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Abstract

Recent theoretical analyses reveal that existing Stochastic
Gradient Markov Chain Monte Carlo (SG-MCMC) methods
need large mini-batches of samples (exponentially dependent
on the dimension) to reduce the mean square error of gradient
estimates and ensure non-asymptotic convergence guarantees
when the target distribution has a nonconvex potential func-
tion. In this paper, we propose a novel SG-MCMC algorithm,
called Hybrid Stochastic Gradient Hamiltonian Monte Carlo
(HSG-HMC) method, which needs merely one sample per
iteration and possesses a simple structure with only one hy-
perparameter. Such improvement leverages a hybrid stochas-
tic gradient estimator that exploits historical stochastic gradi-
ent information to control the mean square error. Theoretical
analyses show that our method obtains the best-known over-
all sample complexity to achieve epsilon-accuracy in terms
of the 2-Wasserstein distance for sampling from distribu-
tions with nonconvex potential functions. Empirical studies
on both simulated and real-world datasets demonstrate the
advantage of our method.

Introduction
In this paper, we consider the problem of sampling from a
probability measure on Rd, which admits a density p∗x with
respect to the Lebesgue measure on all x ∈ Rd by

p∗x ∝ exp(−f(x)). (1)

Here, f(x) : Rd → R is a smooth potential function. This
problem lies at the core of many Bayesian learning tasks
in the artificial intelligence literature (Gelman et al. 2014;
Andrieu et al. 2003; Ahn et al. 2015; Blundell et al. 2015;
Jaakkola and Jordan 1997). Dynamics based Markov Chain
Monte Carlo (MCMC) methods, such as Langevin Monte
Carlo (LMC) method (Roberts and Stramer 2002), Under-
damped Langevin MCMC (UL-MCMC) method (Kloeden
and Platen 1992), and modified UL-MCMC method (Cheng
et al. 2017), have been widely adopted to solve this problem,
due to their simplicity and effectiveness. Generally, these
methods generate iterates by discretizing continuous dynam-
ics whose stationary distribution (or its marginal) is the tar-
get distribution p∗x, and the expensive Metropolis Hastings
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correction step (Hastings 1970) is eschewed. It has been
proved that by utilizing the full gradient of the potential
function f(x), the distributions of the iterates are driven to-
wards the target distribution p∗x efficiently (Roberts, Tweedie
et al. 1996; Durmus and Moulines 2016a,b; Cheng et al.
2017). Nowadays, the stochastic gradient technique, i.e. con-
structing a stochastic approximation from a mini-batch of
samples to replace the full gradient, has been widely adopted
to reduce the per-iteration computational cost, especially in
large-scale and complex Bayesian learning tasks (Welling
and Teh 2011; Ma, Chen, and Fox 2015; Chen, Fox, and
Guestrin 2014; Ahn, Shahbaba, and Welling 2014; Baker
et al. 2017; Brosse, Durmus, and Moulines 2018). In this
paper, we refer to MCMC methods with stochastic gradients
as SG-MCMC methods.

However, the mean square error of the stochastic gradi-
ent approximation has to be controlled at a desirable level to
ensure non-asymptotic convergence to the target distribution
(Chen, Ding, and Carin 2015). To achieve this goal, a com-
mon approach is to enlarge the per-iteration mini-batch size.
Recent analyses reveal that for tasks with nonconvex poten-
tial functions (e.g., Bayesian Neural Networks and Gaussian
Mixture Models), the required mini-batch size is on the or-
der of Õ(ε−4 exp(O(d))), where ε denotes the target accu-
racy and d is the dimensionality (Raginsky, Rakhlin, and
Telgarsky 2017; Gao, Gurbuzbalaban, and Zhu 2018; Zou,
Xu, and Gu 2019b). This sample size may be gigantic even
for a moderate target accuracy and dimensionality, which
would result in a high overall sample complexity.

Inspired by the recent advances in the stochastic gradi-
ent descent methods, another class of SG-MCMC methods
instead resort to the variance reduction techniques to con-
trol the mean square error (Zou, Xu, and Gu 2018a; Li et al.
2019; Zou, Xu, and Gu 2019b; Zhang et al. 2020). In these
methods, historical gradient information is reused to reduce
the per-iteration mini-batch size. Among them, the SRVR-
HMC method (Zou, Xu, and Gu 2019b) employs a recur-
sively updated biased semi-stochastic gradient estimator and
achieves the best overall stochastic sample complexity for
nonconvex potentials. Though the amortized mini-batch size
can be small, SRVR-HMC still needs to periodically draw a
large mini-batch of samples (Õ(ε−4 exp(O(d))) to trade off
between bias and variance in the mean square error. This
renders a nested-loop algorithm with four hyperparameters
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METHOD OVERALL SAMPLE COMPLEXITY MINI-BATCH SIZE HYPERPARAMETERS

