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Abstract

Representation Learning is a significant and challenging task
in multimodal learning. Effective modality representations
should contain two parts of characteristics: the consistency
and the difference. Due to the unified multimodal annota-
tion, existing methods are restricted in capturing differenti-
ated information. However, additional unimodal annotations
are high time- and labor-cost. In this paper, we design a la-
bel generation module based on the self-supervised learning
strategy to acquire independent unimodal supervisions. Then,
joint training the multimodal and uni-modal tasks to learn
the consistency and difference, respectively. Moreover, dur-
ing the training stage, we design a weight-adjustment strat-
egy to balance the learning progress among different sub-
tasks. That is to guide the subtasks to focus on samples with
the larger difference between modality supervisions. Last, we
conduct extensive experiments on three public multimodal
baseline datasets. The experimental results validate the re-
liability and stability of auto-generated unimodal supervi-
sions. On MOSI and MOSEI datasets, our method surpasses
the current state-of-the-art methods. On the SIMS dataset,
our method achieves comparable performance than human-
annotated unimodal labels. The full codes are available at
https://github.com/thuiar/Self-MM.

Introduction
Multimodal Sentiment Analysis (MSA) attracts more and
more attention in recent years (Zadeh et al. 2017; Tsai et al.
2019; Poria et al. 2020). Compared with unimodal sentiment
analysis, multimodal models are more robust and achieve
salient improvements when dealing with social media data.
With the booming of user-generated online content, MSA
has been introduced into many applications such as risk
management, video understanding, and video transcription.

Though previous works have made impressive improve-
ments on benchmark datasets, MSA is still full of chal-
lenges. Baltrušaitis, Ahuja, and Morency (2019) identi-
fied five core challenges for multimodal learning: align-
ment, translation, representation, fusion, and co-learning.
Among them, representation learning stands in a funda-
mental position. In most recent work, Hazarika, Zimmer-
mann, and Poria (2020) stated that unimodal representa-
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Figure 1: An example of unimodal labels and multimodal
labels, from Zadeh et al. (2017). The green dotted lines rep-
resent the process of backpropagation.

tions should contain both consistent and complementary in-
formation. According to the difference of guidance in rep-
resentation learning, we classify existing methods into the
two categories: forward guidance and backward guidance.
In forward-guidance methods, researches are devoted to de-
sign interactive modules for capturing the cross-modal in-
formation (Zadeh et al. 2018a; Sun et al. 2020; Tsai et al.
2019). However, due to the unified multimodal annotation,
it is difficult for them to capture modality-specific informa-
tion. Shown in Figure 1, the unified multimodal labels are
not always suitable for the unimodal learning. In backward-
guidance methods, researches proposed additional loss func-
tion as prior constraint, which leads modality representa-
tions to contain both consistent and complementary infor-
mation (Yu et al. 2020a; Hazarika, Zimmermann, and Poria
2020). However, the former needed additional labor costs,
and the latter were difficult to represent the modality-specific
difference with spatial differences.

In this paper, we focus on the backward-guidance method.
Motivated by the independent unimodal annotations and ad-
vanced modality-specific representation learning, we pro-
pose a novel self-supervised multi-task learning strategy.
Different from Yu et al. (2020a), our method does not need
human-annotated unimodal labels but uses auto-generated
unimodal labels. It is based on two intuitions. First, label
difference is positively correlated with the distance differ-
ence between modality representations and class centers.
Second, unimodal labels are highly related to multimodal la-
bels. Hence, we design a unimodal label generation module
based on multimodal labels and modality representations.
The details are shown in Section .
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Considering that auto-generated unimodal labels are
not stable enough at the beginning epochs, we design a
momentum-based update method, which applies a larger
weight for the unimodal labels generated later. Furthermore,
we introduce a self-adjustment strategy to adjust each sub-
task’s weight when integrating the final multi-task loss func-
tion. We believe that it is difficult for subtasks with small la-
bel differences, between auto-generated unimodal labels and
human-annotated multimodal labels, to learn the modality-
specific representations. Therefore, the weight of subtasks is
positively correlated with the labels difference.

The novel contributions of our work can be summarized
as follows:
• We propose the relative distance value based on the dis-

tance between modality representations and class centers,
positively correlated with model outputs.

