifies test-time inference, but cannot benefit from added edges. In approaches more akin to denoising or pre-filtering, ADAEDGE (Chen et al. 2019) iteratively add (remove) edges between nodes predicted to have the same (different) labels with high confidence in the modified graph. This ad-hoc, two-stage approach improves inference in general, but is prone to error propagation and greatly depends on training size. Similarly, BGCN (Zhang et al. 2019b) iteratively trains an assortative mixed membership stochastic block model with predictions of GCN to produce multiple denoised graphs, and ensembles results from multiple GCNs. BGCN also bears the risk of error propagation.

Present work. Our work studies new techniques for graph data augmentation to improve node classification. Section 3 introduces motivations and considerations in augmentation via edge manipulation. Specifically, we discuss how facilitating message passing by removing “noisy” edges and adding “missing” edges that could exist in the original graph can benefit GNN performance, and its relation to intra-class and inter-class edges. Figure 1 demonstrates, on a toy dataset (a), that while randomly modifying edges (b) can lead to lower test-time accuracy, strategically choosing ideal edges
to add or remove given (unrealistic) omniscience of node class labels (d) can substantially improve it.

Armed with this insight, Section 4 presents our major contribution: the proposed GAUG framework for graph data augmentation. We show that neural edge predictors like GAE (Kipf and Welling 2016b) are able to latently learn class-homophilic tendencies in existent edges that are improbable, and nonexistent edges that are probable. GAUG leverages this insight in two approaches, GAUG-M and GAUG-O, which tackle augmentation in settings where edge manipulation is and is not feasible at inference time. GAUG-M uses an edge prediction module to fundamentally modify an input graph for future training and inference operations, whereas GAUG-O learns to generate plausible edge augmentations for an input graph, which helps node classification without any modification at inference time. In essence, our work tackles the problem of the inherent indeterminate nature of graph data and provides graph augmentations, which can both denoise structure and also mimic variability. Moreover, its modular design allows augmentation to be flexibly applied to any GNN architecture. Figure 1(c) shows GAUG-M and GAUG-O achieves marked performance improvements over (a-b) on the toy graph.

In Section 5, we present and discuss an evaluation of GAUG-O across multiple GNN architectures and datasets, demonstrating a consistent improvement over the state-of-the-art, and quite large in some scenarios. Our proposed GAUG-M (GAUG-O) shows up to 17% (9%) absolute F1 performance improvements across datasets and GNN architectures without augmentation, and up to 16% (9%) over baseline augmentation strategies.

2 Other Related Work

As discussed above, relevant literature in data augmentation for graph neural networks is limited (Rong et al. 2019; Chen et al. 2019; Zhang et al. 2019b). We discuss other related works in tangent domains below.

Graph Neural Networks. GNNs enjoy widespread use in modern graph-based machine learning due to their flexibility to incorporate node features, custom aggregations and inductive operation, unlike earlier works which were based on embedding lookups (Perozzi, Al-Rfou, and Skiena 2014; Wang, Cui, and Zhu 2016; Tang et al. 2015). Many GNN variants have been developed in recent years, following the initial idea of convolution based on spectral graph theory (Bruna et al. 2013). Many spectral GNNs have since been developed and improved by (Defferrard, Bresson, and Vandergheynst 2016; Kipf and Welling 2016a; Henaff, Bruna, and LeCun 2015; Li et al. 2018; Levie et al. 2018; Ma et al. 2020). As spectral GNNs generally operate (expensively) on the full adjacency, spatial-based methods which perform graph convolution with neighborhood aggregation became prominent (Hamilton, Ying, and Leskovec 2017; Velickovic et al. 2017; Monti et al. 2017; Gao, Wang, and Ji 2018; Niepert, Ahmed, and Kutzkov 2016), owing to their scalability and flexibility (Ying et al. 2018). Several works propose more advanced architectures which add residual connections to facilitate deep GNN training (Xu et al. 2018b; Li et al. 2019; Verma et al. 2019). More recently, task-specific GNNs were proposed in different fields such as behavior modeling (Wang et al. 2020; Zhao et al. 2020a; Yu et al. 2020).