SGLD Õ(ε−8λ−9
∗ ) Õ(ε−4λ−2

∗ ) 2
SGHMC Õ(ε−8µ−5

∗ ) Õ(ε−4µ−2
∗ ) 2

SG-UL-MCMC Õ(ε−6µ
−5/2
∗ ) Õ(ε−4µ−1

∗ ) 2
SRVR-HMC Õ(ε−4µ−2

∗ ) Õ(ε−4µ−1
∗ ) 4

HSG-HMC(THIS PAPER) Õ(ε−4µ−2
∗ ) 1 1

Table 1: The overall sample complexity, required mini-batch size, and number of hyperparamters of different methods to achieve
ε-accuracy in terms of 2-Wasserstein distance for sampling from probability measures with nonconvex potential functions f(x).
Here, µ∗ and λ∗ denote the spectral gaps of the Markov processes generated by the Underdamped Langevin Dynamics (3) and
the Overdamped Langevin dynamics (Dalalyan 2017b), respectively. Both µ∗ and λ∗ are on the order of exp(−O(d)) in the
worst case (Raginsky, Rakhlin, and Telgarsky 2017; Gao, Gurbuzbalaban, and Zhu 2018) and µ∗ can be on the order ofO(

√
λ∗)

for a class of target densities (Eberle et al. 2019; Gao, Gurbuzbalaban, and Zhu 2018). Though the amortized mini-batch size
of SRVR-HMC can be reduced to O(1), it still needs to draw a large mini-batch of samples (Õ(ε−4µ−1

∗ )) periodically.

(i.e. outer-loop mini-batch size, inner-loop mini-batch size,
inner-loop length and stepsize).

The large mini-batches (exponentially dependent on di-
mensionality) and a complicated structure with multiple
hyperparameters herald a shift in the nature of stochastic
gradient techniques, i.e. using a small mini-batch of sam-
ples to reduce per-iteration computational cost and derive
easy-to-implement methods. In this paper, we propose a
one-hyperparameter SG-MCMC method that requires only
one sample per iteration, called Hybrid Stochastic Gradient
HMC (HSG-HMC). Our method leverages a novel hybrid
stochastic gradient estimator to control the mean square er-
ror. The contributions of our paper are listed as follows.
• We leverage a convex combination of a pair of stochas-

tic gradients (one is recursively updated and biased, the
other is unbiased) to construct a hybrid estimator that
backbones our HSG-HMC method. We show that if the
combination weight ρk in the hybrid estimator decays as
ρk = 1/k, the mean square error could be upper bounded
at a desired level, even using a single sample per iteration.
With this estimator, our HSG-HMC possesses a simple
structure with only one hyperparameter, i.e. the stepsize.

• We carry out theoretical analyses for HSG-HMC aim-
ing at sampling from probability measures with noncon-
vex potential functions f(x) that satisfy the mean-square-
smoothness and dissipativeness conditions. We prove that
our method achieves the best-known overall sample com-
plexity to obtain ε-accuracy in terms of the W2 distance
with only one sample per-iteration 1. Actually, HSG-
HMC is the first SG-MCMC method that dispense with
the Õ(ε−4 exp(O(d)) mini-batch size.

We compare HSG-HMC with existing theoretically guar-
anteed stocahstic gradient MCMC methods through exper-
iments on three tasks, including Gaussian Mixture Density
Sampling, Bayesian Logistic Regression and Bayesian Neu-
ral Network. Empirical results demonstrate the superiority
of HSG-HMC, i.e. it achieves the best performance while
requiring least samples.

1Generate a sample x whose distribution px satisfies
W2(px, p

∗
x) ≤ ε.

Notation and Preliminaries
Notation. We use 0 to denote the d-dimensional vector with
all entries being 0 and Id to denote an identity matrix of d di-
mension. For a, b ∈ R+, we use a = O(b) to denote a ≤ Cb
for someC > 0, and use a = Õ(b) to hide some logarithmic
terms of b. Given a random variable x, px and E[x] denote
its probability density and expectation, respectively. Given
two probability measures ω and ν, theW2 distance between
them is defined as

W2(ω, ν) =

(
inf

π∈Γ(ω,ν)
(

∫
‖x− y‖22dπ(x,y))

)1/2

,

where Γ(ω, ν) denotes the collection of joint distributions
with ω and ν being their marginal distributions.