• We design a unimodal label generation module based on
the self-supervised strategy. Furthermore, a novel weight
self-adjusting strategy is introduced to balance different
task loss constraints.

• Extensive experiments on three benchmark datasets val-
idate the stability and reliability of auto-generated uni-
modal labels. Moreover, our method outperforms current
state-of-the-art results.

Related Work
In this section, we mainly discuss related works in the do-
main of multimodal sentiment analysis and multi-task learn-
ing. We also emphasize the innovation of our work.

Multimodal Sentiment Analysis
Multimodal sentiment analysis has become a significant re-
search topic that integrates verbal and nonverbal informa-
tion like visual and acoustic. Previous researchers mainly
focus on representation learning and multimodal fusion. For
representation learning methods, Wang et al. (2019) con-
structed a recurrent attended variation embedding network
to generate multimodal shifting. Hazarika, Zimmermann,
and Poria (2020) designed two distinct encoders project-
ing each modality into modality-invariant and modality-
specific space. Two regularization components are claimed
to aid modality-invariant and modality-specific represen-
tation learning. Yu et al. (2020a) introduced independent
unimodal human annotations. By joint learning unimodal
and multimodal tasks, the proposed multi-task multimodal
framework learned modality-specific and modality-invariant
representations simultaneously. For multimodal fusion, ac-
cording to the fusion stage, previous works can be classified
into two categories: early fusion and late fusion. Early fu-
sion methods usually use delicate attention mechanisms for
cross-modal fusion. Zadeh et al. (2018a) designed a memory
fusion network for cross-view interactions. Tsai et al. (2019)
proposed cross-modal transformers, which learn the cross-
modal attention to reinforce a target modality. Late fusion
methods learn intra-modal representation first and perform
inter-modal fusion last. Zadeh et al. (2017) used a tensor fu-
sion network that obtains tensor representation by comput-
ing the outer product between unimodal representations. Liu

et al. (2018) proposed a low-rank multimodal fusion method
to decrease the computational complexity of tensor-based
methods.

Our work aims at representation learning based on
late fusion structure. Different from previous studies, we
joint learn unimodal and multimodal tasks with the self-
supervised strategy. Our method learns similarity informa-
tion from multimodal task and learns differentiated infor-
mation from unimodal tasks.

Transformer and BERT
Transformer is a sequence-to-sequence architecture without
recurrent structure (Vaswani et al. 2017). It is used for mod-
eling sequential data and has superior performance on re-
sults, speed, and depth than recurrent structure. BERT (Bidi-
rectional Encoder Representations from Transformers) (De-
vlin et al. 2018) is a successful application on the trans-
former. The pre-trained BERT model has achieved signif-
icant improvements in multiple NLP tasks. In multimodal
learning, pre-trained BERT also achieved remarkable re-
sults. Currently, there are two ways to use pre-trained BERT.
The first is to use the pre-trained BERT as a language fea-
ture extraction module (Hazarika, Zimmermann, and Poria
2020). The second is to integrate acoustic and visual infor-
mation on the middle layers (Tsai et al. 2019; Rahman et al.
2020). In this paper, we use the first way and finetune the
pre-trained BERT for our tasks.

Multi-task Learning
Multi-task learning aims to improve the generalization per-
formance of multiple related tasks by utilizing the knowl-
edge contained in different tasks (Zhang and Yang 2017).
Compared with single-task learning, there are two main
challenges for multi-task learning in the training stage. The
first is how to share network parameters, including hard-
sharing and soft-sharing methods. The second is how to bal-
ance the learning process of different tasks. Recently, multi-
task learning is wildly applied in MSA (Liu et al. 2015;
Zhang et al. 2016; Akhtar et al. 2019; Yu et al. 2020b).

In this work, we introduce unimodal subtasks to aid the
modality-specific representation learning. We adopt a hard-
sharing strategy and design a weight-adjustment method to
solve the problem of how to balance.

Methodology
In this section, we explain the Self-Supervised Multi-task
Multimodal sentiment analysis network (Self-MM) in detail.
The goal of the Self-MM is to acquire information-rich uni-
modal representations by joint learning one multimodal task
and three unimodal subtasks. Different from the multimodal
task, the labels of unimodal subtasks are auto-generated in
the self-supervised method. For the convenience of the fol-
lowing sections, we refer the human-annotated multimodal
labels as m-labels and the auto-generated unimodal labels
as u-labels.