Data Augmentation. Augmentation strategies for improving generalization have been broadly studied in contexts outside of graph learning. Traditional point-based classification approaches widely leveraged oversampling, undersampling and interpolation methods (Chawla et al. 2002; Barandela et al. 2004). In recent years, variants of such techniques are widely used in natural language processing (NLP) and computer vision (CV). Replacement approaches involving synonym-swapping are common in NLP (Zhang, Zhao, and LeCun 2015), as are text-variation approaches (Kafle, Youssef Hussien, and Kan 2017) (i.e. for visual question-answering). Backtranslation methods (Sennrich, Haddow, and Birch 2016; Xie et al. 2019; Edunov et al. 2018) have also enjoyed success. In CV, historical image transformations in the input space, such as rotation, flipping, color space transformation, translation and noise injection (Shorten and Khoshgoftaar 2019), as well as recent methods such as cutout and random erasure (DeVries and Taylor 2017; Zhong et al. 2017) have proven useful. Recently, augmentation via photorealistic generation through adversarial networks shows promise in several applications, especially in medicine (Antoniou, Storkey, and Edwards 2017; Goodfellow et al. 2014). Most-related to our work is liter-
3 Graph Data Augmentation via Edge Manipulation

In this section, we introduce our key idea of graph data augmentation by manipulating G via adding and removing edges over the fixed node set. We discuss preliminaries, practical and theoretical motivations, and considerations in evaluation under a manipulated-graph context.

3.1 Preliminaries

Let $G = (V, E)$ be the input graph with node set V and edge set E. Let $N = |V|$ be the number of nodes. We denote the adjacency matrix as $A \in \{0, 1\}^{N \times N}$, where $A_{ij} = 0$ indicates node i and j are not connected. We denote the node feature matrix as $X \in \mathbb{R}^{N \times F}$, where F is the dimension of the node features and X_i indicates the feature vector of node i (the ith row of X). We define D as the diagonal degree matrix such that $D_{ii} = \sum_j A_{ij}$.

Graph Neural Networks. In this work, we use the well-known graph convolutional network (GCN) (Kipf and Welling 2016a) as an example when explaining GNNs in the following sections; however, our arguments hold straightforwardly for other GNN architectures. Each GCN layer (GCL) is defined as:

$$H^{(l+1)} = f_{GCL}(A, H^{(l)}; W^{(l)}) = \sigma(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)}), \quad (1)$$

where $\tilde{A} = A + I$ is the adjacency matrix with added self-loops, \tilde{D} is the diagonal degree matrix $\tilde{D}_{ii} = \sum_j A_{ij}$, and $\sigma(\cdot)$ denotes a nonlinear activation such as ReLU.

3.2 Motivation

Practical reasons. Graphs aim to represent an underlying process of interest. In reality, a processed or observed graph may not exactly align with the process it intended to model (e.g. “which users are actually friends?” vs. “which users are observed to be friends?”) for several reasons. Many graphs in the real world are susceptible to noise, both adversarial and otherwise (with exceptions, like molecular or biological graphs). Adversarial noise can manifest via spammers who pollute the space of observed interactions. Noise can also be induced by partial observation: e.g. a friend recommendation system which never suggests certain friends to an enduser, thus preventing link formation. Moreover, noise can be created in graph preprocessing, by adding/removing self-loops, removing isolated nodes or edges based on weights. Finally, noise can occur due to human errors: in citation networks, a paper may omit (include) citation to a highly (ir)relevant paper by mistake. All these scenarios can produce a gap between the “observed graph” and the so-called “ideal graph” for a downstream inference task (in our case, node classification).

Enabling an inference engine to bridge this gap suggests the promise of data augmentation via edge manipulation. In the best case, we can produce a graph G_t (ideal connectivity), where supposed (but missing) links are added, and unrelated/insignificant (but existing) links removed. Figure 1 shows this benefit realized in the ZKC graph: strategically adding edges between nodes of the same group (intra-class) and removing edges between those in different groups (inter-class) substantially improves node classification test performance, despite using only a single training example per class. Intuitively, this process encourages smoothness over same-class node embeddings and differentiates other-class node embeddings, improving distinction.

