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Abstract
Building a good feature space is essential for the metric-based
few-shot algorithms to recognize a novel class with only a
few samples. The feature space is often built by Convolutional
Neural Networks (CNNs). However, CNNs primarily focus
on local information with the limited receptive field, and the
global information generated by distant pixels is not well used.
Meanwhile, having a global understanding of the current task
and focusing on distinct regions of the same sample for dif-
ferent queries are important for the few-shot classification. To
tackle these problems, we propose the Cross Non-Local Neu-
ral Network (CNL) for capturing the long-range dependency
of the samples and the current task. CNL extracts the task-
specific and context-aware features dynamically by strength-
ening the features of the sample at a position via aggregating
information from all positions of itself and the current task.
To reduce losing important information, we maximize the mu-
tual information between the original and refined features as
a constraint. Moreover, we add a task-specific scaling to deal
with multi-scale and task-specific features extracted by CNL.
We conduct extensive experiments for validating our proposed
algorithm, which achieves new state-of-the-art performances
on two public benchmarks.

Introduction
Traditional deep neural networks for recognization tasks re-
quire large-scale and category-balanced data for training, and
the categories are fixed. However, the model needs to train
from scratch when new categories emerge. Few-shot learning
addresses this problem by recognizing the novel category
(unseen during training) based on a few labeled samples
(Vinyals et al. 2016; Chelsea et al. 2017). Recently, several
few-shot algorithms have been proposed for various tasks
in CV (ComputerVision) and NLP (Natural Language Pro-
cessing) domains. Metric-based methods achieve excellent
performances on multiple tasks with the simplicity (Vinyals
et al. 2016; Snell et al. 2017; Li et al. 2020). This method
learns to build an appropriate feature space, where similar
samples are close and different samples are distant. Then
it measures the similarities of the samples for prediction.
The key to metric-based approaches is relying on extracting
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Figure 1: There are two 2-way 1-shot tasks. For different
queries, the model should focus on different regions of the
same images in support set. In addition to local features, the
global understanding of the current task is also essential.

high-quality representation and choose an appropriate metric
function.

Extracting context-aware features dynamically by consid-
ering the current task’s global information is essential for
few-shot tasks, especially for the samples containing multi-
ple objects. As shown in Figure 1, there is a need to focus
on distinct regions of the same samples in the support set
for different queries because the correlativity between the
distant pixels in an image and the relationship between the
labeled sample and the query are valuable. Hence, capturing
long-range dependency (Zhao et al. 2017) plays a crucial
role in few-shot image classification. However, most metric-
based approaches take the CNNs as the backbone. It cannot
cover distant areas with correlativity and transmit a message
between distant positions efficiently due to the limited recep-
tive field. Non-local neural network (Wang et al. 2018) was
proposed for capturing the long-range dependency, which
computes the response at a position as a weighted sum of
the features at all positions of the image. However, it only
captures the global context and cannot extract adaptive rep-
resentation based on various tasks. Besides, some essential
local features are likely to be lost during the refinement.

To address the above problems, we propose a Cross Non-
Local Neural Network (CNL) for capturing the long-range
dependency of the samples and its related task, as shown
in Figure 4. CNL aims to learn different attention weights
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on the same samples for different queries with a global con-
text of the current task. To this end, CNL strengthens the
features at a position of the sample via aggregating informa-
tion from all positions of itself and the current task, which
can extract task-specific and multi-scale features and build a
better feature space for prediction. To maintain the primary
information during the reorganization process, we concate-
nate on the local features and global features in CNL. Be-
sides, we maximize the mutual information (MI) between
the local features extracted by the backbone and the task-
specific representation extracted by CNL, which is treated as
a constraint for training CNL. However, MI is challenging to
compute in either high-dimensional or continuous settings.
Here, we use Noise-Contrastive Estimation (NCE) (Gutmann
and Hyvärinen 2010) as the lower bound on mutual informa-
tion, and we adopt infoNCE (Oord, Li, and Vinyals 2018) to
estimate the mutual information between the two features.

