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Abstract

A steady momentum of innovations and breakthroughs has
convincingly pushed the limits of unsupervised image rep-
resentation learning. Compared to static 2D images, video
has one more dimension (time). The inherent supervision
existing in such sequential structure offers a fertile ground
for building unsupervised learning models. In this paper, we
compose a trilogy of exploring the basic and generic su-
pervision in the sequence from spatial, spatiotemporal and
sequential perspectives. We materialize the supervisory sig-
nals through determining whether a pair of samples is from
one frame or from one video, and whether a triplet of sam-
ples is in the correct temporal order. We uniquely regard
the signals as the foundation in contrastive learning and de-
rive a particular form named Sequence Contrastive Learn-
ing (SeCo). SeCo shows superior results under the linear
protocol on action recognition (Kinetics), untrimmed ac-
tivity recognition (ActivityNet) and object tracking (OTB-
100). More remarkably, SeCo demonstrates considerable
improvements over recent unsupervised pre-training tech-
niques, and leads the accuracy by 2.96% and 6.47% against
fully-supervised ImageNet pre-training in action recognition
task on UCF101 and HMDBS5]1, respectively. Source code
is available at https://github.com/YihengZhang-CV/SeCo-
Sequence-Contrastive-Learning.

Introduction

Supervised learning has made significant progress and is
still dominant in visual representation learning. Despite hav-
ing high quantitative performances, the achievements rely
heavily on the requirement to have large number of expert
annotations for training deep neural networks, and the ac-
quisition of annotations is an intellectually expensive and
time-consuming process. Moreover, the representations es-
pecially learnt on very specific tasks in a supervised manner
may suffer from generalization problem and transfer poorly
to other objectives. In contrast, unsupervised representation
learning alleviates the issues by completely exploiting the
inherent structures and correlations from the data as the su-
pervision. This is particularly applicable to video, which is
an information-intensive media with spatiotemporal coher-
ence and variation. Such facts motivate the explorations of
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building unsupervised learning models to yield powerful and
generic representations.

The supervision in the video sequence generally origi-
nates from three types: spatial, spatiotemporal, and sequen-
tial. In between, spatial supervision is derived from the
structures in static frame, spatiotemporal supervision re-
flects the correlation across different frames, and sequential
supervision verifies the temporal coherence. In the literature,
unsupervised learning methods for videos often involve dif-
ferent proxy tasks, e.g., predicting the pixel-level displace-
ment across consecutive frames (Liu et al. 2017; Vondrick,
Pirsiavash, and Torralba 2016; Wang et al. 2019), or recon-
structing/predicting the input/future frame through decoder
(Han, Xie et al. 2019; Luo et al. 2017; Srivastava, Mansi-
mov, and Salakhutdinov 2015), and execute representation
learning through optimizing such tasks with the supervision.
Here, without loss of simplicity and generality, we present
one simple proxy task on each type of supervision. From
the spatial standpoint, we extend the instance discrimina-
tion task in (He et al. 2019; Wu et al. 2018; Cai et al. 2020)
to an intra-frame instance discrimination task, which distin-
guishes whether two frame patches are from the same video
frame, as shown in Figure 1(a). From the spatiotemporal per-
spective, we remould an inter-frame instance discrimination
task, which determines whether two frame patches are de-
rived from an identical video, as depicted in Figure 1(b). For
sequential supervision, we develop a task of temporal order
validation (Figure 1(c)) and verify whether a series of frame
patches are in the correct temporal order.

To materialize the exploitation of supervision in the se-
quence through the three proxy tasks, we present a new
Sequence Contrastive Learning (SeCo) approach for un-
supervised representation learning. Considering that con-
trastive learning is at the core of recent advances (He et al.
2019; Wu et al. 2018) on unsupervised learning, we build
SeCo on this recipe. The basic principle is to make posi-
tive/negative query-key pairs similar/dissimilar. Specifically,
for each video, we randomly sample three frames and take
either first frame or the last frame in time order as the “an-
chor” frame. In both intra-frame and inter-frame instance
discrimination tasks, we perform data augmentation on the
“anchor” frame to generate two image patches. One is taken
as query and the other patch plus the augmentations of an-
other two frames are used as keys. Moreover, inspired by
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Figure 1: One proxy task on each type of supervision in video sequence for unsupervised learning.