Task Setup
Multimodal Sentiment Analysis (MSA) is to judge the sen-
timents using multimodal signals, including text (It), audio
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Figure 2: The overall architecture of Self-MM. The ŷm, ŷt, ŷa, and ŷv are the predictive outputs of the multimodal task and
the three unimodal tasks, respectively. The ym is the multimodal annotation by human. The yt, ya, and yv are the unimodal
supervision generated by the self-supervised strategy. Finally, ŷm is used as the sentiment output.

(Ia), and vision (Iv). Generally, MSA can be regarded as
either a regression task or a classification task. In this work,
we regard it as the regression task. Therefore, Self-MM takes
It, Ia, andIv as inputs and outputs one sentimental intensity
result ŷm ∈ R. In the training stage, to aid representation
learning, Self-MM has extra three unimodal outputs ŷs ∈ R,
where s ∈ {t, a, v}. Though more than one output, we only
use ŷm as the final predictive result.

Overall Architecture
Shown in Figure 2, the Self-MM consists of one multi-
modal task and three independent unimodal subtasks. Be-
tween the multimodal task and different unimodal tasks, we
adopt hard-sharing strategy to share the bottom representa-
tion learning network.
Multimodal Task. For the multimodal task, we adopt a
classical multimodal sentiment analysis architecture. It con-
tains three main parts: the feature representation module, the
feature fusion module, and the output module. In the text
modality, since the great success of the pre-trained language
model, we use the pre-trained 12-layers BERT to extract sen-
tence representations. Empirically, the first-word vector in
the last layer is selected as the whole sentence representa-
tion Ft.

Ft = BERT (It; θ
bert
t ) ∈ Rdt

In audio and vision modalities, following Zadeh et al.
(2017); Yu et al. (2020b), we use pre-trained ToolKits to
extract the initial vector features, Ia ∈ Rla×da and Iv ∈
Rlv×dv , from raw data. Here, la and lv are the sequence
lengths of audio and vision, respectively. Then, we use
a single directional Long Short-Term Memory (sLSTM)

(Hochreiter and Schmidhuber 1997) to capture the tim-
ing characteristics. Finally, the end-state hidden vectors are
adopted as the whole sequence representations.

Fa = sLSTM(Ia; θ
lstm
a ) ∈ Rda

Fv = sLSTM(Iv; θ
lstm
v ) ∈ Rdv

Then, we concatenate all uni-modal representations and
project them into a lower-dimensional space Rdm .

F ∗m = ReLU(Wm
l1
T [Ft;Fa;Fv] + bml1)

where Wm
l1 ∈ R(dt+da+dv)×dm and ReLU is the relu acti-

vation function.
Last, the fusion representation F ∗m is used to predict the

multimodal sentiment.

ŷm =Wm
l2
TF ∗m + bml2

where Wm
l2 ∈ Rdm×1.

Uni-modal Task. For the three unimodal tasks, they share
modality representations with the multimodal task. In or-
der to reduce the dimensional difference between different
modalities, we project them into a new feature space. Then,
get the uni-modal results with linear regression.

F ∗s = ReLU(W s
l1
TFs + bsl1)

ŷs =W s
l2
TF ∗s + bsl2

where s ∈ {t, a, v}.
To guide the unimodal tasks’ training process, we design

a Unimodal Label Generation Module (ULGM) to get u-
labels. Details of the ULGM are discussed in Section .

ys = ULGM(ym, F
∗
m, F

∗
s )
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Figure 3: Unimodal label generation example. Multimodal
representation F ∗m is closer to the positive center (m-pos)
while unimodal representation is closer to the negative cen-
ter (s-neg). Therefore, unimodal supervision ys is added a
negative offset δsm to the multimodal label ym

.

where s ∈ {t, a, v}.
Finally, we joint learn the multimodal task and three uni-

modal tasks under m-labels and u-labels supervision. It is
worth noting that these unimodal tasks are only exist in the
training stage. Therefore, we use ŷm as the final output.

