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Abstract

We study the convergence of Expected Sarsa(λ) with
function approximation. We show that with off-line es-
timate (multi-step bootstrapping) to Expected Sarsa(λ)
is unstable for off-policy learning. Furthermore, based on
convex-concave saddle-point framework, we propose a con-
vergent Gradient Expected Sarsa(λ) (GES(λ)) algorithm.
The theoretical analysis shows that the proposed GES(λ)
converges to the optimal solution at a linear convergence
rate under true gradient setting. Furthermore, we develop a
Lyapunov function technique to investigate how the step-
size influences finite-time performance of GES(λ). Addition-
ally, such a technique of Lyapunov function can be poten-
tially generalized to other gradient temporal difference algo-
rithms. Finally, our experiments verify the effectiveness of
our GES(λ). For the details of proof, please refer to https:
//arxiv.org/pdf/2012.07199.pdf.

Introduction
Tabular Expected Sarsa(λ) (with importance sampling)
is one of the widely used methods for off-policy evalua-
tion in reinforcement learning (RL), whose goal is to es-
timate the value function of a given target policy via the
data that is generated from a behavior policy. Due to the
high-dimensional state space, instead of tabular learning, a
standard approach is to estimate the value function with a
linear function (Sutton and Barto 2018). There is very lit-
tle literature to study Expected Sarsa(λ) with function ap-
proximation for off-policy learning. To our best knowledge,
Sutton and Barto (2018) (section 12.9) firstly extend off-line
estimate (multi-step bootstrapping) to Expected Sarsa(λ)
with linear function approximation.

Unfortunately, as pointed out by Sutton and Barto (2018)
intuitively, their off-line approach may be unstable, i.e.,
their way to extend Expected Sarsa(λ) with linear func-
tion approximation still lacks a provable convergence guar-
antee, which is undesirable for RL. It is critical to find
the inherent essence of the above unstable appearance in
Expected Sarsa(λ), which not only makes a complement
for existing off-policy learning methods but also provides
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some inspirations to design a stable algorithm. Thus, extend-
ing Expected Sarsa(λ) with linear function approximation
for off-policy evaluation is a fundamental theoretical topic in
RL, including: 1) how to character the instability of off-line
Expected Sarsa(λ) with linear function approximation; 2)
how to derive a convergent algorithm; 3) what convergence
rate does Expected Sarsa(λ) with linear function approxi-
mation can reach. We focus on these questions in this paper.

Our Main Works To address the above problems, we
propose Theorem 1, which characters a sufficient and neces-
sary condition that presents stability criteria of off-line up-
date Expected Sarsa(λ) with linear function approxima-
tion. Theorem 1 requires the key matrix (that has been de-
fined in (10)) keeps the negative real components. Unfortu-
nately, due to the discrepancy between behavior policy and
target policy, off-line Expected Sarsa(λ) that is suggested
by Sutton and Barto (2018) may not satisfy the condition ap-
pears in Theorem 1, i.e., their scheme maybe unstable. Then,
we use a classic counterexample to verify the above insta-
bility lies in the off-line update Expected Sarsa(λ) with
linear function approximation, see Example 1.

Furthermore, to get a stable algorithm, we derive an on-
line gradient Expected Sarsa(λ) (GES(λ)) algorithm. The-
orem 2 shows that the proposed GES(λ) learns the optimal
solution at a linear convergence rate under a true gradient.
Finally, inspired by Srikant and Ying (2019), Wang et al.
(2019), Gupta et al. (2019), we develop a Lyapunov function
technique to establish Theorem 3, which illustrates the rela-
tionship between the finite-time performance of GES(λ) and
step-size. Result shows that the upper-bounded error con-
sists of two different parts: the first error depends on both
step-size and the size of samples, and such error decays ge-
ometrically as the samples increase; while the second error
is only determined by the step-size and it is independent of
samples. Additionally, the technique of proving Theorem 3
can be potentially generalized to other GTD algorithms.