(He et al. 2019), we additionally build a memory to track
keys across mini-batches for inter-frame instance discrimi-
nation task. InfoNCE (Oord, Li, and Vinyals 2018), as one
form of contrastive formulation, serves as the loss function
in the two tasks. For the task of temporal order validation,
we take the “anchor” frame as query and the rest as keys. We
involve a linear classifier to predict if the query is in front of
or behind keys (two-class classification). The classifier takes
the concatenation of the features of query and keys as the in-
put and is learnt via cross-entropy loss. Overall, SeCo is end-
to-end trained by jointly optimizing the three proxy tasks.

The main contribution of this work is the proposal of
exploring sequence supervision for unsupervised represen-
tation learning. Ours is among the first to systematically
analyze the supervisory signals behind the rich structures
in video sequence. This also leads to the elegant views
of how to design simple proxy tasks which perform as a
prism through which to leverage the supervision, and how to
nicely capitalize on such proxy tasks for learning a generic
representation, which are problems not yet fully under-
stood. We demonstrate the effectiveness of SeCo on several
downstream video applications and SeCo unsupervised pre-
training also surpasses the ImageNet supervised pre-training
on two video benchmarks for action recognition.

Related Work

Unsupervised Learning from Video aims to learn a generic
representation without using any explicit semantic labels,
which can be briefly grouped into three major categories.
The first group learns feature representation by leveraging
appearance variations in videos. For example, the most com-
mon constraint is to enforce the learnt representation to be
temporally smooth (Mobahi, Collobert, and Weston 2009;
Pan et al. 2016; Wang and Gupta 2015; Zou et al. 2012).
Moving beyond only temporal smoothness, ego-motion con-
straints (Agrawal, Carreira, and Malik 2015; Jayaraman and
Grauman 2015), object tracking (Wang and Gupta 2015) and
temporal order verification (Misra et al. 2016) have been em-
ployed to further regularize the learning process. The recent
works also attempt to learn the representation by predicting
the pixel-level displacement across consecutive frames (Liu
et al. 2017; Vondrick, Pirsiavash, and Torralba 2016; Wang
et al. 2019). The second group focuses on temporal predic-
tion and frame reconstruction tasks (Finn, Goodfellow, and
Levine 2016; Han, Xie et al. 2019; Luo et al. 2017; Sri-
vastava, Mansimov, and Salakhutdinov 2015). (Srivastava,
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Mansimov, and Salakhutdinov 2015) utilizes a LSTM-based
encoder-decoder structure to reconstruct current frame or
predict future frames. (Finn, Goodfellow, and Levine 2016)
further upgrades (Srivastava, Mansimov, and Salakhutdinov
2015) by merging appearance information from previous
frames with motion cues. Luo et al. (Luo et al. 2017) present
to describe the motion between frames as a sequence of
atomic 3D flows to predict long-term motion. More recently,
(Han, Xie et al. 2019) learns a dense encoding of spatio-
temporal blocks by recurrently predicting future represen-
tations. The third group attempts to predict the transforma-
tion parameters from the transformed video (Ahsan, Mad-
hok, and Essa 2019; Jing et al. 2018). Jing et al. (Jing et al.
2018) introduce a pretext task which is defined as the pre-
diction of the rotations applied to videos. Ahsan et al. divide
multiple video frames into grids of patches and train a net-
work to solve jigsaw puzzles on these patches from multiple
frames in (Ahsan, Madhok, and Essa 2019).

Self-Supervised Learning is a form of unsupervised
learning. It relies only on the data itself for some form
of supervision without human-annotated labels. One main-
stream of self-supervised learning focuses on the pretext
tasks which are designed under various scenarios only for
learning a good data representation. Some pretext tasks, e.g.,
relative patch prediction (Doersch, Gupta, and Efros 2015;
Goyal et al. 2019; Noroozi and Favaro 2016), affine transfor-
mation prediction (Gidaris, Singh et al. 2018), and coloriza-
tion (Deshpande, Rock, and Forsyth 2015; Zhang, Isola,
and Efros 2016), are proven to be helpful for representa-
tion learning. Recently, contrastive learning is at the core of
several works on self-supervised learning (Bachman, Hjelm,
and Buchwalter 2019; Hjelm et al. 2019; Wu et al. 2018).
The design principle is to maximize/minimize the similar-
ity between the instances in positive/negative pairs and var-
ious pretext tasks can be represented in a contrastive man-
ner. For instance, both contrastive multiview coding (CMC)
(Tian, Krishnan, and Isola 2019) and colorization (Desh-
pande, Rock, and Forsyth 2015) attempt to make the rep-
resentation be invariant to the color in images. For self-
supervised contrastive video representation learning, Con-
trastive Predictive Coding (CPC) (Lorre et al. 2020) is pro-
posed to learn long-term relations underlying the raw signal
and predict the latent representation of future segments in
the video. The most closely related work is Momentum Con-
trast (MoCo) (He et al. 2019), which builds dynamic dic-
tionaries for contrastive learning and leverage the instance



discrimination task for unsupervised image feature learn-
ing. Our method is different in the way that we explore the
generic supervision in the video sequence from spatial, spa-
tiotemporal, and sequential perspectives, for unsupervised
video representation learning.