ULGM
The ULGM aims to generate unimodal supervision values
based on multimodal annotations and modality representa-
tions. In order to avoid unnecessary interference with the
update of network parameters, the ULGM is designed as
a non-parameter module. Generally, unimodal supervision
values are highly correlated with multimodal labels. There-
fore, the ULGM calculates the offset according to the rela-
tive distance from modality representations to class centers,
shown as Figure 3.
Relative Distance Value. Since different modality represen-
tations exist in different feature spaces, using the absolute
distance value is not accurate enough. Therefore, we pro-
pose the relative distance value, which is not related to the
space difference. First, when in training process, we main-
tain the positive center (Cpi ) and the negative center (Cni ) of
different modality representations:

Cpi =
∑N

j=1 I(yi(j)>0)·F g
ij∑N

j=1 I(yi(j)>0)
(1)

Cni =
∑N

j=1 I(yi(j)<0)·F g
ij∑N

j=1 I(yi(j)<0)
(2)

where i ∈ {m, t, a, v},N is the number of training samples,
and I(·) is a indicator function. F gij is the global representa-
tion of the jth sample in modality i.

For modality representations, we use L2 normalization as
the distance between F ∗i and class centers.

Dp
i =

||F∗
i −C

p
i ||

2
2√

di
(3)

Dn
i =

||F∗
i −C

n
i ||

2
2√

di
(4)

Algorithm 1 Unimodal Supervisions Update Policy

Input: unimodal inputs It, Ia, Iv , m-labels ym
Output: u-labels y(i)t , y

(i)
a , y

(i)
v where i means the number

of training epochs
1: Initialize model parameters M(θ;x)

2: Initialize u-labels y(1)t = ym, y
(1)
a = ym, y

(1)
v = ym

3: Initialize global representations F gt = 0, F ga = 0, F gv =
0, F gm = 0

4: for n ∈ [1, end] do
5: for mini-batch in dataLoader do
6: Compute mini-batch modality representations

F ∗t , F
∗
a , F

∗
v , F

∗
m

7: Compute loss L using Equation (10)
8: Compute parameters gradient ϑLϑθ
9: Update model parameters: θ = θ − η ϑLϑθ

10: if n 6= 1 then
11: Compute relative distance values αm, αt, αa,

and αv using Equation (1∼5)
12: Compute yt, ya, yv using Equation (8)
13: Update y(n)t , y

(n)
a , y

(n)
t using Equation (9)

14: end if
15: Update global representations F gs using F ∗s , where

s ∈ {m, t, a, v}
16: end for
17: end for

where i ∈ {m, t, a, v}. di is the representation dimension, a
scale factor.

Then, we define the relative distance value, which evalu-
ates the relative distance from the modality representation to
the positive center and the negative center.

αi =
Dn
i −D

p
i

Dp
i + ε

(5)

where i ∈ {m, t, a, v}. ε is a small number in case of zero
exceptions.
Shifting Value. It is intuitive that αi is positively related to
the final results. To get the link between supervisions and
predicted values, we consider the following two relation-
ships.

ys
ym
∝ ŷs
ŷm
∝ αs
αm
⇒ ys =

αs ∗ ym
αm

(6)

ys−ym ∝ ŷs− ŷm ∝ αs−αm ⇒ ys = ym+αs−αm (7)
where s ∈ {t, a, v}.

Specifically, the Equation 7 is introduced to avoid the
“zero value problem”. In Equation 6, when ym equals to
zero, the generated unimodal supervision values ys are al-
ways zero. Then, joint considering the above relationships,
we can get unimodal supervisions by equal-weight summa-
tion.

ys =
ym ∗ αs
2αm

+
ym + αs − αm

2

= ym +
αs − αm

2
∗ ym + αm

αm
= ym + δsm

(8)
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Model MOSI MOSEI Data
SettingMAE Corr Acc-2 F1-Score MAE Corr Acc-2 F1-Score

TFN (B)1 0.901 0.698 -/80.8 -/80.7 0.593 0.700 -/82.5 -/82.1 Unaligned
LMF (B)1 0.917 0.695 -/82.5 -/82.4 0.623 0.677 -/82.0 -/82.1 Unaligned