Throughout this paper, we use∇F (x, ξ) to denote a sim-
ple unbiased stochastic approximation of∇f(x), i.e.,

Eξ[∇F (x, ξ)] = ∇f(x), (2)

where ξ is a random variable drawn from a fixed distribution.

Stochastic Gradient Hamiltonian Monte Carlo
Methods
A large portion of the recent SG-MCMC methods are based
on the Underdamped Langevin Dynamics (ULD) (Jaakkola
and Jordan 1997), which is described by the following
stochastic differential equation:{

dVt = −γVtdt− u∇f(Xt)dt+
√

2γudBt,
dXt = Vtdt,

(3)

where γ > 0 is called the viscosity parameter, u > 0
is the inverse mass, and Bt ∈ Rd is the standard Brow-
nian motion. In dynamics (3), Vt and Xt are referred to
as the velocity and position variables, respectively. Accord-
ing to the Fokker-Planck equation (Risken and Frank 1996),
the stationary distribution of the position variable Xt is the
target distribution p∗x. As (3) contains a Hamiltonian mo-
mentum component, its discretization can be viewed as a
form of Hamiltonian MCMC(Cheng et al. 2017). Hence,
we follow the convention in this literature and refer to SG-
MCMC methods based on this dynamics as stochastic gra-
dient Hamiltonian Monte Carlo methods.
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SG-UL-MCMC (Cheng et al. 2017) utilizes the first-order
exponential integrator discretization scheme (Stetter 1973)
of the Underdamped Langevin Dynamics (3) to generate it-
erates x(k)’s and v(k)’s in an iterative way. Moreover, it uti-
lizes the following mini-batch stochastic gradient estimate
to replace the full gradient in the k-th iteration

g(k)
u =

1

B

∑
i∈B(k)

∇F (x(k), ξ
(k)
i )

where B = |B(k)| denotes the mini-batch size and
∇F (x(k), ξ

(k)
i )’s are simple stochastic gradients whose ex-

pectation w.r.t ξ(k)
i is ∇f(x(k)). When f(x) is nonconvex,

mini-batch size of order Õ(ε−4 exp(O(d))) is needed to
guarantee that the distribution of the position variable x(k)

converges to the target p∗x (Zou, Xu, and Gu 2019b).
To alleviate the influence of variances of stochastic gra-

dients, SRVR-HMC utilizes historical stochastic gradient
information to construct the following recursively updated
variance-reduced estimator

g
(k)
b =g

(k−1)
b +

1

B

∑
i∈B(k)

(∇F (x(k), ξ
(k)
i )−∇F (x(k−1), ξ

(k)
i )),

where B(k) denotes a mini-batch of size B. It can be veri-
fied that g(k)

b is a biased estimator of ∇f(xk) w.r.t. ξ(k)
i ’s.

To balance variance and bias in the mean square error,
SRVR-HMC resets g

(k)
b to 1

B0

∑
ξki ∈B

(k)
0
∇F (x(k), ξ

(k)
i )

with a mini-batch B(k)
0 of size B0 every L iterations. While

B can be small, B0 is required to be on the order of
Õ(ε−4 exp(O(d))) to ensure the distributions of iterates
x(k)’s converge to the target p∗x in terms of theW2 distance.
As a result, SRVR-HMC involves four parameters (i.e. L,B,
B0, and the stepsize η) to tune.

The required sample size in SG-UL-MCMC and SRVR-
HMC is large for tasks with high dimensionality d due to
its exponential dependent on d. Actually, all existing the-
oretical guaranteed SG-MCMC methods, including SGLD
(Raginsky, Rakhlin, and Telgarsky 2017), SGHMC (Gao,
Gurbuzbalaban, and Zhu 2018), SG-UL-MCMC and SRVR-
HMC, need mini-batches of size Õ(ε−4 exp(O(d))) when
dealing with tasks with nonconvex potentials. In Table 1,
we summarize the overall stochastic sample complexity,
required mini-batch size, and hyperparameter numbers of
these methods and HSG-HMC to achieve ε-accracy in terms
of theW2 distance2.

Methodology
We present our Hybrid Stochastic Gradient Hamiltonian
Monte Carlo method (HSG-HMC) in Algorithm 1. We
utilize the first-order exponential integrator discretization
scheme of the Underdamped Langevin Dynamics (3). It has
been shown that this scheme would result in better over-
all gradient complexity than the Euler discretization based

2We exclude SVRG-LD/SAGA-LD as they assume f(x) to be
decomposable and are not suitable for general f(x)

Algorithm 1 Hybrid Stochastic Gradient Hamiltonian
Monte Carlo (HSG-HMC) method

Require: initial iterate x(0), v(0), unbiased estimate g(0) of
∇f(x(0)), stepsize η, and total number of iterations K.