The proposed CNL with MI-based constraint extracts the
features at local and global levels, and the features are dy-
namic according to different tasks. Cosine similarity cannot
deal with multi-scale and task-specific features well because
it is not sensitive to absolute value and cannot measure the
angle exactly between the vectors without eliminating the
offsets in patterns. To this end, we propose a task-specific
scaling for normalization based on different tasks. The co-
sine similarity with the task-specific scaling outperforms
other metric functions and can achieve new state-of-the-art
performance without higher computational complexity and
additional operation. Additionally, the task-specific scaling
can be adapted to other metric functions.

We have carried out extensive experiments on multiple
datasets. Our proposed method outperforms the baseline
methods and achieves new state-of-the-art performances.
The ablation experiments show that each key component
in our proposed method plays a critical role, respectively.
This method aims to build a better feature space and pay dif-
ferent attention to the same images based on different queries.
And this idea also can be used in other tasks for extracting
query-specific features, such as image retrieval and visual
question answering.

In summary, our main contributions are three-fold:

• We propose Cross Non-Local Neural Network (CNL) to
capture the long-range dependency for few-shot learning.
CNL extracts the task-specific and context-aware features
by considering the global information of the sample itself
and the relationship between the specific query and the
samples in the support set.

• We adopt infoNCE to estimate the mutual information
between the task-specific representation and the local fea-
tures. We regard it as a constraint for training the CNL,
which aims to avoid losing important information during
the refining process.

• We propose a task-specific scaling for dealing with the
multi-scale and task-specific features extracted by CNL.
It can be added to the many metric functions, which is
efficient and can improve the performance significantly.

Related Work
Few-Shot Learning
Recently, few-shot learning attracts more attention in both
CV (ComputerVision) and NLP (Natural Language Process-
ing) fields, which aims to recognize a new category only
based on a few labeled samples. There are many advanced
Few-shot learning algorithms, such as metric-based method
(Vinyals et al. 2016; Li et al. 2020; Zhang et al. 2020), data
augmentation method (Zhang et al. 2018; Tsutsui et al. 2019;
Alfassy et al. 2019), memory network (Geng et al. 2020),
graph neural network (Kim et al. 2019), and meta-learning
methods (Ravi and Larochelle 2017; Jamal and Qi 2019).

The metric-based method consists of two main modules,
feature extraction and a metric function. It aims to represent
the samples in an appropriate feature space where similar
samples are closer and dissimilar samples are farther. It can
be broadly classified as task-invariant (Vinyals et al. 2016;
Allen et al. 2019), task-specific (Triantafillou et al. 2017;
Hou et al. 2019), and hybrid models (Bertinetto et al. 2016;
Oreshkin et al. 2018). Most of them adopt CNNs to extract
features. However, CNNs are better at capturing local infor-
mation, and the stacked CNNs cannot capture the long-range
dependency adequately. In the few-shot learning, the global
information is important for building the feature space be-
cause the adaptability and transferability can be improved
if the model can focus on different parts of the same sam-
ples based on different queries. In this paper, we propose to
capture the long-range dependency for the samples in the
current task and extract task-specific features for building bet-
ter feature space. (Hou et al. 2019) propose Cross Attention
Network extract discriminative features, which calculates the
correlation map between the samples in the support set and
the queries by cosine similarity. In comparison with (Hou
et al. 2019), our proposed Cross Non-Local Neural Network
extracts the global information and local information of all
samples in the current task at first and then captures the long-
range dependency between the labeled samples and queries
by using the refined features. Besides, we propose an MI-
based constraint for maintaining the primary information
during the refinement.

Long-Range Dependency Modeling
Convolutional Neural Networks have an excellent perfor-
mance in many visual tasks (Krizhevsky et al. 2012; He et al.
2016; Huang et al. 2017). Many studies (Liu, Rabinovich,
and Berg 2015; Zhao et al. 2017) have validated that captur-
ing long-range dependencies can improve the performance in
many domains. CNNs capture the long-range dependencies
by deeply stacking convolution layers. However, it is diffi-
cult to deliver messages between distant positions because
of the limited receptive field of a single convolutional layer.
Moreover, it is ineffective to directly repeat the convolutional
layers and use a big kernel to enlarge the receptive field for
covering other areas.