MFN1 0.965 0.632 77.4/- 77.3/- - - 76.0/- 76.0/- Aligned
RAVEN1 0.915 0.691 78.0/- 76.6/- 0.614 0.662 79.1/- 79.5/- Aligned

MFM (B)1 0.877 0.706 -/81.7 -/81.6 0.568 0.717 -/84.4 -/84.3 Aligned
MulT (B)1 0.861 0.711 81.5/84.1 80.6/83.9 0.58 0.703 -/82.5 -/82.3 Aligned
MISA (B)1 0.783 0.761 81.8/83.4 81.7/83.6 0.555 0.756 83.6/85.5 83.8/85.3 Aligned

MAG-BERT (B)2 0.712 0.796 84.2/86.1 84.1/86.0 - - 84.7/- 84.5/- Aligned
MISA (B)* 0.804 0.764 80.79/82.1 80.77/82.03 0.568 0.724 82.59/84.23 82.67/83.97 Aligned

MAG-BERT (B)* 0.731 0.789 82.54/84.3 82.59/84.3 0.539 0.753 83.79/85.23 83.74/85.08 Aligned
Self-MM (B)* 0.713 0.798 84.00/85.98 84.42/85.95 0.530 0.765 82.81/85.17 82.53/85.30 Unaligned

Table 1: Results on MOSI and MOSEI. (B) means the language features are based on BERT; 1 is from Hazarika, Zimmermann,
and Poria (2020) and 2 is from Rahman et al. (2020). Models with ∗ are reproduced under the same conditions. In Acc-2 and
F1-Score, the left of the “/” is calculated as “negative/non-negative” and the right is calculated as “negative/positive”.

where s ∈ {t, a, v}. The δsm = αt−αm

2 ∗ ym+αm

αm
represents

the offset value of unimodal supervisions to multimodal an-
notations.
Momentum-based Update Policy. Due to the dynamic
changes of modality representations, the generated u-labels
calculated by Equation (8) are unstable enough. In order to
mitigate the adverse effects, we design a momentum-based
update policy, which combines the new generated value with
history values.

y(i)s =

{
ym i = 1
i−1
i+1y

(i−1)
s + 2

i+1y
i
s i > 1

(9)

where s ∈ {t, a, v}. yis is the new generated u-labels at the
ith epoch. y(i)s is the final u-labels after the ith epoch.

Formally, assume the total epochs is n, we can get that the
weight of yis is 2i

(n)(n+1) . It means that the weight of u-labels
generated later is greater than the previous one. It is in ac-
cordance with our experience. Because generated unimodal
labels are the cumulative sum of all previous epochs, they
will stabilize after enough iterations (about 20 in our exper-
iments). Then, the training process of unimodal tasks will
gradually become stable. The unimodal labels update policy
is shown in Algorithm 1.

Optimization Objectives
Finally, we use the L1Loss as the basic optimization ob-
jective. For uni-modal tasks, we use the difference between
u-labels and m-labels as the weight of loss function. It in-
dicates that the network should pay more attention on the
samples with larger difference.

L =
1

N

N∑
i

(|ŷim − yim|+
{t,a,v}∑
s

W i
s ∗ |ŷis − y(i)s |) (10)

where N is the number of training samples. W i
s =

tanh(|y(i)s − ym|) is the weight of ith sample for auxiliary
task s.

Dataset # Train # Valid # Test # All

MOSI 1284 229 686 2199
MOSEI 16326 1871 4659 22856
SIMS 1368 456 457 2281

Table 2: Dataset statistics in MOSI, MOSEI, and SIMS.

Experimental Settings
In this section, we introduce our experimental settings, in-
cluding experimental datasets, baselines, and evaluations.