1: for k = 0 to K − 1 do
2: Update x(k+1) and v(k+1) according to (4) and (5),

respectively.
3: Calculate the next exploration direction g(k+1) ac-

cording to (7).
4: end for

methods for distributions with nonconvex potentials f(x)
(Gao, Gurbuzbalaban, and Zhu 2018). In the k-th iteration,
HSG-HMC updates x(k+1) and v(k+1) as follows,

x(k+1) = x(k) − uγ−2(ηγ + e−γη − 1)g(k) (4)

+ γ−1(1− e−γη)v(k) + ε(k)
x ,

v(k+1) = e−γηv(k) − uγ−1(1− e−γη)g(k) + ε(k)
v , (5)

where ε
(k)
x and ε

(k)
v ∈ Rd are zero-mean Gaussian random

variables whose covariance matrices satisfy
E[ε

(k)
v (ε

(k)
v )T ]=u(1−e−2γη)Id,

E[ε
(k)
x (ε

(k)
x )T ]= u

γ2 (2ηγ+4e−ηγ−e−2γη−3)Id,

E[ε
(k)
v (ε

(k)
x )T ]= u

γ (1−2e−γη+e−2γη)Id.

(6)

The gradient estimator g(k+1) is constructed in the fol-
lowing hybrid way:

g(k+1) = ρk+1∇F (x(k+1), ξ(k+1))︸ ︷︷ ︸
ĝ
(k+1)
u

+ (7)

(1−ρk+1)(g(k)+∇F (x(k+1), ξ(k+1))−∇F (x(k), ξ(k+1))︸ ︷︷ ︸
ĝ
(k+1)
b

),

where ρk is the weight parameter, and ∇F (x(k+1), ξ(k+1))
is an unbiased estimate of ∇f(x(k+1)) (See the definition
(2) in Notation). Specifically, g(k+1) is a convex combi-
nation of two parts: i) ĝ

(k+1)
u , an unbiased high-variance

stochastic gradient estimator; ii) ĝ(k+1)
b , a biased variance-

reduced stochastic gradient estimator. Note that if ρk = 0,
we recover the biased estimator used in SRVR-HMC (with
batch-size B = 1). The merit lies in that we compensate
the biased estimator ĝ(k+1)

b with an unbiased one ĝ
(k+1)
u in

each iteration to strike a balance between bias and variance,
instead of periodically reset it to an unbiased low-variance
estimate. Theoretical analyses in Section show that if we
choose ρk according to ρk = 1/k, the mean square error of
this estimator would be controlled at a desired level. Thus,
HSG-HMC can achieve ε-accuracy in terms of theW2 dis-
tance with merely one stochastic sample ξ(k) in each itera-
tion.
Remark 1. The hybrid stochastic gradient technique is orig-
inally proposed in the optimization literature for solving
nonconvex stochastic minimization problems (Cutkosky and
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Orabona 2019; Tran-Dinh et al. 2019a). However, our work
differs from theirs in at least three aspects: (1) Our method is
designed to generate samples whose distribution is close to
the target p∗x in terms of theW2 distance. In our analyses, it
is needed to show that the iterates sufficiently explore all the
high probability area of p∗x. In contrast, their methods aim to
find a stationary point of a optimization problem. (2) Their
algorithms only update one variable per iteration, while our
algorithm has an additional Hamiltonian momentum term
and therefore updates two variables. The extra Hamiltonian
term introduces a great technical challenge in our theoretical
analyses. (3) Our weight strategy ρk = 1/k, which is crucial
in deriving the theoretical bound of HSG-HMC, is different
from those used in the optimization literature, i.e. the con-
stant weight strategy (Tran-Dinh et al. 2019a) and the adap-
tive weight strategy (Cutkosky and Orabona 2019). Directly
using existing weight strategies in the optimization would
not result in any favourable theoretical guarantee. Moreover,
our weight strategy does not introduce extra hyperparameter
while their weight strategies involve additional hyperparam-
eter tuning.

Theoretical Analysis
In this section, we give the theoretical analyses of HSG-
HMC. All detailed proofs are deferred to the appendix.

We use the 2-Wasserstein (W2) distance as our criterion.
W2 distance is widely used in the analysis of dynamics
based MCMC methods since it is a more suitable measure-
ment of the closeness between two distributions than metrics
like the total variation and the Kullback-Leibler divergence
as it can deal with distributions with different supports (Zou,
Xu, and Gu 2018a; Dalalyan 2017a; Cheng et al. 2017).