There are many methods to capture long-range dependence,
such as conditional random fields for semantic segmentation
(Krähenbühl and Koltun 2011), feedforward networks for
modeling sequences in language (Gehring et al. 2017), self-
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Figure 2: The overview of our proposed framework for few-shot learning. At first, we extract the local feature map Fl by the
pre-trained backbone. Here we use the ResNet12. Secondly, we extract task-specific representation by our proposed Cross
Non-Local Neural Network. We capture the long-range dependency of the samples themselves and concatenate the global and
local features at step one. Then we refine the representation with the global context of the current task. In addition, we add a
task-specific scaling to deal with the multi-scale and task-specific features. At last, we compute the cross-entropy loss and the
mutual information between the original and refined features for optimation.

attention for machine translation (Vaswani et al. 2017) and
Non-local neural Network for video classification (Wang
et al. 2018). The core concept of the non-local neural net-
work is the Non-local means (Buades, Coll, and Morel 2005),
and it computes interactions between any two positions for
capturing the long-range dependencies, i.e., it computes the
response at a position as a weighted sum of the features at
all position. (Cao et al. 2019) find that the attention maps for
the different positions are almost the same, and they propose
a simplified non-local block by explicitly using the same
attention map for all positions. However, all of them only ex-
tract the global features of the current samples. To obtain the
task-specific representation in few-shot learning, we propose
a Cross Non-Local Neural Network (CNL), and it refines the
features based on the global information of all samples in the
current task. To maintain the important features during the
refinement, we maximize the mutual information between
the local features and task-specific features as a constraint for
training the CNL.

Method
In this section, we start with the problem definition in this
work, then give a brief overview of the proposed framework.
Secondly, we revisit the non-local neural network for cap-
turing long-range dependency and detail our proposed Cross
Non-Local Neural Network for obtaining task-specific repre-
sentation. Finally, we introduce the mutual information-based
constraint and the task-specific scaling.

Problem Definition and Learning Paradigm
We define the N -way M -shot few-shot classification as prob-
lem D(τ), which selects M ×N labeled samples as support

set S = (xi, yi)
M×N
i=1 from N classes and selects Q unla-

beled samples as query set Q = (xj , yj)
Q
j=1 from the same

N classes in each episode. The objective of D(τ) is to pre-
dict the category of the sample in the query set Q based on
the support set S. The processes of training and testing have
the same setting, while classes of them do not overlap. In
this work, we train the model to follow a two-stage learning
paradigm. Firstly, we take the classes in the training set as
base classes and do an image classification with supervision
for learning a universal feature extractor. Then, we train the
few-shot model to recognize the novel class based on only a
few labeled samples in a meta-learning scenario.

Overview of the Framework

The overview of our framework is illustrated in Figure 2. For
different queries, the model aims to focus on different regions
of the samples in support set via a global understanding of
the current task. Hence it is not enough to only focus on
the local feature map extracted by the backbone. The model
needs to understand the global context of the current task. To
tackle this problem, we propose to capture the long-range
dependency in few-shot tasks and fuse the local and global
features for understanding the task more deeply. We propose
the Cross Non-Local Neural Network (CNL) for extracting
the task-specific and dynamic representation. In order to
prevent losing primary information during the refinement, we
maximize the mutual information between the local features
and refined features and take it as a constraint for training
CNL. To deal with the multi-scale and task-specific features
well, we add a task-specific scaling. In the following sections,
we will introduce the details of our proposed method.
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Figure 3: The architectures of a standard non-local block and
a simplified non-local block. “⊗” denotes matrix multiplica-
tion and “⊕” denotes broadcast element-wise addition.