Theoretical reasons. Strategic edge manipulation to promote intra-class edges and demote inter-class edges makes class differentiation in training trivial with a GNN, when done with label omniscience. Consider a scenario of extremity where all possible intra-class edges and no possible inter-class edges exist, the graph can be viewed as k fully connected components, where k is the number of classes and all nodes in each component have the same label. Then by Theorem 1 (proof in supplementary material Section A.1 (Zhao et al. 2020b)), GNNs can easily generate distinct node representations between different classes, with equivalent representations for all same-class nodes. Under this “ideal graph” scenario, learned embeddings can be effortlessly classified.

Theorem 1. Let $G = (V, E)$ be a undirected graph with adjacency matrix A, and node features X be any block vector in $\mathbb{R}^{N \times F}$. Let $f : A, X, W \rightarrow H$ be any GNN layer with a permutation-invariant neighborhood aggregator over the target node and its neighbor nodes $u \cup \mathcal{N}(u)$ (e.g. Eq. 1) with any parameters W, and $H = f(A, X, W)$ be the resulting embedding matrix. Suppose G contains k fully connected components. Then we have:

1. For any two nodes $i, j \in V$ that are contained in the same connected component, $H_i = H_j$.

2. For any two nodes $i, j \in V$ that are contained in different connected components $S_i, S_j \subseteq V$, $H_i \neq H_j$; when W is not all zeros and $\sum_{u \in S_i} X_u \neq \sum_{u \in S_j} X_u \forall e \in \mathbb{R}$.

This result suggests that with an ideal, class-homophilic graph G, class differentiation in training becomes trivial. However, it does not imply such results in testing, where node connectivity is likely to reflect G and not G_t. We would expect that if modifications in training are too contrived, we risk overfitting to G_t and performing poorly on G due to a wide train-test gap. We later show techniques (Section 4) for approximating G_t with a modified graph G_m, and show empirically that these modifications in fact help generalization, both when evaluating on graphs akin to G_m and G.

3.3 Modified and Original Graph Settings for Graph Data Augmentation

Prior CV literature (Wang, Wang, and Lian 2019) considers image data augmentation a two-step process: (1) applying a transformation $f : S \rightarrow T$ to input images S to generate variants T, and (2) utilizing $S \cup T$ for model
training. Graph data augmentation is notably different, since typically |S| = 1 for node classification, unlike the image setting where |S| ≫ 1. However, we propose two strategies with analogous, but distinct formalisms: we can either (1) apply one or multiple graph transformation operations \(f : \mathcal{G} \rightarrow \mathcal{G}_m \), such that \(\mathcal{G}_m \) replaces \(\mathcal{G} \) for both training and inference, or (2) apply many transformations \(f_i : \mathcal{G} \rightarrow \mathcal{G}_m^i \) for \(i = 1 \ldots N \), such that \(\mathcal{G} \cup \{ \mathcal{G}_m^i \}_{i=1}^N \) may be used in training, but only \(\mathcal{G} \) is used for inference. We call (1) the \textit{modified-graph} setting, and (2) the \textit{original-graph} setting, based on their inference scenarios.

One might ask: when is each strategy preferable? We reason that the answer stems from the feasibility of applying augmentation during inference to avoid a train-test gap. The \textit{modified-graph} setting is thus most suitable in cases where a given graph is unchanging during inference. In such cases, one can produce a single \(\mathcal{G}_m \), and simply use this graph for both training and testing. However, when inferences must be made on a dynamic graph (i.e. for large-scale, latency-sensitive applications) where calibrating new graph connectivity (akin to \(\mathcal{G} \)) with \(\mathcal{G}_m \) during inference is infeasible (e.g. due to latency constraints), augmentation in the \textit{original-graph} setting is more appropriate. In such cases, test statistics on \(\mathcal{G}_m \) may be overly optimistic as performance indicators. In practice, these loosely align with transductive and inductive contexts in prior GNN literature.