Preliminary—Contrastive Learning for
Unsupervised Feature Learning

We briefly review contrastive learning and its recent prac-
tical variant (MoCo (He et al. 2019)), which learn fea-
ture embedding in an unsupervised manner by making pos-
itive/negative query-key pairs similar/dissimilar. Formally,
suppose we have an encoded query ¢ € R%, and a group
of encoded key vectors K = {k*, ki, k;, ...,k } consist-
ing of one positive key kT € R? and K negative keys
K~ = {k; }, where d denotes the dimension of the em-
bedding space. Note that the positive key k::r comes from
the same distribution as the query g, while the negative keys
are derived from an alternative noise distribution. The ob-
jective of typical contrastive loss is to reflect the incompati-
bility of each query-key pair: returns low value when query
q is similar to its positive key kT and remains distinct to
all negative keys {k; }. By measuring the query-key simi-
larity via dot product, a prevailing form of contrastive loss
(InfoNCE (Oord, Li, and Vinyals 2018)) is calculated in a
softmax formulation:
exp(gTkt/7)
¥ @R/ + S8 exp(@Thi /1)
1)
where 7 is the temperature hyper-parameter. The rationale
behind such formulation is to train a classifier that could cor-
rectly classify query g as positive key k™.

Because no human-annotated labels are available in un-
supervised setting, one common practice is to produce two
different augmentations (z, a:,j) from the same instance (an
image x), which correspond to the query g and positive key
k™. The augmentations of other instances/images {z; } are

taken as the negative keys {k; }. In this way, a simple in-
stance discrimination task is designed for unsupervised vi-
sual representation learning: determining whether two im-
age patches are derived from the same image. In the im-
plementation, two encoders (query encoder f; and key en-
coder f},) are utilized to map query image x4, and each posi-
tive/negative key image xj, into the embedding space (i.e.,
qg = fq(zg), B = fi(xy)). Recently, MoCo (He et al.
2019) strengthens contrastive learning by involving an ex-
treme large number of negative keys via maintaining a dy-
namic memory to track the keys across mini-batches. In ad-
dition, a momentum update strategy is leveraged to update
the weights of the key encoder (in ¢-th iteration) conditioned
on query encoder weights: w}k =a- w?:l +(1-a)- le,
where wy, and wy, are the weights of key encoder and query
encoder. « is the momentum coefficient.

Lnce(g, kT, K7)=—1lo

Sequence Contrastive Learning
In this work, we remould the contrastive learning under the
sequence supervision from videos, namely Sequence Con-
trastive Learning (SeCo), for unsupervised representation
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learning. In SeCo, three kinds of basic and generic supervi-
sion in the video sequence (from spatial, spatiotemporal, and
sequential perspectives) are exploited to learn powerful and
generic visual representation. An overview of our sequence
contrastive learning framework is illustrated in Figure 2.

Problem Formulation

In the scenario of unsupervised video feature learning, we
are given a collection of video sequences V = {v} from a
large-scale video benchmark. The goal is to pre-train a vi-
sual encoder over the video sequence data in an unsuper-
vised manner to extract generic visual representations. The
pre-trained visual encoder can be further utilized to support
several video downstream tasks.

Inspired by recent success of contrastive learning in im-
age domain (He et al. 2019; Wu et al. 2018), we formu-
late the unsupervised video feature learning in contrastive
learning paradigm by exploiting the inherent supervision
within sequential structure in videos. In particular, video is
an information-intensive media with spatiotemporal coher-
ence and variation across frames, which reflects three types
of supervision from spatial, spatiotemporal and sequential
perspectives. Accordingly, motivated by each type of super-
vision implicit in video sequence, we present one simple yet
effective proxy task to guide the unsupervised feature learn-
ing with the corresponding supervision.