Capturing Long-Range Dependency
In few-shot learning, the model should have a global under-
standing of the samples and current tasks for extracting task-
specific features and building a good feature space. Hence
it is essential to capture the long-range dependency of the
samples and the current task. Although RNN (Recurrent
Neural Networks) can alleviate this problem, the serial com-
putational process suffers from losing information and can-
not handle the relationships over long distances. Meanwhile,
CNNs concentrate on the local areas more due to their lim-
ited receptive field. And stacking convolution layers deeply
for capturing long-range dependency is inefficient and hard
to deliver information between distant positions. Non-local
neural network (Wang et al. 2018), inherited from non-local
means (Buades et al. 2005), is proposed to tackle this prob-
lem, which strengthens the features at a position via aggre-
gating information from other positions. To better understand
our approach, we revisit the non-local block in this section
firstly. Then we detail the architecture of our proposed Cross
Non-Local Neural Network (CNL), which aims to extract
task-specific and context-aware representation dynamically.

Revisiting the Non-Local Block The non-local block
(Wang et al. 2018) captures long-range dependencies directly
by computing the interaction as shown in Figure 3(a), rather
than relying on neighboring points in a small-window. Con-
sider an input feature map x ∈ RC×H×W , where C,H and
W is the number of channel, height and width. The non-local
block is:

yi
∆
= xi +

1

C(x)

H·W∑
j=1

f(xi, xj)g(xj). (1)

Here, f(xi, xj) =
exp(<Wqxi,Wkxj>)∑H·W

m=1 exp(<Wqxi,Wkxm>)
. i is the index

of an output position and j enumerates all positions. In ad-
dition, f calculates the similarity of xi and xj , linear trans-
formation function g(xj) calculates the representation of the
feature map at position j and C(x) is the normalization factor.

(Cao et al. 2019) simplifies the non-local block because
they find that the global context extracted from the non-local
block are almost same for different positions. Hence they
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Figure 4: The architecture of Cross Non-Local Neural Net-
work. At step one, it captures the long-range dependency for
the samples in support and query set, respectively. At step
two, it extracts the task-specific features.

compute a global attention map for all positions as shown in
Figure 3 (b). This simplified non-local block is defined as,

yi
∆
= xi +Wv

H·W∑
j=1

exp(Wkxj)∑H·W
m=1 exp(Wkxm)

xj . (2)

However, the non-local block only focuses on the global
context of the samples themselves and cannot extract dy-
namic features based on the global information of different
queries.

Cross Non-Local Neural Network
For different queries in few-shot tasks, the model should pay
different attention to the same samples in the support set.
In addition to the global context of the sample itself, it is
essential to consider the relationship between the specific
query and the samples in support set for improving the perfor-
mance and adaptability. To address this problem, we propose
the Cross Non-Local Neural Network, as shown in Figure 4,
which not only captures the long-range dependency of the
sample itself and also captures the long-range dependency
between the sample and the related task. It aims to strengthen
the features of samples in the support set via aggregating
information from all positions of themselves and the query.
Likewise, we refine the features map of the query accord-
ing to all the positions of themselves and the samples in
the support set. CNL is divided into two steps to extract the
task-specific representation.

At step one, we refine the local features of all the samples
extracted by the pre-trained backbone with the global context
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of themselves in Equation 3. It aims at capturing the long-
range dependency for each sample, and it is task-agnostic. To
avoid losing the local information, we take a concatenation
operator for the feature map Fl (extracted by the backbone)
and the refined feature map Fg , which is defined as F .

Fgi = Fli +Wz

H·W∑
j=1

exp(WkFlj)∑H·W
m=1 exp(WkFlm)

Flj . (3)

where, W is transforming matrixes.
Secondly, to obtain the task-specific representation Ft, we

augment the features of the samples in the support set via
aggregating information from all positions of the current
query. And we strengthen the features of the current query
with the global context of the samples in the support set. It is
defined as,

F
(s)
ti

= F
(s)
i +Wz

H·W∑
j=1

exp(WkF
(q)
j )∑H·W

m=1 exp(WkF
(q)
m )

F
(q)
j , (4a)

F
(q)
ti

= F
(q)
i +Wz

H·W∑
j=1

exp(WkF
(s)
j )∑H·W

m=1 exp(WkF
(s)
m )

F
(s)
j . (4b)

In this part, we make full use of local and global features.
In addition to considering the relationship between distant
positions, we refine the features with the global context of
the current task, which is adaptive and dynamic.