We make the following assumptions on the potential
functionf(x), which are commonly used in the analysis for
sampling from density with nonconvex potentials (Zou, Xu,
and Gu 2019a; Raginsky, Rakhlin, and Telgarsky 2017; Gao,
Gurbuzbalaban, and Zhu 2018).
Assumption 1 (Unbiasedness and Bounded Variance). For
all x ∈ Rd, the unbiased estimator ∇F (x, ξ) of ∇f(x) has
a bounded variance E‖∇F (x, ξ) −∇f(x)‖2 ≤ G2, where
the sample variable ξ is drawn from certain fixed distribu-
tion.

Assumption 2 (Mean-squared smoothness). The stochas-
tic gradient ∇F (x, ξ) satisfies the following mean-squared
smoothness property

Eξ‖∇F (x, ξ)−∇F (y, ξ)‖2 ≤M2‖x− y‖2, ∀x,y ∈ Rd.

Acoordingly, it can be verified that f is M -smooth.

Assumption 3 (Dissipativeness). There exists constants
m, b > 0 such that for all x ∈ Rd, ∇f(x) satisfies

〈∇f(x),x〉 ≥ m‖x‖22 − b.

The dissipativeness assumption is standard for the ergod-
icity analysis of stochastic differential equations and diffu-
sion approximations, and is essential to guarantee the con-
vergence of Underdamped Langevin dynamics (3) (Roberts,
Tweedie et al. 1996; Mattingly, Stuart, and Higham 2002).

First, we show that (x(k),v(k)) in Algorithm 1 is an ap-
proximate discretization of the ULD(3).

Lemma 1. (x(k+1),v(k+1)) is the solution of the following
stochastic differential equation starting from (X̃0, Ṽ0) =
(x(k),v(k)) at time t = η,{

dṼt =−γṼtdt−ug(k)dt+
√

2γudBt,

dX̃t = Ṽtdt,
(8)

where g(k) is defined as (7).
Based on this, we establish an iterative relation on the

mean square error of the gradient estimate g(k) in two con-
secutive iterations.
Lemma 2. Under Assumptions 1 and 2, for g(k+1) defined
in (7), we have

E‖g(k+1) −∇f(x(k+1))‖2 ≤ 2ρ2
k+1G

2 + (1−ρk+1)2

(E‖g(k)−∇f(x(k))‖2+2M2E‖x(k+1)−x(k)‖2)

The analyses in SG-UL-MCMC and SRVR-HMC indi-
cate that if we choose ρk = 0 or ρk = 1, the distributions of
iterates x(k)’s would not converge to the target distribution
as we only use one ξ(k) and require no periodically recon-
struction of gk as in SRVR-HMC.

Next, we show that the mean square error E‖g(k) −
∇f(xk)‖2 can be upper bounded explicitly with the weight
strategy ρk = 1/k.
Lemma 3. Under Assumptions 1 and 2, if we start from
(x(0),v(0)) = (0,0) in Algorithm 1, set ρk+1 = 1/(k + 1)
and choose proper η which satisfies

η≤min

{
1

2γ
,
6M

γm
,

γ

4(8Mu+uγ+22γ2)
,

2√
4Mu+3γ2

,

6γbu

(4Mu+3γ2)d
,

γ3m

48M3u(288u+14γ)
,

√
24uM

5

}
, (9)

then we have, for all k ≥ 0, the mean square error of g(k) is
bounded as

E‖g(k) −∇f(xk)‖2 ≤ 2G2

k
+ CM2Ēη2k, (10)

where

C = 6(γ2 + 7u2M2 + 2ud), (11)

and

Ē=
8Mu[16(d+b)+2m‖x∗‖2+16u(γ2+2u)G2/γ2]

γ2m

+
8u(f(0)−f(x∗))

γ2
+
G2

M2
+ γud (12)

with G ≥ max{‖∇F (0, ξ)‖, σ2}+ 1 a.s..

Proof Sketch. In the proof, we expand ‖x(k+1) − x(k)‖2 on
the r.h.s. of Lemma 2 according to the update rule of x(k+1)

(4). Then we construct a novel Lyapunov function to bound
certain terms in the expansion, and show that (10) holds for
all k ≥ 0 by induction.
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This lemma shows that with ρk+1 = 1/(k+ 1), the mean
square error of g(k) can be bounded as (10) even with only
one sample ξ(k) per iteration. The first term 2G2/k in (10)
comes from the unbiased part of gk+1 and decreases with
time k, while the second part CM2Ēη2k results from the
biased part gk+1

b and accumulates as k increases. With a
proper stepsize η, the second term could be bounded from
above. Since the first term becomes small as k increases,
the mean square error of g(k) will be bounded at a desir-
able level eventually. Note that it is hard to bound the mean
square errors if we directly adopt those strategies used in the
optimization literature (Cutkosky and Orabona 2019; Tran-
Dinh et al. 2019a,b).