Formally, given an unlabeled video sequence v, we firstly
sample three frames randomly (s, s2, s3) and take the first
(or last) frame s' (or s®) in time order as the anchor frame.
The anchor frame is then transformed into two perturbed
samples with different augmentations, one of which is taken
as query s, and the other is used as key s}.. Meanwhile, we
perform data augmentation over the other two frames, lead-
ing to two keys (s%, s3). In analogy to instance discrimina-
tion task in image domain that encourages a query matches
a key if they are augmentations of an identical image, we
consider inter-frame instance discrimination task that ex-
amines the compatibility of each query-key frame pair at
video level, which is tailored for video understanding. That
is, from the spatiotemporal perspective, the query s, should
be similar to all the keys (s,lc, si, s‘z) in the same video, and
dissimilar to the keys K~ sampled from other videos across
mini-batches. Moreover, to characterize the temporal varia-
tion across frames in a video, a simple intra-frame instance
discrimination task is particularly devised to determine
whether two frame patches are derived from the same video
frame, from the spatial standpoint. As such, the query s, is
enforced to match key s}, (augmented from the same frame
s'), and mismatch the keys (s3, s3) from other frames. Fur-
thermore, from the sequential perspective, we involve the
temporal order validation task to exploit the inherent se-
quential structure of videos by predicting the correct tempo-
ral order of a frame patch sequence. Specifically, given the
input frame patch sequence consisting of the query s, and
two keys (s?, s3), a linear classifier is leveraged to judge
whether the query s, is in front of or behind keys (s%, s3).
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Figure 2: An overview of Sequence Contrastive Learning (SeCo) approach for unsupervised representation learning, which is
composed of three proxy tasks: inter-frame instance discrimination task, intra-frame instance discrimination task, and temporal

order validation task.

Inter-frame Instance Discrimination Task

Unlike (He et al. 2019) that exploits image-level query-key
compatibility, we facilitate contrastive learning in video do-
main via the inter-frame instance discrimination task, which
aims to exploit the video-level query-key compatibility. In
this proxy task, the pre-trained visual encoder is learnt to
not only differentiate the two augmented frame patches of
the same frame in a video from the negative/mismatched
frame patches in other videos, but also recognize the patches
of other frames in the same video as positive/matched sam-
ples. Such design goes beyond the traditional supervision in
a static image with data augmentation, and fetches more pos-
itive frame patches within the same video as supervision for
contrastive learning, which sheds new light on objects with
temporal evolution (e.g., new views/poses of objects). The
way elegantly takes the advantage of spatiotemporal struc-
ture within videos and thus strengthens the unsupervised vi-
sual feature learning for video understanding.

Technically, suppose we have the encoded query s, and
key s} belonging to the same frame, and two keys (s3, s3)
from other frames in the same video. In the inter-frame in-
stance discrimination task, our target is to determine whether
two frame patches are from the same video. Therefore, we
define all the keys (s}, 82, s3) within the same video as pos-
itive ones, and the frame patches sampled from other videos
in neighboring mini-batches O~ are taken as the negative
keys. Considering that the conventional formulation of con-
trastive learning (e.g., InfoNCE in Eq.(1)) only penalizes the
incompatibility of each positive query-key pair at a time, we
derive a particular form of contrastive learning that simul-
taneously match query s, to multiple positive keys (s}, si,
s3) in our case. In particular, the new objective in this task
is defined as the averaged sum of all the contrastive losses
with regard to each positive query-key pair (s,s%):

3
1 P g
£1nte7‘—f7‘a’me = g Z['NC’E’(SWSZ;:K: ) (2)
i=1

By minimizing the objective, the visual encoder is enforced
to digtil}guish all the. positive keys (st, si, s3) and query
s, within the same video from all the negative keys of other
videos ™ at a time.

Intra-frame Instance Discrimination Task

In the inter-frame instance discrimination task, all sampled
frame patches are holistically grouped as one generic class
at video-level, while leaving the inherently spatial variation
across frames within one video unexploited. To alleviate the
issue, we additionally involve the intra-frame instance dis-
crimination task to distinguish the frame patches of the same
frame from the ones of the other frames in a video, which ex-
plicitly characters the variation from the spatial perspective.
As such, by further steering unsupervised feature learning
with the spatial supervision, the learnt visual representations
are expected to be discriminative across frames in a video.