MI-based Constraint for Refining
To retain more discriminative local information and reduce
the redundancy in the refining process, we maximize the
mutual information between the representation Ft extracted
CNL and the local representation Fl extracted from the back-
bone based on the principle of InfoMax (Linsker 1988). The
purpose is raising the dependency between Ft and Fl and
making Ft contain more frequently occurring patterns in Fl.
In other words, let Ft highlight the important regions while
retaining common and primary information of the initial lo-
cal features Fl. In addition, MI-based constraint can avoid
the over-smoothing in CNL and reduce redundancy by using
smaller embedding space to express rich details.

Mutual Information The MI is defines as Equation 5.

I(X;Z)
∆
= H(X)−H(X|Z), (5a)

I(X;Z)
∆
= DKL(PXZ ||PX ⊗PZ), (5b)

=
∑
x,z

p(x, z) log
p(x|z)
p(x)

(5c)

Here PX and PZ are two probability distributions corre-
sponding to random variables X and Z, H(.) is the Shannon
entropy, and H(X|Z) is the conditional entropy of X given
Z. DKL(.) is KL-divergence.

However, it is difficult to compute the mutual informa-
tion for high-dimensional and continuous variables. Hence,
we adopt the infoNCE (Oord, Li, and Vinyals 2018) as the
lower bound on MI to estimate the mutual information, which

is based on Noise-Contrastive Estimation (Gutmann and
Hyvärinen 2010). We use it for maximizing the mutual in-
formation between the original local features Fl extracted
from the pre-trained backbone and the refined task-specific
representation Ft extracted by the Cross Non-Local Neural
Network.

Assume set H = {fli}Vi=1 contains a positive and V − 1
negative samples, the MI-based constraint is defined as,

LMI = −EH

[
log

gd(Fl, Ft)∑
Flj∈H

gd(Flj , Ft)

]
(6)

Intuitively, function gd(fl, ft) ∝ p(fl|ft)
p(fl)

calculates whether
Fl and Ft matches.

LMI = −EH

log p(Fl|Ft)
p(Fl)

p(Fl|Ft)
p(Fl)

+
∑

Flj∼HNeg

p(Flj |Ft)

p(Flj)


≥ EH

[
log

(
V × p(Fl)

p(Fl|Ft)

)]
= −I(Fl, Ft) + log(V ).

(7)

As Equation 7, we can maximize the mutual information
between Fl and Ft by minimizing loss LMI.

Task-Specific Scaling
The features extracted by the proposed Cross Non-Local Neu-
ral Network is multi-scale because it contains local and global
features. In addition, the features of the same sample vary
across different few-shot tasks. Many existing metric-based
methods use the cosine similarity to measure the similarity
between the samples in the support set and the query for
prediction. However, it cannot measures the angle between
two vectors exactly without eliminating the offsets in pat-
terns, and it is not sensitive to the absolute value. To address
this problem, we propose a task-specific scaling to deal with
the multi-scale and context-aware features. The potential ex-
pression varies across different samples in different few-shot
tasks. Degenerating to a simple Location-scale distribution
family, it is different on translations (e.g., first-order moment,
expectation) and degrees of stability (e.g., variance or second-
order moment). Hence it is effective to do normalization
separately based on task-specific scaling.

Firstly, we obtain the task representation r by computing
the mean of all the sample features in the current task. Then
we compute the mean of r as the scale for the samples, de-
fined as µr. This scale is different for the same samples in
the support set when the query is different. Therefore, it can
deal with the multi-scale and task-specific features extracted
by CNL. This task-specific scaling is defined as,

r =
1

M ×N + 1
(Ft

(q) +

M×N∑
i=1

Ft
(s)
i ), (8a)

Ft
(s)
i = Ft

(s)
i − µr, Ft

(q)
i = Ft

(q)
i − µr, (8b)