4 Proposed GAUG Framework

In this section, we introduce the GAUG framework, covering two approaches for augmenting graph data in the aforementioned modified-graph and original-graph settings respectively. Our key idea is to leverage information \textit{inherent} in the graph to predict which non-existent edges should likely exist, and which existent edges should likely be removed in \(\mathcal{G} \) to produce modified graph(s) \(\mathcal{G}_m \), to improve model performance. As we later show in Section 5, by leveraging this label-free information, we can consistently realize improvements in test/generalization performance in semi-supervised node classification tasks across augmentation settings, GNN architectures and datasets.

4.1 GAUG-M for Modified-Graph Setting

We first introduce GAUG-M, an approach for augmentation in the modified-graph setting which includes two steps: (1) we use an edge predictor function to obtain edge probabilities for all possible and existing edges in \(\mathcal{G} \). The role of the edge predictor is flexible and can generally be replaced with any suitable method. (2) Using the predicted edge probabilities, we deterministically add (remove) new (existing) edges to create a modified graph \(\mathcal{G}_m \), which is used as input to a GNN node-classifier.

The edge predictor can be defined as any model \(f_{\text{gp}} : A, X \rightarrow M \), which takes the graph as input, and outputs an edge probability matrix \(M \) where \(M_{i,j} \) indicates the predicted probability of an edge between nodes \(u_i \) and \(v_j \). In this work, we use the graph auto-encoder (GAE) (Kipf and Welling 2016b) as the edge predictor module due to its simple architecture and competitive performance. GAE consists of a two layer GCN encoder and an inner-product decoder:

\[
M = \sigma (ZZ^T), \text{ where } Z = f_{\text{gcl}}^{(1)}(A, f_{\text{gcl}}^{(0)}(A, X)).
\]

\(Z \) denotes the hidden embeddings learned by the encoder, \(M \) is the predicted (symmetric) edge probability matrix produced by the inner-product decoder, and \(\sigma(\cdot) \) is an elementwise sigmoid function. Let \(|E| \) denote the number of edges in \(\mathcal{G} \). Then, using the probability matrix \(M \), GAUG-M deterministically adds the top \(|E| \) non-edges with highest edge probabilities, and removes the \(j \) existing edges with least edge probabilities from \(\mathcal{G} \) to produce \(\mathcal{G}_m \), where \(i, j \in \{0, 1\} \). This is effectively a denoising step.

Figure 2 shows the change in intra-class and inter-class edges when adding/removing using GAE-learned edge probabilities and their performance implications compared to a random perturbation baseline on CORA: adding (removing) by learned probabilities results in a much steeper growth (slower decrease) of intra-class edges and much slower increase (steeper decrease) in inter-class edges compared to random. Notably, these affect classification performance (micro-F1 scores, in green): random addition/removal hurts performance, while learned addition consistently improves performance throughout the range, and learned removal improves performance over part of the range (until \(\sim 20\% \)). Importantly, these results show that while we are generally not able to produce the ideal graph \(\mathcal{G} \), without omniscience (as discussed in Section 3.2), such capable edge predictors can latently learn to approximate class-homophilic information in graphs and successfully promote intra-class and demote inter-class edges to realize performance gains in practice.

GAUG-M shares the same time and space complexity as its associated GNN architecture during training/inference, while requiring extra disk space to save the dense \(O(N^2) \)
edge probability matrix M for manipulation. Note that M’s computation can be trivially parallelized.

4.2 GAUG-O for Original-Graph Setting

To complement the above approach, we propose GAUG-O for the original-graph setting, where we cannot benefit from graph manipulation at inference time. GAUG-O is reminiscent of the two-step approach in GAUG in that it also uses an edge prediction module for the benefit of node classification, but also aims to improve model generalization (test performance on G) by generating graph variants $\{G_m^i\}_{i=1}^N$ via edge prediction and hence improve data diversity. GAUG-O does not require discrete specification of edges to add/remove, is end-to-end trainable, and utilizes both edge prediction and node-classification losses to iteratively improve augmentation capacity of the edge predictor and classification capacity of the node classifier GNN. Figure 3 shows the overall architecture: each training iteration exposes the node-classifier to a new augmented graph variant.