In particular, among all the four frame patches sampled
from one video (query s, and key s, from an identical
frame, and two keys s7 & s} from another two frames), we
take sj. as positive key and s7 & s} as negative keys with
regard to query s,. Note that since the previous proxy task
has already exploited the incompatibility of negative query-
key pairs derived from other videos, we exclude these nega-
tive keys for contrastive learning in this task for simplicity.
Accordingly, we measure the objective of this task in the
conventional form of contrastive loss:

1 (.2 o3

‘Clntrafframe = £NCE(5q;Ska{sk:’Sk:}>‘ (3)
Such objective ensures that query s, is similar to the positive
key si augmented from the same frame and remains distinct

to the negative keys {s7, s3} of other frames, pursuing the
temporally discriminative visual representation.

Temporal Order Validation Task

Most video applications (e.g., action recognition and object
tracking) capitalize on the understanding of inherent sequen-
tial structure of videos, which can not be directly captured
via the aforementioned two tasks that only exploit the spa-
tiotemporal/spatial supervision based on individual frame
patches. Therefore, we devise the temporal order validation
task from a sequential perspective, aiming to verify whether
a series of frame patches is in the correct temporal order. The
rationale behind is to encourage the pre-trained visual en-
coder to reason about the temporal ordering of frame patches
and thus exploit the sequential structure of videos for unsu-
pervised feature learning.
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Specifically, recall that we randomly sample three frames
from an unlabeled video sequence and take the first or last
frame in time order as the anchor frame, there are two kinds
of temporal orders between query (augmented from anchor
frame) and two keys (derived from the other two frames):
in front of or behind. Hence, given the input frame patch
sequence consisting of query s, and two keys (s7, s3), we
concatenate the query and two keys as the holistic sequence
representation and feed it into a binary classifier g(+), which
predicts if the query is in front of or behind keys. The whole
model is thus optimized with cross-entropy loss:

ACTempo'ral =Y IOgg('Slﬁ sia 32)_(1_1/) IOg(l_g(slN 'Sia Si))7

C))
where y € {0, 1} represents the ground-truth label that in-
dicates whether the query s, is in front of or behind the

two keys (s3, , 83).

Optimization

Training Objective. The overall training objective of our
sequence contrastive learning integrates all the objectives of
three proxy tasks (i.e., Eq.(2) for inter-frame instance dis-
crimination task, Eq.(3) for intra-frame instance discrimina-
tion task, and Eq.(4) for temporal order validation task):

L= ['Interfframe + ['Intrafframe + ['Temporal- (5)

Weights Update. In our SeCo, the query encoder f, is di-
rectly optimized with standard SGD algorithm by minimiz-
ing L. The weights of key encoder f}, is accordingly updated
conditioned on query encoder weights via a momentum up-
date strategy:

chk za-wgl—&—(l—a).w};l, (6)

where « denotes the momentum coefficient that controls the
updating of key encoder weights.

Experiments

We empirically verify the merit of SeCo for unsuper-
vised representation learning in three downstream tasks: ac-
tion recognition, untrimmed activity recognition and ob-
ject tracking. The first experiment is conducted respectively
on action recognition (Kinetics), untrimmed activity recog-
nition (ActivityNet) and object tracking (OTB-100) under
“pre-trained representation + linear model” protocol. The
second experiment transfers the network unsupervised pre-
trained by SeCo as the initialization for fine-tuning in ac-
tion recognition task (UCF101 and HMDBS51). That is “pre-
training + fine-tuning” protocol.

Datasets

Kinetics400 dataset (Kay et al. 2017) is one of the large-
scale action recognition benchmarks which contains around
300K videos from 400 action categories. Each video clip
in this dataset is cropped from the raw YouTube video and
the duration is 10 seconds. All the videos are grouped into
three subsets for training (240K), validation (20K), and test-
ing (40K), respectively. Because the labels of testing set
are not publicly available, the performances on the Kinet-
ics400 dataset are reported on the validation set. UCF101
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(Soomro, Zamir, and Shah 2012) is one of the most popu-
lar action recognition benchmarks. This dataset consists of
13,320 videos from 101 action classes, which are split into
about 9.5K and 3.7K videos in training and testing set, re-
spectively. HMDBS51 (Kuehne et al. 2011) is another widely
used action recognition dataset and includes 7K videos from
51 action categories. The dataset is split into training (3.5K)
and testing (1.5K) sets.