Datasets
In this work, we use three public multimodal sentiment anal-
ysis datasets, MOSI (Zadeh et al. 2016), MOSEI (Zadeh
et al. 2018b), and SIMS (Yu et al. 2020a). The basic statis-
tics are shown in Table 2. Here, we give a brief introduction
to the above datasets.
MOSI. The CMU-MOSI dataset (Zadeh et al. 2016) is one
of the most popular benchmark datasets for MSA. It com-
prises 2199 short monologue video clips taken from 93
Youtube movie review videos. Human annotators label each
sample with a sentiment score from -3 (strongly negative) to
3 (strongly positive).
MOSEI. The CMU-MOSEI dataset (Zadeh et al. 2018b) ex-
pands its data with a higher number of utterances, greater
variety in samples, speakers, and topics over CMU-MOSI.
The dataset contains 23,453 annotated video segments (ut-
terances), from 5,000 videos, 1,000 distinct speakers and
250 different topics.
SIMS. The SIMS dataset (Yu et al. 2020a) is a distinc-
tive Chinese MSA benchmark with fine-grained annotations
of modality. The dataset consists of 2,281 refined video
clips collected from different movies, TV serials, and vari-
ety shows with spontaneous expressions, various head poses,
occlusions, and illuminations. Human annotators label each
sample with a sentiment score from -1 (strongly negative) to
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Figure 4: The distribution update process of u-labels on different datasets. The number (#) under each sub picture indicates the
number of epochs.

1 (strongly positive).

Baselines
To fully validate the performance of the Self-MM, we make
a fair comparison with the following baselines and state-of-
the-art models in multimodal sentiment analysis.
TFN. The Tensor Fusion Network (TFN) (Zadeh et al.
2017) calculates a multi-dimensional tensor (based on outer-
product) to capture uni-, bi-, and tri-modal interactions.
LMF. The Low-rank Multimodal Fusion (LMF) (Liu et al.
2018) is an improvement over TFN, where low-rank mul-
timodal tensors fusion technique is performed to improve
efficiency.
MFN. The Memory Fusion Network (MFN) (Zadeh et al.
2018a) accounts for continuously modeling the view-
specific and cross-view interactions and summarizing them
through time with a Multi-view Gated Memory.
MFM. The Multimodal Factorization Model (MFM) (Tsai
et al. 2018) learns generative representations to learn the
modality-specific generative features along with discrimina-
tive representations for classification.
RAVEN. The Recurrent Attended Variation Embedding
Network (RAVEN) (Wang et al. 2019) utilizes an attention-
based model re-adjusting word embeddings according to
auxiliary non-verbal signals.
MulT. The Multimodal Transformer (MulT) (Tsai et al.
2019) extends multimodal transformer architecture with di-
rectional pairwise crossmodal attention which translates
one modality to another using directional pairwise cross-
attention.
MAG-BERT. The Multimodal Adaptation Gate for Bert
(MAG-BERT) (Rahman et al. 2020) is an improvement over

Model MAE Corr Acc-2 F1-Score

TFN 0.428 0.605 79.86 80.15
LMF 0.431 0.600 79.37 78.65

Human-MM 0.408 0.647 81.32 81.73
Self-MM 0.419 0.616 80.74 80.78

Table 3: Results on SIMS.

RAVEN on aligned data with applying multimodal adapta-
tion gate at different layers of the BERT backbone.
MISA. The Modality-Invariant and -Specific Representa-
tions (MISA) (Hazarika, Zimmermann, and Poria 2020) in-
corporate a combination of losses including distributional
similarity, orthogonal loss, reconstruction loss and task
prediction loss to learn modality-invariant and modality-
specific representation.

Basic Settings
Experimental Details. We use Adam as the optimizer and
use the initial learning rate of 5e− 5 for Bert and 1e− 3 for
other parameters. For a fair comparison, in our model (Self-
MM) and two state-of-the-art methods (MISA and MAG-
BERT), we run five times and report the average perfor-
mance.
Evaluation Metrics. Following the previous works (Haz-
arika, Zimmermann, and Poria 2020; Rahman et al. 2020),
we report our experimental results in two forms: classifica-
tion and regression. For classification, we report Weighted
F1 score (F1-Score) and binary classification accuracy (Acc-
2). Specifically, for MOSI and MOSEI datasets, we calculate
Acc-2 and F1-Score in two ways: negative / non-negative
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Tasks MSE Corr Acc-2 F1-Score
M 0.730 0.781 82.38/83.67 82.48/83.70

M, V 0.732 0.775 82.67/83.52 82.76/83.55
M, A 0.728 0.790 82.80/84.76 82.85/84.75
M, T 0.731 0.789 82.65/84.15 82.66/84.10

M, A, V 0.719 0.789 82.94/84.76 83.05/84.81
M, T, V 0.714 0.797 84.26/85.91 84.33/86.00
M, T, A 0.712 0.797 83.67/85.06 83.72/85.06

M, T, A, V 0.713 0.798 84.00/85.98 84.42/85.95

Table 4: Results for multimodal sentiment analysis with dif-
ferent tasks using Self-MM. M, T, A, V represent the multi-
modal, text, audio, and vision task, respectively.