Unlike GAUG-M’s deterministic graph modification step, GAUG-O supports a learnable, stochastic augmentation process. As such, we again use the graph auto-encoder (GAE) for edge prediction. To prevent the edge predictor from arbitrarily deviating from original graph adjacency, we interpolate the predicted M with the original A to derive an adjacency A'. For training purposes, we employ a (soft, differentiable) relaxed Bernoulli sampling procedure as a Bernoulli approximation. This relaxation is a binary special case of the Gumbel-Softmax reparameterization trick (Maddison, Mnih, and Teh 2016; Jang, Gu, and Poole 2016). Using the relaxed sample, we apply a straight-through (ST) gradient estimator (Bengio, Léonard, and Courville 2013), which rounds the relaxed samples in the forward pass, hence sparsifying the adjacency. In the backward pass, gradients are directed passed to the relaxed samples rather than the rounded values, enabling training. Formally,

$$A'_{ij} = \frac{1}{1 + e^{-\frac{(\log P_{ij} + G)/\tau}{2}}} + \frac{1}{2},$$

where $P_{ij} = \alpha M_{ij} + (1 - \alpha)A_{ij}$

where A' is the sampled adjacency matrix, τ is the temperature of Gumbel-Softmax distribution, $G \sim \text{Gumbel}(0, 1)$ is a Gumbel random variate, and α is a hyperparameter mediating the influence of edge predictor on the original graph.

The graph variant adjacency A' is passed along with node features X to the GNN node classifier. We then backpropagate using a joint node-classification loss L_{nc} and edge-prediction loss L_{ep}

$$L = L_{nc} + \beta L_{ep},$$

where $L_{nc} = CE(\hat{y}, y)$ and $L_{ep} = BCE(\sigma(f_{ep}(A, X)), A)$

where β is a hyperparameter to weight the reconstruction loss, $\sigma(\cdot)$ is an elementwise sigmoid, y, \hat{y} denote ground-truth node class labels and predicted probabilities, and BCE/CE indicate standard (binary) cross-entropy loss. We train using L_{ep} in addition to L_{nc} to control potentially excessive drift in edge prediction performance. The node-classifier GNN is then directly used for inference, on G.

During training, GAUG-O has a space complexity of $O(N^2)$ in full-batch setting due to backpropagation through all entries of the adjacency matrix. Fortunately, we can easily adapt the graph mini-batch training introduced by Hamilton et al. (Hamilton, Ying, and Leskovec 2017) to achieve an acceptable space complexity of $O(M^2)$, where M is the batch size.

5 Evaluation

In this section, we evaluate the performance of GAUG-M and GAUG-O across architectures and datasets, and over alternative strategies for graph data augmentation. We also showcase their abilities to approximate class-homophily via edge prediction and sensitivity to supervision.

5.1 Experimental Setup

We evaluate using 6 benchmark datasets across domains: citation networks (CORA, CITISEER (Kipf and Welling 2016a)), protein-protein interactions (PPI (Hamilton, Ying, and Leskovec 2017)), social networks (BLOGCATALOG, FLICKR (Huang, Li, and Hu 2017)), and air traffic (AIR-USA (Wu, He, and Xu 2019)). Statistics for each dataset are shown in Table 1. We follow the semi-supervised setting in most GNN literature (Kipf and Welling 2016a; Veličković et al. 2017) for train/validation/test splitting on CORA and CITISEER, and a 10/20/70% split on other datasets due to varying choices in prior work. We evaluate
Table 1: Summary statistics and experimental setup for the six evaluation datasets.