ActivityNet dataset (Heilbron et al. 2015) is a large-
scale human activity understanding benchmark. The latest
released version (v1.3) consists of 19,994 videos from 200
activity categories and is utilized here for evaluation. All
the videos in the dataset are divided into 10,024, 4,926,
and 5,044 for training, validation, and testing sets, respec-
tively. The labels of testing set are not publicly available
and thus the performances on ActivityNet dataset are all re-
ported on validation set.

The task of object tracking actually involves two widely
adopted datasets in our case, including Generic Object
Tracking Benchmark (GOT-10K (Huang, Zhao, and Huang
2019)) and Object Tracking Benchmark 2015 (OTB-100
(Wu, Lim, and Yang 2015)). GOT-10K dataset contains
more than 10K real-world videos with moving objects and
over 1.5M manually labeled bounding boxes. The dataset
covers more than 560 categories of moving objects and 80+
categories of motion patterns. We exploit the training set of
9,335 videos to learn a linear feature transformer (1 x 1
convolution), whose outputs serve for the template match-
ing in feature space to track the example object in the sub-
sequent frames. OTB-100 dataset includes 100 video se-
quences, which are utilized as the test set for the evaluation
of object tracking.

Experimental Settings

SeCo Training. We perform the training of our SeCo on
the training set of Kinetics400 dataset and utilize the back-
bone of ResNet50 plus an MLP head. Note that the MLP
head only influences SeCo training and is not involved in
downstream tasks. The image patches input to the back-
bone are with the size of 224 x 224, and the head takes the
global pooling feature as the input and embeds the feature
into 128d with two fully-connected layers (2048 x 2048 and
2048 x 128). The output vector of the MLP head is nor-
malized by its L2-norm and then exploited as the encoded
representation of query or keys. In our implementations, the
size of the mini-batch is set to 512 and the size of mem-
ory is 131,072. The momentum coefficient o for momen-
tum update of the encoder is set to 0.999 and the tempera-
ture 7 in infoNCE loss is 0.1. Following (He et al. 2019),
shuffling BN is utilized for multi-GPU training. To opti-
mize the parameters in the encoder, we use the momentum
SGD with initial learning rate 0.2 which is annealed down
to zero following a cosine decay. The network is trained for
400 epoch base on the network initialized with MoCo (He
et al. 2019) on ImageNet. For data augmentation, we em-
ploy random cropping with random scales, color-jitter, ran-
dom grayscale, blur, and mirror.

Action Recognition and Untrimmed Activity Recog-
nition under ‘Pre-trained Representation + Linear
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Figure 3: The detailed procedures of three downstream tasks, i.e., (a) action recognition, (b) untrimmed activity recognition,
and (c) object tracking, under “pre-trained representation + linear model” protocol.

Action Untrimmed Activity Object

Recognition Recognition Tracking
Dataset Kinetics 400 ActivityNet OTB-100
Learnable Module Linear SVM Linear SVM 1x1 Convolution
Metric Top-1 Top-1 Precision  Success
MoCo-ImageNet 51.30 66.17 59.91 43.06
Supervised ImageNet Pre-training 52.34 67.19 69.54 48.01
VINCE (Gordon et al. 2020) 36.20 - 62.90 46.50
SeCo-Inter 58.97 66.69 67.92 48.03
SeCo-Inter+Intra 60.74 68.31 70.29 50.48
SeCo-Inter+Intra+Order 61.91 68.55 71.86 51.78

Table 1: Performance comparison of the representations pre-trained by different mechanisms in three downstream tasks under

“Pre-trained Representation + Linear Model” protocol.

Model” Protocol. We directly exploit the backbone of unsu-
pervised learnt network by SeCo on Kinetics400 as the fea-
ture extractor, and verify the frozen representation via linear
classification on both downstream tasks of action recogni-
tion and untrimmed activity recognition. For each video in
Kinetics400 and ActivityNet, we uniformly sample 30 and
50 frames, respectively, resize each frame with short edge
of 256, and crop the resized version to 224 x 224 by using
center crop. As shown in Figure 3 (a) and (b), we extract
the frame-level feature by feature extractor and average all
the frame-level features to obtain the video-level representa-
tion. A linear SVM is finally trained on the training videos
of Kinetics400 or ActivityNet and evaluated on each vali-
dation set. We adopt the top-1 accuracy as the performance
metric of the two tasks.