(non-exclude zero) (Zadeh et al. 2017) and negative / pos-
itive (exclude zero) (Tsai et al. 2019). For regression, we
report Mean Absolute Error (MAE) and Pearson correlation
(Corr). Except for MAE, higher values denote better perfor-
mance for all metrics.

Results and Analysis
In this section, we make a detailed analysis and discussion
about our experimental results.

Quantitative Results
Table 1 shows the comparative results on MOSI and MOSEI
datasets. For a fair comparison, according to the difference
of “Data Setting”, we split models into two categories: Un-
aligned and Aligned. Generally, models using aligned cor-
pus can get better results (Tsai et al. 2019). In our exper-
iments, first, comparing with unaligned models (TFN and
LMF), we achieve a significant improvement in all eval-
uation metrics. Even comparing with aligned models, our
method gets competitive results. Moreover, we reproduce
the two best baselines “MISA” and “MAG-BERT” under the
same conditions. We find that our model surpasses them on
most of the evaluations.

Since the SIMS dataset only contains unaligned data, we
compare the Self-MM with TFN and LMF. Besides, we use
the human-annotated unimodal labels to replace the auto-
generated u-labels, called Human-MM. Experimental re-
sults are shown in Table 3. We can find that the Self-MM
gets better results than TFN and LMF and achieve compara-
ble performance with Human-MM. The above results show
that our model can be applied to different data scenarios and
achieve significant improvements.

Ablation Study
To further explore the contributions of Self-MM, we com-
pare the effectiveness of combining different uni-modal
tasks. Results are shown in Table 4. Overall, compared with
the single-task model, the introduce of unimodal subtasks
can significantly improve model performance. From the re-
sults, we can see that “M, T, V” and “M, T, A” achieve com-
parable or even better results than “M, T, A, V”. Moreover,
we can find that subtasks, “T” and “A”, help more than the
subtask “V”.

And the crackon you know in the
preview is like so much type.

And he did a great job.

Just not enough depth to be interesting.

Frown Raise eyes

Nodded Smile

Head down

Example M- / U-labels

M: 0.80
V : -0.21
T : -0.27
A : -0.97

M: -0.5
V : -0.31
T : 0.91
A : 0.85

M: 1.40
V : -0.55
T : 0.28
A : -1.08

Figure 5: Case study for the Self-MM on MOSI. The “M” is
human-annotated, and “V, T, A” are auto-generated.

Case Study
To validate the reliability and reasonability of auto-
generated u-labels, we analyze the update process of u-
labels, shown in Figure 4. We can see that as the number
of iterations increases, the distributions of u-labels tends to
stabilize. It is in line with our expectations. Compared with
MOSI and SIMS datasets, the update process on the MOSEI
has faster convergence. It shows that the larger dataset has
more stable class centers, which is more suitable for self-
supervised methods.

In order to further show the reasonability of the u-labels,
we selected three multimodal examples from the MOSI
dataset, as shown in Figure 5. In the first and third cases,
human-annotations m-labels are 0.80 and 1.40. However, for
single modalities, they are inclined to negative sentiments.
In line with expectation, the u-labels get negative offsets on
the m-labels. A positive offset effect is achieved in the sec-
ond case. Therefore, the auto-generated u-labels are signif-
icant. We believe that these independent u-labels can aid in
learning modality-specific representation.

Conclusion and Future Work
In this paper, we introduce unimodal subtasks to aid in learn-
ing modality-specific representations. Different from previ-
ous works, we design a unimodal label generation strategy
based on the self-supervised method, which saves lots of hu-
man costs. Extensive experiments validate the reliability and
stability of the auto-generated unimodal labels. We hope this
work can provide a new perspective on multimodal represen-
tation learning.

We also find that the generated audio and vision labels are
not significant enough limited by the pre-processed features.
In future work, we will build an end-to-end multimodal
learning network and explore the relationship between uni-
modal and multimodal learning.
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