ŷ = d(Ft
(s), Ft

(q)) = 1− < Ft
(s), Ft

(q) >

‖Ft(s)‖`2‖Ft(q)‖`2
. (8c)

Here, we use the cosine similarity with task-specific scaling.
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Methods Backbone MiniImagenet TieredImagenet Method Category1-shot 5-shot 1-shot 5-shot
SNAIL (Nikhil et al. 2018) ResNet12 55.71 ± 0.99 68.88 ± 0.92 - - Memory Network

TADAM (Oreshkin et al. 2018) ResNet12 58.50 ± 0.30 76.70 ± 0.30 - -
MTL (Sun et al. 2019) ResNet12 61.2 ± 1.8 75.5 ± 0.8 - -

MetaOptNet (Lee et al. 2019) ResNet12 62.64 ± 0.82 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53 Meta Learning
LEO (Rusu et al. 2019) WRN-28-10 61.76 ± 0.08 77.69 ± 0.12 66.33 ± 0.05 81.44 ± 0.09

MatchNet(Vinyals et al. 2016) ResNet12 63.08 ± 0.80 75.99 ± 0.60 68.50 ± 0.92 80.60 ± 0.71

ProtoNet (Snell et al. 2017) ResNet12 60.37 ± 0.83 78.02 ± 0.57 65.65 ± 0.92 83.40 ± 0.65

GCR (Li et al. 2019a) 4Conv 53.21 ± 0.40 72.34 ± 0.32 - -
TapNet (Sung et al. 2019) ResNet12 61.65 ± 0.15 76.36 ± 0.10 63.08 ± 0.15 80.26 ± 0.12 Metric-based

approachesCTM (Li et al. 2019b) ResNet18 64.12 ± 0.82 80.51 ± 0.13 68.41 ± 0.39 84.28 ± 1.73

DeepEMD (Zhang et al. 2020) ResNet12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58

Ours ResNet12 67.96 ± 0.98 83.36 ± 0.51 73.42 ± 0.95 87.72 ± 0.75

Table 1: Average classification accuracy (%) with 95% confidence interval of 1000 5-way few-shot tasks on MiniImageNet and
TieredImagenet datasets. Our proposed method outperforms the state-of-the-art methods on both two datasets.

Objective Function
In this paper, the objective function of our proposed frame-
work is defined as,

L(θ) = λLSIM + LMI +
γ

2n

∑
θ

θ2, (9a)

LSIM =
∑

yi log ŷi + (1− yi) log(1− ŷi). (9b)

Here, LMI is the MI-based constraint, LSIM is the cross-
entropy loss between the ground truth and the prediction,
the last term in Equation 9(a) is the `2 regularization, and
the tuning parameters λ and γ balance corresponding compo-
nents in the loss function.

Experiments
In this section, we will introduce the implementation of our
method and evaluate our proposed method, including the
following parts: (i) The performances of the proposed frame-
work on two public datasets; (ii) Whether capturing long-
range dependencies can help the model construct a better
feature space, and whether Cross Non-Local Neural Network
can fuse the features of samples in support and query set for
obtaining task-specific representation; (iii) Are the MI-based
constraint and task-specific scaling effective?

Implementation Details
In this work, we adopt the ResNet12 (He et al. 2016) as the
backbone for extracting the local features. We train the model
in two stages. First, we take an image classification with su-
pervision as the pre-training task for training the ResNet12
(He et al. 2016) with the samples of base classes. This is done
by performing an AdaptiveAvgPool2d operation on the fea-
tures of layer 4 in ResNet12 and input it into a full-connection
layer for classifying. Secondly, we train the proposed few-
shot method based on the pre-trained backbone following
the principle proposed by (Vinyals et al. 2016), where the
processes of testing and the training have the same condition.
We set λ as 1 in the experiments.

Dataset
Mini-Imagenet. Mini-Imagenet is a subset of ImageNet
(Deng et al. 2009) for few-shot classification, proposed by
(Vinyals et al. 2016). It contains 100 classes with 600 im-
ages per class, which are divided into 64, 16, 20 for training/
validation/ testing.
TieredImagenet. TieredImagenet (Ren et al. 2018) is also
a subset of ImageNet but with more classes and images
(779,165) compared to the Mini-Imagenet, which enlarges
the domain difference between training and testing. There
are 608 classes from 34 super-classes, which are divided into
20, 6, 8 for training/ validation/ testing.