Object Tracking under “Pre-trained Representation +
Linear Model” Protocol. Given the initial bounding box
of an object in the first frame of a video, the task of ob-
ject tracking is to locate the object in the subsequent frames.
We exploit SiamFC (Gordon et al. 2020) as our tracking al-
gorithm and execute object tracking on the representation
pre-learnt by SeCo, as illustrated in Figure 3 (c). Follow-
ing the setting in SiamFC that the spatial resolution of the
output feature map is 1/8 of the input image, we modify
the configuration of ResNet50. Specifically, for the convo-
lution with “stride 2” in the last two stages {res4,resb},
the “stride” is changed to 1, and for the 3 x 3 convolutions
in res4 and resb, the dilation rate is modified from 1 to 2
and 4, respectively. Note that the weights of the layers in
ResNet50 remain unchanged during such modification and
thus the representations are still considered as frozen. Fur-

10661

thermore, an additional 1 x 1 convolution is placed on the
top of the backbone to transform the frozen representation
for SiamFC tracking algorithm. In this sense, only 1 x 1
convolution is learnable and we also regard such protocol as
linear model. The 1 x 1 convolution is optimized with the
training set of GOT-10K, and object tracking is evaluated on
OTB-100 in terms of two performance metrics: Area Under
the Curve (AUC) of precision and success.

Action Recognition with ‘“Pre-training + Fine-tuning”
Protocol. Another essential function of unsupervised learn-
ing is for the purpose of network pre-training, which serves
as the network initialization for fine-tuning in downstream
tasks. Here, we initialize ResNet50 with the backbone in
the unsupervised training of SeCo and fine-tune the net-
work with the standard supervised setting (Qiu, Yao, and
Mei 2017; Qiu et al. 2019) on UCF101 and HMDBS1 for
action recognition.

Evaluations on Pre-trained Feature+Linear Model

We first validate our SeCo under the protocol of “Pre-trained
Representation + Linear Model,” which is to manifest the
generalization capability of representations learnt by SeCo.
We compare the following three training mechanisms: (1)
MoCo-ImageNet train the network on ImageNet in an un-
supervised manner by using MoCo (He et al. 2019) algo-
rithm. (2) Supervised ImageNet Pre-training capitalizes on
the supervision of human-annotated labels on the images
and learns the network in a fully-supervised fashion. (3)
VINCE (Gordon et al. 2020) forms multiple anchor-positive
pairs from multiple frames in a video and also executes con-
trastive training for unsupervised representation learning.



Method Top-1 (%)
OPNT (Lee et al. 2017) 20.86
RotNet' (Gidaris, Singh et al. 2018)  23.33
3DRotNet' (Jing et al. 2018) 19.33
VIE-Single (Zhuang et al. 2019) 44.41
VIE-TRN (Zhuang et al. 2019) 4491
VIE-3DResNet (Zhuang et al. 2019)  43.40
VIE-SlowFast (Zhuang et al. 2019) 47.37
VIE-Full (Zhuang et al. 2019) 48.53
SeCo (ResNet18) 50.81

Table 2: Performance comparisons of unsupervised repre-
sentation learning on Kinetics400.

Table 1 summarizes performance comparisons of dif-
ferent representation learning mechanisms in three down-
stream tasks. Overall, the performances across the three
tasks consistently indicate that our SeCo leads to perfor-
mance boost against other training mechanisms. Particu-
larly, by doing classification on the representations pre-
learnt by SeCo achieves 61.91% and 68.55% on action
recognition (Kinetics400) and untrimmed activity recogni-
tion (ActivityNet), respectively, making the absolute im-
provement over Supervised ImageNet Pre-training by 9.57%
and 1.36% in terms of top-1 accuracy. Furthermore, SeCo
benefits from three types of supervision, and models the spa-
tiotemporal coherence and variation in videos better, there-
fore leading the precision by 2.32% in object tracking (OTB-
100). The results clearly demonstrate the advantage of our
SeCo unsupervised pre-training for learning representations
that are more generic across various downstream tasks. As
expected, SeCo-Inter remoulds MoCo-ImageNet in the con-
text of video and exhibits better performance than MoCo-
ImageNet on video tasks. SeCo-Inter+Intra constantly out-
performs SeCo-Inter and SeCo learnt through the three
proxy tasks performs the best. The results also verify the
complementarity between three supervision in the sequence
for representation learning.