<table>
<thead>
<tr>
<th>GNN Arch.</th>
<th>Method</th>
<th>CORA</th>
<th>CITESEER</th>
<th>PPI</th>
<th>BLOGCATALOG</th>
<th>FLICKR</th>
<th>AIR-USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN</td>
<td>Original</td>
<td>81.6±0.7</td>
<td>71.6±0.4</td>
<td>43.4±0.2</td>
<td>75.0±0.4</td>
<td>61.2±0.4</td>
<td>56.0±0.8</td>
</tr>
<tr>
<td></td>
<td>+BGCN</td>
<td>81.2±0.8</td>
<td>72.4±0.5</td>
<td>43.4±0.2</td>
<td>72.0±2.3</td>
<td>52.7±2.8</td>
<td>56.5±0.9</td>
</tr>
<tr>
<td></td>
<td>+ADADGE</td>
<td>81.9±0.7</td>
<td>72.8±0.7</td>
<td>43.6±0.2</td>
<td>75.3±0.3</td>
<td>61.2±0.5</td>
<td>57.2±0.8</td>
</tr>
<tr>
<td></td>
<td>+GAUG-M</td>
<td>83.5±0.4</td>
<td>72.3±0.4</td>
<td>43.5±0.2</td>
<td>77.6±0.4</td>
<td>68.2±0.7</td>
<td>61.2±0.5</td>
</tr>
<tr>
<td></td>
<td>+DROPEDGE</td>
<td>82.0±0.8</td>
<td>71.8±0.2</td>
<td>43.5±0.2</td>
<td>75.4±0.3</td>
<td>61.4±0.7</td>
<td>56.9±0.6</td>
</tr>
<tr>
<td></td>
<td>+GAUG-O</td>
<td>83.6±0.5</td>
<td>73.3±1.1</td>
<td>46.6±0.3</td>
<td>75.9±0.2</td>
<td>62.2±0.3</td>
<td>61.4±0.9</td>
</tr>
<tr>
<td>GSAGE</td>
<td>Original</td>
<td>81.3±0.5</td>
<td>70.6±0.5</td>
<td>40.4±0.9</td>
<td>73.4±0.4</td>
<td>57.4±0.5</td>
<td>57.0±0.7</td>
</tr>
<tr>
<td></td>
<td>+BGCN</td>
<td>80.5±0.1</td>
<td>70.8±0.1</td>
<td>–</td>
<td>73.2±0.2</td>
<td>58.1±0.3</td>
<td>53.5±0.3</td>
</tr>
<tr>
<td></td>
<td>+ADADGE</td>
<td>81.5±0.6</td>
<td>71.3±0.8</td>
<td>41.6±0.8</td>
<td>73.6±0.4</td>
<td>57.2±0.7</td>
<td>57.1±0.5</td>
</tr>
<tr>
<td></td>
<td>+GAUG-M</td>
<td>83.2±0.4</td>
<td>71.2±0.4</td>
<td>41.1±0.10</td>
<td>77.0±0.4</td>
<td>65.2±0.5</td>
<td>60.1±0.5</td>
</tr>
<tr>
<td></td>
<td>+DROPEDGE</td>
<td>81.6±0.5</td>
<td>70.8±0.5</td>
<td>41.1±1.0</td>
<td>73.8±0.4</td>
<td>58.4±0.7</td>
<td>57.1±0.5</td>
</tr>
<tr>
<td></td>
<td>+GAUG-O</td>
<td>82.0±0.5</td>
<td>72.7±0.7</td>
<td>44.4±0.5</td>
<td>73.9±0.4</td>
<td>56.3±0.6</td>
<td>57.1±0.7</td>
</tr>
<tr>
<td>GAT</td>
<td>Original</td>
<td>81.3±1.1</td>
<td>70.5±0.7</td>
<td>41.5±0.7</td>
<td>63.8±5.2</td>
<td>46.9±1.6</td>
<td>52.0±1.3</td>
</tr>
<tr>
<td></td>
<td>+BGCN</td>
<td>80.8±0.8</td>
<td>70.8±0.6</td>
<td>–</td>
<td>61.4±4.0</td>
<td>46.5±1.9</td>
<td>54.1±3.2</td>
</tr>
<tr>
<td></td>
<td>+ADADGE</td>
<td>82.0±0.6</td>
<td>71.1±0.8</td>
<td>42.6±0.9</td>
<td>68.2±2.4</td>
<td>48.2±1.0</td>
<td>54.5±1.9</td>
</tr>
<tr>
<td></td>
<td>+GAUG-M</td>
<td>82.1±1.0</td>
<td>71.5±0.5</td>
<td>42.8±0.9</td>
<td>70.8±1.0</td>
<td>63.7±0.9</td>
<td>59.0±0.6</td>
</tr>
<tr>
<td></td>
<td>+DROPEDGE</td>
<td>81.9±0.6</td>
<td>71.0±0.5</td>
<td>45.9±0.3</td>
<td>70.4±2.4</td>
<td>50.0±1.6</td>
<td>52.8±1.7</td>
</tr>
<tr>
<td></td>
<td>+GAUG-O</td>
<td>82.2±0.8</td>
<td>71.6±1.1</td>
<td>44.9±0.9</td>
<td>71.0±1.1</td>
<td>51.9±0.5</td>
<td>54.6±1.1</td>
</tr>
<tr>
<td>JK-NET</td>
<td>Original</td>
<td>78.8±1.5</td>
<td>67.6±1.8</td>
<td>44.1±0.7</td>
<td>70.0±0.4</td>
<td>56.7±0.4</td>
<td>58.2±1.5</td>
</tr>
<tr>
<td></td>
<td>+BGCN</td>
<td>80.2±0.7</td>
<td>69.1±0.5</td>
<td>–</td>
<td>65.7±2.2</td>
<td>53.6±1.7</td>
<td>55.9±0.8</td>
</tr>
<tr>
<td></td>
<td>+ADADGE</td>
<td>80.4±1.4</td>
<td>68.9±1.2</td>
<td>44.8±0.9</td>
<td>70.7±0.4</td>
<td>57.0±0.3</td>
<td>59.4±1.0</td>
</tr>
<tr>
<td></td>
<td>+GAUG-M</td>
<td>81.8±0.9</td>
<td>68.2±1.4</td>
<td>47.4±0.6</td>
<td>71.9±0.5</td>
<td>65.7±0.8</td>
<td>60.2±0.6</td>
</tr>
<tr>
<td></td>
<td>+DROPEDGE</td>
<td>80.4±0.7</td>
<td>69.4±1.1</td>
<td>46.3±0.2</td>
<td>70.9±0.4</td>
<td>58.5±0.7</td>
<td>59.1±1.1</td>
</tr>
<tr>
<td></td>
<td>+GAUG-O</td>
<td>80.5±0.9</td>
<td>69.7±1.4</td>
<td>53.1±0.3</td>
<td>71.0±0.6</td>
<td>55.7±0.5</td>
<td>60.4±1.0</td>
</tr>
</tbody>
</table>