Now, we establish the main theorem to bound the Wasser-
stein distance between the distribution of the k-th iterate
px(k) and the target p∗x as follows.

Theorem 1. Under the Assumptions 1, 2, and 3, if we start
from (x(0),v(0)) = (0,0), set ρk+1 = 1/(k+1) and choose
a step-size η satisfying the condition (9) in Algorithm 1, then
for all 0 ≤ k ≤ 2

Cη2 min{1, γ2m
768uM3 } where C is defined as

(11), we have

W2(px(k) , p∗x) ≤ Γ1(γ2Kη3 + 4η lnK + Cη3K2)1/4

+ Γ0 exp(−µ∗Kη), (13)

where Γ0 =O(1/µ∗) and Γ1 = 2Λ̄(uγM2Ē)1/4 are param-
eters with constants Ē defined as (12),

Λ̄ =
8

γ

(
um(f(x(0))− f(x∗)) + 2Mu(4d+ 2b+m‖x∗‖2γ2) + 12um+ 3γ2

m

) 1
2

,

and µ∗ denotes the spectral gap of the Markov process gen-
erated by the Underdamped Langevin Dynamics (3).

The first part in the r.h.s. of (13) results from the
discretization error between (x(k),v(k)) and the contin-
uous Underdamped Langevin Dynamics at time kη (i.e.
(Xkη,Vkη)), and the second part O(exp(−µ∗Kη)) is an
upper bound of the W2 distance between pXkη

and the tar-
get p∗x. From Theorem 1, we can obtain the overall stochas-
tic sample complexity of HSG-HMC to achieve ε-accuracy
in terms of theW2 distance by specifying the stepsize η and
iteration number K. We establish the following corollary by
requiring both parts in r.h.s of (13) to be less than ε/2.

Corollary 1. Under the same assumptions of Theorem 1,
if we set η = Õ(ε4µ2

∗) and K = Õ(ε−4µ−3
∗ ), then HSG-

HMC requires Õ(ε−4µ−3
∗ ) stochastic gradients to achieve

ε-accuracy in terms of theW2 distance.

Note that for large k, we need a very small η to bound
the second part of the mean square error in (10). Actually,
as k increases, ρk = 1

k → 0 and g(k) would finally degen-
erate to the biased part ĝ(k)

b . Thus, we propose to refresh ρk
periodically to prevent such degeneration. In the following
corollary, we show that a larger η can be used if we reset
ρk = 1 every η−1 times. Moreover, under this strategy of
ρk, HSG-HMC achieves a better overall stochastic sample
complexity Õ(µ−2

∗ ε−4).

Corollary 2. Under the same assumptions of Theorem 1, if
we set ρk+1 = 1

mod(k,dη−1e)+1 with η = Õ(ε4µ∗) and K

= Õ(ε−4µ−2
∗ ), HSG-HMC requires Õ(ε−4µ−2

∗ ) stochastic
gradients to achieve ε-accuracy in terms of theW2 distance.

The stochastic sample complexity of HSG-HMC with
this weight parameter strategy is the best-known result in
the SG-MCMC literature(the same as SRVR-HMC). How-
ever, SRVR-HMC needs to tune more hyperparameters than
HSG-HMC. As observed in our experiments , all the four
hyperparameter L, B0, B and stepsize η effect the perfor-
mance of SRVR-HMC greatly and should be tuned carefully.
In HSG-HMC, we only need to tune the step-size η, which
significantly alleviates the burden of parameter tuning.
Remark 2. Practically, we need not tune u and γ in Under-
damped Langevin Dynamics based methods. For example,
in SG-UL-MCMC/SRVR-HMC/HSG-MCMC, u is usually
fixed to 1, and γ is chosen to make e−γη = 0.9. Thus, we do
not include them as hyperparameters. We will discuss this
more in the appendix.

Related Work

In certain Bayesian learning tasks, obtaining the exact gradi-
ent∇f(x) is computationally expensive or even prohibitive.
We list two important examples as follows.

1. In large-scale Bayesian posterior inference tasks, f(x)
can be chosen as the negative log-posterior, i.e. f(x) =
−(
∑n
i=1 log p(di|x)−log pθ(x)), where pθ(x) denotes the

prior of x and p(di|x) is the likelihood of data point
di. In the massive data setting, i.e. n is on the magni-
tude of millions or billions, the computation of full gra-
dients can be extremely computationally demanding. We
can construct a stochastic approximation of ∇f(x) as
∇F (x, ξ) = −n∇ log p(dξ|x)+∇ log pθ(x) with ξ sam-
pled uniformly from {1, · · · , n}.