Table 2 further details the comparisons with state-of-the-
art unsupervised representation learning methods on Ki-
netics400. T denotes that each method is implemented and
learnt on Kinetics400 as reported in (Zhuang et al. 2019).
Please also note that here we exploit ResNet18 as the back-
bone in our SeCo training for fair comparisons. Specifi-
cally, VIE learns deep nonlinear embeddings to group simi-
lar videos and push different videos apart in the embedding
space and such idea is similar to our SeCo-Inter in spirit. As
indicated by the results, VIE-Single leads to a large perfor-
mance gain over OPN and RotNet, and all the three runs se-
lect one frame from each video, which is input into a 2D net-
work for classification. VIE-3DResNet further extends 2D
ResNet18 to 3D and VIE-SlowFast employs the advanced
SlowFast structure of two 3D networks. By combining VIE-
Single and VIE-SlowFast, VIE-Full achieves 48.53% top-1
accuracy, which is still lower than 50.81% of SeCo learnt
only on a 2D ResNet18. That again proves the impact of our

10662

Top-1 (%)
UCF101 HMDBS51
Shuffle&Learn (Misra et al. 2016)  50.20 18.10
OPN (Lee et al. 2017) 59.60 23.80
ClipOrder (Xu et al. 2019) 72.40 30.90
3DRotNet (Jing et al. 2018) 66.00 37.10
DPC (Han, Xie et al. 2019) 75.70 35.70
CBT (Sun et al. 2019) 79.50 44.60
VIE-Full (Zhuang et al. 2019) 80.40 52.50
Supervised ImageNet Pre-training  85.30 49.08
SeCo 88.26 55.55

Table 3: Performance comparisons of pre-training + fine-
tuning protocol on UCF101 and HMDBSI1.

SeCo for unsupervised representation learning.

Evaluations on Pre-training+Fine-tuning

Next, we evaluate SeCo from the aspect of network pre-
training, which is taken as network initialization for fine-
tuning on downstream tasks. Such protocol is to exam-
ine the transferability of the pre-trained structure. Table
3 shows the comparisons of pre-training the networks
by different methods and then supervised fine-tuning on
UCF101 and HMDBS1 as the backbone in TSN (Wang et al.
2018) for action recognition. Compared to the best com-
petitor VIE-Full, SeCo improves the top-1 accuracy from
80.40%/52.50% to 88.26%/55.55% on the two datasets. No-
tably, SeCo unsupervised pre-training leads the accuracy by
2.96% and 6.47% against fully-supervised ImageNet pre-
training, which is really impressive.

Conclusions

We have presented Sequence Contrastive Learning (SeCo)
method which explores the generic supervision in the video
sequence for unsupervised representation learning. Particu-
larly, we study the sequence supervision systematically from
three aspects: spatial, spatiotemporal and sequential. To ver-
ify our claim, we devise one simple proxy task, i.e., intra-
frame/inter-frame instance discrimination task or temporal
order validation task, to present and leverage each supervi-
sion. In between, intra-frame/inter-frame instance discrimi-
nation task is to determine whether two frame patches are
from one frame or an identical video, respectively, and tem-
poral order validation examines whether a series of frame
patches are in chronological order correctly. We material-
ize the three proxy tasks and build our SeCo on contrastive
learning framework. Experiments conducted on both “pre-
trained representation + linear model” and “pre-training +
fine-tuning” protocols, validate our proposal and analysis.
More remarkably, SeCo pre-training leads to an increase
of accuracy by 2.96% and 6.47% over ImageNet super-
vised pre-training on UCF101 and HMDBS51 datasets for
action recognition task.



Ethics Statement

Video understanding (e.g., action recognition and object
tracking) is one of the fundamental problems in numerous
real-world applications, ranging from video surveillance, in-
dexing and retrieval to human computer interaction. How-
ever, the achievements of these video applications rely heav-
ily on the assumption that large quantities of human annota-
tions are accessible for neural model learning. The assump-
tion becomes impractical when cost-expensive and labor-
intensive manual labeling is required. This significantly lim-
its and discourages the motivations for relatively small re-
search communities without adequate financial supports. We
demonstrate in this paper that the challenge can be mit-
igated by pre-training a visual encoder via our Sequence
Contrastive Learning (SeCo) in an unsupervised manner
without any human-annotated labels. Such pre-trained vi-
sual encoder can be further utilized to facilitate a wide vari-
ety of video applications. Notice that our SeCo, an unsuper-
vised learning approach, even surpasses the supervised Im-
ageNet pre-training counterpart in action recognition task.
Nevertheless, one potential risk lies in that if the use of un-
supervised visual representation learning in videos means
video understanding systems may now be easily developed
by those with lower levels of domain or ML expertise, this
could increase the risk of the video understanding model or
its outputs being used incorrectly.
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