Notations
We use Spec(A) to denote the eigenvalues of the matrixA ∈
Cp×p, i.e., Spec(A) = {λ1, · · · , λp}, where λi is the root of
the characteristic equation p(λ) = det(A− λI). We use C−
to denote the collection that contains the complex numbers
with negative real components, i.e.,

C− =: {c ∈ C; Re(c) < 0}.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10621



Let λmin(A) and λmax(A) be the minimum and maximum
eigenvalue of the matrix A correspondingly. We use ‖A‖op
to denote the operator norm of matrix A; furthermore, if A
is a symmetric real matrix, then ‖A‖op = max1≤i≤p{|λi|}.
κ(A) = λmax(A)

λmin(A) is the condition number of matrix A. We
use A � 0 to denote a positive definite matrix A.

For a function f(x) : Rp → R, let ∇2f(x) denote its
Hessian matrix, and its convex conjugate function f?(y) :
Rd → R is defined as f?(y) = supx∈Rp{y>x− f(x)}.
Fact 1 ((Rockafellar 1970; Kakade et al. 2009)). Let f(·)
be α-strongly convex and β-smooth, i.e., f(·) − α

2 ‖ · ‖
2
2 is

convex and ‖f(u)− f(v)‖ ≤ β‖u− v‖. If 0 ≤ α ≤ β, then
the following fact holds,

(I) f? is 1
α -smooth and 1

β -strongly convex.
(II)∇f = (∇f?)−1 and∇f? = (∇f)−1.

Preliminary
Reinforcement learning (RL) is formalized as Markov de-
cision processes (MDP) which considers the tuple M =
(S,A, P,R, γ); S is the space of states, A is the space of
actions; P : S ×A×S → [0, 1], pa

ss′
= P (St = s

′ |St−1 =

s,At−1 = a) is the probability of state transition from s to
s
′

under playing the action a; R(·, ·) : S × A → R1 is the
expected reward function; γ ∈ (0, 1) is the discount factor.

The policy π is a probability distribution on S×A, we use
π(a|s) to denote the probability of playing a under the state
s. Let {St, At, Rt+1}t≥0 be generated by a given policy π,
its state-action value function

qπ(s, a) = Eπ[
∞∑
t=0

γtRt+1|S0 = s,A0 = a],

where Eπ[·|·] is the conditional expectation on the actions
selected according to π. Let Bπ : R|S|×|A| → R|S|×|A| be
the Bellman operator:

Bπ : q 7→ Rπ + γPπq, (1)

where Pπ∈ R|S|×|S|, Rπ∈ R|S|×|A|, their corresponding
elements are:

[Pπ]s,s′ =
∑
a∈A

π(a|s)pa
ss′
, [Rπ]s,a = R(s, a).

It is well-known that qπ is the unique fixed point of Bπ , i.e.,
Bπqπ = qπ , which is known as Bellman equation.

Off-Policy Evaluation Let’s consider the following tra-
jectory T generated by a policy µ:

T = {S0 = s,A0 = a, · · · , St, At, Rt+1, · · · },
where At ∼ µ(·|St),St+1 ∼ P (·|St, At). In RL, the task of
off-policy evaluation is to estimate the value function of the
target policy π via the data that is generated by an another
policy µ (that is called behavior policy), where µ 6= π.
Assumption 1. The Markov chain induced by behavior pol-
icy µ is ergodic, i.e., there exists a stationary distribution
ξ(·, ·) over S ×A: for ∀(S0, A0) ∈ S ×A,

1

n

n∑
k=1

P (Sk = s,Ak = a|S0, A0)
n→∞→ ξ(s, a) > 0. (2)

The ergodicity of behavior policy µ is a standard assump-
tion in off-policy learning (Bertsekas 2012), and it implies
each-action pair can be visited under this behavior policy µ.
In this paper, we use Ξ to denote a diagonal matrix whose
diagonal element is ξ(s, a), i.e.,

Ξ = diag{· · · , ξ(s, a), · · · }.