2. Another typical example comes from hierarchical
Bayesian models (e.g. Latent Dirichlet Allocation model),
where the target distribution is p∗x = Epθ(ξ)[p(x|ξ)]
with pθ(ξ) as the prior of the hyperparameter ξ. In
this case, f(x) can be set to the negative log-density
f(x) = − log p∗x. While the exact gradient ∇f(x) =
−Epθ(ξ)[∇p(x|ξ)]/Epθ(ξ)[p(x|ξ)] is hard to calculate, its
Monte Carlo approximations (Mooney 1997) are easy to
obtain.

To handle these tasks, several stochastic gradient MCMC
methods have been proposed such as SGLD (Welling and
Teh 2011), SVRG-LD (Dubey et al. 2016), SAGA-LD
(Dubey et al. 2016), SGHMC (Chen, Fox, and Guestrin
2014), SG-UL-MCMC (Cheng et al. 2017), SVR-HMC
(Zou, Xu, and Gu 2018a), SAGA-HMC (Li et al. 2019),
SVRG2nd-HMC\SAGA2nd-HMC (Li et al. 2019), and
SRVR-HMC (Zou, Xu, and Gu 2019b). Among them,
SGLD, SGHMC, SG-UL-MCMC and SRVR-HMC have
theoretical guarantees for sampling from densities with gen-
eral nonconvex f(x).
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(a) SGLD (b) SVRG-LD

(c) SG-UL-MCMC (d) SGHMC

(e) SRVR-HMC (f) HSG-HMC

Figure 1: Results on sampling from a Gaussian Mixture
Density. The red line denotes the projection of the target dis-
tribution p∗x.

Experiments

We follow the settings in the literature (Zou, Xu, and Gu
2018b; Dubey et al. 2016; Chatterji et al. 2018; Welling
and Teh 2011; Zou, Xu, and Gu 2019a) and conduct em-
pirical studies on one simulated experiment (sampling from
a Gaussian Mixture Density) and two real-world applica-
tions (Bayesian Neural Network and Bayesian Logistic Re-
gression). We include SGLD, SVRG-LD, SGHMC, SG-
UL-MCMC, and SRVR-HMC as our baselines. In HSG-
HMC, we use the weight parameter strategy ρk+1 =

1
mod(k,dη−1e)+1 as indicated in Corollary 2. In all the exper-
iments, we grid search the hyperparameters of each meth-
ods. Besides, we also report the results of comparisons be-
tween SRVR-HMC with different hyperparameter settings
and HSG-HMC, which is deferred to the appendix.

METHOD W2

SGLD 1.46 ∗ 10−2

SGHMC 1.23 ∗ 10−2

SG-UL-MCMC 9.58 ∗ 10−2

SVRG-LD 7.82 ∗ 10−3

SRVR-HMC 5.33 ∗ 10−3

HSG-HMC 5.13 ∗ 10−3

Table 2: The W2 distance result on sampling from a Gaus-
sian Mixture Density.

DATASET DIM DATASIZE(TRAINING) DATASIZE(TEST)

A9A 123 32561 16281
MUSHROOM 112 6000 2124
PHISHING 68 9000 2055
PIMA 8 600 168
A3A 123 3185 29376
IJCNN 22 49990 91701

Table 3: Statistics of datasets used in BLR

Sampling from a Gaussian Mixture Density

We consider sampling from distribution p∗x ∝
exp(−f(x)) = exp(−

∑N
i=1 fi(x)/N), where each

component exp(−fi(x)) is defined as exp(−fi(x)) =

2e−‖x−ai‖
2
2/2 + e−‖x+ai‖2/2, ai ∈ Rd. It can be verified

that each exp(−fi(x)) is proportional to the probability den-
sity function of two-component Gaussian mixture density
with weights 1/3 and 2/3. According to (Dalalyan 2017b),
when the data point ai is chosen such that ‖ai‖2 ≥ 1, fi(x)
is nonconvex and satisfies Assumption 3. We set the sample
size N = 500 and dimension d = 2, and randomly generate
data ai ∼ N(µ,Σ) with µ = (2, · · · , 2)T and Σ = Id×d.
We run each method for 2× 105 iterations, and make use of
the last 105 iterates to visualize distributions and calculate
theW2 distance.

In Figure 1, we report the 2D projection of the densities
of random samples generated by each algorithm. The results
show that SRVR-HMC and HSG-HMC explore both com-
ponents efficiently while the other methods (SGLD, SL-UL-
MCMC, SGHMC and SVRG-LD) concentrate more on one
particular component. These results suggest that both the
variance reduction techniques and Hamiltonian component
are crucial to generate high-quality iterates. Note that, the
sample complexity of HSG-HMC is much lower than other
methods when generating the same number of iterates.