Table 2: GAUG performance across GNN architectures and six benchmark datasets.

GAUG-M and GAUG-O using 4 widely used GNN architectures: GCN (Kipf and Welling 2016a), GSAGE (Hamilton, Ying, and Leskovec 2017), GAT (Veličković et al. 2017) and JK-NET (Xu et al. 2018b). We compare our GAUG-M (modified-graph) and GAUG-O (original-graph) performance with that achieved by standard GNN performance, as well as three state-of-the-art baselines: ADADGE (Chen et al. 2019) (modified-graph), BGCN (Zhang et al. 2019b) (modified-graph), and DROPEDGE (Rong et al. 2019) (original-graph) evaluating on G_m and G, respectively. We also show results of proposed GAUG methods on large graphs (Hu et al. 2020) in Section D.2 (Zhao et al. 2020b) to show their ability of mini-batching. We report test micro-F1 scores over 30 runs, employing Optuna (Akiba et al. 2019) for efficient hyperparameter search. Note that for classification tasks which every object is guaranteed to be assigned to exactly one ground truth class (all datasets except PPI), micro-F1 score is mathematically equivalent to accuracy. Our implementation is made publicly available at https://github.com/zhao-tong/GAug.

5.2 Experimental Results

We show comparative results against current baselines in Table 2. Table 2 is organized per architecture (row), per dataset (column), and original-graph and modified-graph settings (within-row). Note that results of BGCN on PPI are missing due to CUDA out of memory error when running the code package from the authors. We bold best-performance per architecture and dataset, but not per augmentation setting for visual clarity. In short, GAUG-O and GAUG-M consistently improve over GNN architectures, datasets and alternatives, with a single exception for GAT on PPI, on which DROPEDGE performs the best.