Comparisons with State-of-the-Art Methods
We compare our method with state-of-the-art methods on
Mini-Imagenet and TieredImagenet datasets. Our proposed
algorithm achieves a consistent improvement over the other
methods in 5-way 1-shot and 5-way 5-shot tasks. Compar-
ative results are listed in Table 1. We can observe that our
method achieve new state-of-the-art performances on the
two datasets in both 5-way 1-shot and 5-way 5-shot setting.
Compared with the latest metric-based approaches with the
same backbone, our method can build better feature space
with the task-specific representation. The Cross Non-Local
Neural Network with the task-specific scaling and MI-based
constraint is effective, especially in 1-shot tasks. The results
proved that the global understanding of the current task and
different attention on the same samples based on different
queries could improve the model’s performance.

Ablation Analysis
In this section, we evaluate the effectiveness of the key com-
ponents in our method, which contains a Cross Non-Local
Neural Network, task-specific scaling, and the MI-based con-
straint.

The detailed results in Table 2 illustrate that each critical
component plays a pivotal part in our method. Firstly, we
take the pre-trained ResNet12 with cosine similarity as the
baseline. Here, we take the features extracted by pre-trained
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Dataset MiniImagenet TieredImagenet

5-way 1-shot
Local info 63.08 ± 0.62 69.34 ± 0.81

+Task-specific Scaling 66.61 ± 0.85 70.97 ± 0.85

Local “‖” Global info 64.20 ± 0.98 71.21 ± 0.85

+Task-specific Scaling 66.52 ± 0.98 72.22 ± 0.81

Task-Specific info 64.97 ± 0.98 72.02 ± 0.85

+Task-specific Scaling 67.83 ± 0.99 72.98 ± 0.85

+MI constraint 67.96 ± 0.98 73.42 ± 0.95

Table 2: Ablation experiments for evaluating the effectiveness
of each component in our method, such as Cross Non-Local
Neural Network, task-specific scaling, and the MI-based con-
straint. The local information is extracted by the pre-trained
ResNet12, the global information is extracted by a non-local
network and the task-specific information is extracted by our
proposed CNL. “‖” denotes the concatenating operation.

ResNet12 as the local features of the samples, and the perfor-
mance is improved significantly by adding the task-specific
scaling into cosine similarity. Next, we extract the global fea-
ture by a non-local network, and then we concatenate both the
local and global features to do the same task. It outperforms
the baseline only with the local features. Moreover, better
performance can be achieved by adding the task-specific scal-
ing. This result shows that capturing long-range dependency
is effective in few-shot tasks. At last, we extract the task-
specific representation by Cross Non-Local Neural Network
and adding the task-specific scaling into cosine similarity. We
have achieved the the-state-of-art performances on both two
datasets in the 5-way 1-shot tasks. This demonstrates Cross
Non-Local Neural Network is useful for having a global
understanding of the current tasks, and it can pay different
attention to the same samples based on different queries. And
the task-specific scaling can deal with the multi-scale and
task-specific features well. In addition, the MI-based con-
straint is effective in the refinement process.

Effect of Cross Non-Local Neural Network We compare
multiple methods for capturing long-range dependency. The
fully-connected layer uses learned weights to capture the
long-range dependency instead of a function used in a non-
local neural network, and it needs fixed-size input. The non-
local neural network only focuses on the global context of
the current sample. Our proposed Cross Non-Local Neural
Network can capture the long-range dependency between the
current sample and other samples in its related task, which
can extract dynamic and task-specific representation. The
results in Table 3 demonstrate that our proposed Cross Non-
Local Neural Network with task-specific scaling outperforms
other methods.