In Table 2, we report theW2 distance between each den-
sity of random samples generated by each algorithm and the
true posterior. To calculate the W2, we run HMC with MH
correction for 2×105 iterations and discard the first 105 iter-
ates as burn-in to generate 105 samples from the true poste-
rior. We use Sinkhorn method with penalty 10−3 to calculate
the W2 distance. We can also observe that HSG-HMC and
SRVR-HMC perform better than other methods, which con-
firms our theoretical analysis.
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(a) a9a (b) mushrooms

(c) phishing (d) pima

(e) a3a (f) ijcnn

Figure 2: Results for Bayesian Logistic Regression, where
X-axis represents the number of data passes, and Y-axis rep-
resents the test negative log likelihood.

Bayesian Logistic Regression
Bayesian Logistic Regression(BLR) is a robust binary clas-
sification task. Let Z = {xi, yi}Ni=1 be a dataset with yi ∈
{−1, 1} denoting the sample label and xi ∈ Rd denoting the
sample covariate vector. The conditional distribution of label
y is modeled by p(y|x,w) = φ(yiw

Txi), where φ(·) is the
sigmoid function and the prior of w is p(w) = N(0, λId×d).
Six publicly available benchmark datasets, a9a, mushrooms,
phishing, pima, a3a and ijcnn are used for evaluation 3. The
statistics of datasets are listed in Table 3.

Follow the convention in (Zou, Xu, and Gu 2019b,a;
Welling and Teh 2011), we show the test negative log-
likelihood of the test examples on these 6 datasets in Fig-
ure 2. We use the number of effective passes (epoch) of the
dataset as the x-axis, which is proportional to the overall
stochastic sample complexity. It can be observed that HSG-
HMC has the best performance on all the datasets, which
shows its superiority overall other methods.

Bayesian Neural Network
In this experiment, we study a multiclass Bayesian posterior
learning task with Bayesian Neural Network(BNN). Given

3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

(a) Test NLL (b) TestAccuracy

Figure 3: Results for Feedforward Neural Network, where
X-axis represents the number of data passes and Y-axes in
the left and right subfigures represent the negative log like-
lihood and the accuracy on the test dataset, respectively

dataset Z = {xi, yi}Ni=1, yi ∈ {0, 1}m denotes the sample
label and xi ∈ Rd denote the sample covariate vector. Note
that each yi is a m-dimensional vector with y[k]

i = 1 and all
other coordinates 0 if xi belongs to the k-class. The nega-
tive log-likelihood of the conditional distribution of label yi
is proportional to − ln p(yi|xi,w) ∝ −yTi ln fw(xi), where
fw(·) : Rd → [0, 1]k denotes a Neural Network. Here, we
choose the LeNet (LeCun et al. 1998). All the methods are
tested on the standard MNIST dataset, consisting of 28× 28
images (thus 784-dimensional input vectors) from 10 differ-
ent classes (digits from 0 to 9), with 6×104 training samples
and 104 test samples.

We run all the experiments for 10 times and report the av-
erage test log-likelihood and accuracy versus the data passes
in Figure 3. The experimental results demonstrate that Un-
derdamped Langevin Dynamics (3) based methods, i.e.
SGHMC, SG-UL-MCMC, SRVR-HMC, HSG-HMC have
better performance than the overdamped Langevin Dynam-
ics based methods, i.e. SGLD and SVRG-LD. It can also
be observed that the variance-reduced methods, i.e. SRVR-
HMC and HSG-HMC, outperform ones without variance re-
duction(i.e. SGHMC and SG-UL-MCMC), and HSG-HMC
achieves the best performance.

Conclusion
In this paper, we propose a novel one-sample stochastic
gradient Hamiltonian Monte Carlo method, called Hybrid
Stochastic Gradient HMC (HSG-HMC). HSG-HMC utilizes
a hybrid stochastic gradient estimator, which is a convex
combination of an unbiased high-variance estimator and a
biased low-variance estimator. We prove that the overall
stochastic sample complexity of HSG-HMC is Õ(ε−4µ−2

∗ ),
which achieves the best-known result (the same as SRVR-
HMC) when applied in sampling tasks with nonconvex po-
tential functions. While SRVR-HMC needs to alternate be-
tween large mini-batch and small mini-batch and possesses a
nested-loop structure with 4 parameters, HSG-HMC merely
needs one sample in each iteration and is of a simple one-
loop structure, which renders much simpler parameter tun-
ing (1 v.s. 4). Empirical results also demonstrate the advan-
tages of our methods over existing works.
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