Improvement across GNN architectures. GAUG achieves improvements over all 4 GNN architectures (averaged across datasets): GAUG-M improves 4.6% (GCN), 4.8% (GSAGE), 10.9% (GAT) and 5.7% (JK-NET). GAUG-O improves 4.1%, 2.1%, 6.3% and 4.9%, respectively. We note
that augmentation especially improves GAT performance, as self-attention based models are sensitive to connectivity.

Improvements across datasets. GAUG also achieves improvements over all 6 datasets (averaged across architectures): GAUG-M improves 2.4%, 1.0%, 3.1%, 5.5%, 19.2%, and 7.9% for each dataset (left to right in Table 2). Figure 4 shows GAUG-M (with GCN) classification performance heatmaps on 4 datasets when adding/removing edges according to various i, j (Section 4.1). Notably, while improvements(red) over original GCN on G differ over i, j and by dataset, they are feasible in all cases. These improvements are not necessarily monotonic with edge addition(row) or removal(column), and can encounter transitions. Empirically, we notice these boundaries correspond to excessive class mixing (addition) or graph shattering (removal). GAUG-O improves 1.6%, 2.5%, 11.5%, 3.6%, 2.2%, and 4.7%. We note that both methods achieves large improvements in social data (BLOGCATALOG and FLICKR) where noisy edges may be prominent due to spam or bots (supporting intuition from Section 3.2); Figure 4(c) shows substantial edge removal significantly helps performance.

Improvements over alternatives. GAUG also outperforms augmentation over BGCN, ADAEDGE, and DROPEDGE (averaged across datasets/architectures): GAUG-M improves 9.3%, 4.8%, and 4.1% respectively, while GAUG-O improves 4.9%, 2.7%, and 2.0% respectively. We reason that GAUG-M outperforms BGCN and ADAEDGE by avoiding iterative error propagation, as well as directly manipulating edges based on the graph, rather than indirectly through classification results. GAUG-O outperforms DROPEDGE via learned denoising via addition and removal, rather than random edge removal. Note that some baselines have worse performance than vanilla GNNs, as careless augmentation/modification on the graph can hurt performance by removing critical edges and adding incorrect ones.

Promoting class-homophily. Figure 5a shows (on CORA) that the edge predictor in GAUG-O learns to promote intra-class edges and demote inter-class ones, echoing results from Figure 2 on GAUG-M, facilitating message passing and improving performance. Figure 5b shows that L_{nc} decreases and validation F1 improves over the first few epochs, while L_{ep} increases to reconcile with supervision from L_{nc}. Later on, the L_{nc} continues to decrease while intra-class ratio increases (overfitting).

Sensitivity to supervision. Figure 6 shows that GAUG is especially powerful under weak supervision, producing large F1 improvements with few labeled samples. Moreover, augmentation helps achieve equal performance w.r.t standard methods with fewer training samples. Naturally, improvements shrink in the presence of more supervision. GAUG-M has slightly larger improvements compared to GAUG-O with more training nodes, as inference benefits from persistent graph modifications in the former but not the latter.

6 Conclusion

Data augmentation for facilitating GNN training has unique challenges due to graph irregularity. Our work tackles this problem by utilizing neural edge predictors as a means of exposing GNNs to likely (but nonexistent) edges and limiting exposure to unlikely (but existent) ones. We show that such edge predictors can encode class-homophily to promote intra-class edges and inter-class edges. We propose the GAUG graph data augmentation framework which uses these insights to improve node classification performance in two inference settings. Extensive experiments show our proposed GAUG-O and GAUG-M achieve up to 17% (9%) absolute F1 performance improvements across architectures and datasets, and 15% (8%) over augmentation baselines.
References

Rong, Y.; Huang, W.; Xu, T.; and Huang, J. 2019. DropE-edge: Towards Deep Graph Convolutional Networks on Node Classification. In ICLR.