Effect of Task-Specific Scaling There are some useful met-
ric functions in few-shot learning, such as cosine similarity,
Euclidean Distance, Adaptive Margin, and so on. As Table 4
shown, adding the task-specific scaling into the cosine sim-
ilarity improves the performance significantly. Notably, it
outperforms other metric functions and has achieved new

Method MiniImageNet Input
Size5-way 1-shot

Pre-trained ResNet12 + Cosine Similarity
Fully-connected layer 64.33± 0.77 Fixed

Bilinear 63.23± 0.76 Fixed
Dilated Convolution 59.89± 0.98 Unfixed

Non-local (Wang et al. 2018) 65.12± 0.97 Unfixed
GCNet (Cao et al. 2019) 65.84± 0.98 Unfixed

CNL
with task-specific scaling 67.83 ± 0.99 Unfixed

Table 3: Comparison of the methods for capturing long-range
dependency in 5-way 1-shot setting.

Metric MiniImageNet
5-way 10-way

Backbone: Pre-trained ResNet12
Euclidean(Snell et al. 2017) 60.08 47.09

Dot (Chen et al. 2019) 59.41 44.08
EMD(Zhang et al. 2020) 65.91 49.66

Adjusted Cosine 65.75 50.74
Cosine (Vinyals et al. 2016) 63.08 44.34

+Task-specific scaling 66.61 51.13

Table 4: Metric comparison for 5-way 1-shot and 10-way
1-shot classification on MiniImagenet. These methods use
the same pre-trained ResNet12 to extract local features for
building feature space.

the-state-of-the-art performance in 5-way 1-shot tasks on the
MiniImageNet dataset. After further analysis, the reason is
that most of the existing methods focus on dealing with the
features with the same scale and range. Adding task-specific
scaling can deal with multi-scale and task-specific features
better. In addition, this scaling improves performance without
higher computational complexity, and it also can be added to
other metric functions.

Conclusion
Capturing the long-range dependency and extracting task-
specific representation can improve the performances of few-
shot algorithms. Our proposed Cross Non-Local Neural Net-
work with task-specific scaling and MI-based constraint can
help the model focus on different regions of the same images
based on different queries. The task-specific scaling can deal
with the multi-scale and task-specific features well, which
is effective and also can be used in other metric-based ap-
proaches. Comprehensive experimental results demonstrate
that our method has achieved new state-of-the-art perfor-
mances, and each essential part plays a vital role. In the
future, we plan to apply our method in other tasks, such as
visual question answering and image retrieval.
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Krähenbühl, P.; and Koltun, V. 2011. Efficient Inference in
Fully Connected CRFs with Gaussian Edge Potentials. In
Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Sys-
tems 2011. Proceedings of a meeting held 12-14 December
2011, Granada, Spain, 109–117.

Krizhevsky; Alex; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural networks.
In Advances in neural information processing systems, 1097–
1105.

Lee, K.; Maji, S.; Ravichandran, A.; and Soatto, S. 2019.
Meta-learning with differentiable convex optimization. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 10657–10665.

Li, A.; Huang, W.; Lan, X.; Feng, J.; Li, Z.; and Wang, L.
2020. Boosting Few-Shot Learning With Adaptive Margin
Loss. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 12576–12584.

Li, A.; Luo, T.; Xiang, T.; Huang, W.; and Wang, L. 2019a.
Few-Shot Learning With Global Class Representations. In
2019 IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2019, Seoul, Korea (South), October 27 - Novem-
ber 2, 2019, 9714–9723.

Li, H.; Eigen, D.; Dodge, S.; Zeiler, M.; and Wang, X. 2019b.
Finding Task-Relevant Features for Few-Shot Learning by
Category Traversal. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, 1–10.

Linsker, R. 1988. Self-organization in a perceptual network.
Computer 21(3): 105–117.

Liu, W.; Rabinovich, A.; and Berg, A. C. 2015. Parsenet:
Looking wider to see better. arXiv preprint arXiv:1506.04579
.

10988



Nikhil; Mishra; Rohaninejad, M.; Chen, X.; and Abbeel, P.
2018. A Simple Neural Attentive Meta-Learner. In 6th In-
ternational Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings.

Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation
learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748 .
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