Temporal Difference (TD) Learning TD learning up-
dates value function as follows, ∀ t ≥ 0,

Q(St, At)← Q(St, At) + αtδt, (3)

where Q(·, ·) is an estimate of state-action value function,
αt is step-size and δt is TD error. Let Qt = Q(St, At), if δt
is expected TD error:

δES
t = Rt+1 + γ

∑
a∈A

π(a|St+1)Q(St+1, a)−Qt, (4)

then update (3) is Expected Sarsa.
Expected Sarsa(λ) Sutton and Barto (2018) 1 propose a

multi-step TD learning that extends Expected Sarsa to λ-
return version: for each t ≥ 0,

Gλt = Qt +
∞∑
k=t

(γλ)k−t
( k∏
i=t+1

π(Ai|Si)
µ(Ai|Si)

)
δES
k , (5)

where δES
k is expected TD error. For the convenience, we set∏k

i=t ρi =
∏k
i=t

π(Ai|Si)
µ(Ai|Si) = ρt:k, and ρt:t+1 = 1.

Finally, we introduce λ-operator Bπλ that is a high level
view of iteration (5):

Bπλ : q 7→ q + Eµ[

∞∑
k=t

(λγ)k−tδES
k ρt+1:k] (6)

= q + (I − λγPπ)−1(Bπq − q), (7)

where Bπ is defined in (1). For the limitation of space, we
provide the derivation of (7) from (6) in Appendix A.2.

Linear Function Approximation
TD learning (3) requires a very huge table to store the es-
timate value function Q(·, ·) when |S| is very large, which
implies tabular TD learning is considerably expensive for
high-dimensional RL. We often use a parametric function
Qθ(·, ·) to approximate qπ(s, a), i.e.,

qπ(s, a) ≈ φ>(s, a)θ =: Qθ(s, a),

where θ ∈ Rp is the parameter that needs to be learned,
φ(s, a) = (ϕ1(s, a), ϕ2(s, a), · · · , ϕp(s, a))>, and each
ϕi : S × A → R. Furthermore, Qθ can be rewritten as
a version of matrix Qθ = Φθ ≈ qπ, where Φ is a matrix
whose rows are the state-action feature vectors φ>(s, a).
In this paper, we mainly consider extending λ-return of
Expected Sarsa (5) with linear function approximation.

1It is noteworthy that the λ-return version of Expected Sarsa
appears in section 12.9 of (Sutton and Barto 2018) is limited in the
case of linear function case, Eq.(5) extends it to be a general case.
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Off-Line Gradient Expected Sarsa(λ)
In this section, we use a counterexample to show the way to
extend Expected Sarsa(λ) with linear function approxima-
tion via off-line estimate is unstable for off-policy learning.

Off-Line Update Sutton and Barto (2018) provide a way
to extend (5) with linear function approximation as follows,

θt+1 = θt + αt(G
λ
t −Qθ(St, At))∇Qθ(St, At)

= θt + αt

( ∞∑
k=t

(γλ)k−tδES
k,θρt+1:k

)
φt, (8)

where αt is step-size, φt =: φ(St, At), and

δES
k,θ = Rk+1 + γθ>t Eπ[φ(Sk+1, ·)]− θ>t φk.

Furthermore, we can rewrite the expected parameter in (8):

Eµ[θt+1] = θt + αt(Aθt + b), (9)

where

A = Eµ
( ∞∑
k=t

(γλ)k−tρt+1:kφt
(
γEπ[φ(Sk, ·)]− φk

)>)
= Φ>Ξ(I − γλPπ)−1(γPπ − I)Φ, (10)

b = Eµ
( ∞∑
k=t

(γλ)k−tρt+1:kφtRk+1

)
= Φ>Ξ(I − γλPπ)−1R. (11)

If θt (9) converges to a certain point θ?, then θ? satisfies the
following linear system:

Aθ? + b = 0. (12)

Such θ? satisfies (12) is called TD-fixed point.
Stability Criteria According to Sutton et al. (2016); and

Ghosh and Bellemare (2020), we formulate the stability of
the iteration (9) as the next definition.
Definition 1 (Stability). Update rule (9) is stable if θk con-
verges to the point θ? satisfies (12) for any initial θ0.
Theorem 1 (Stability Criteria). Under Assumption 1, the
off-line update (9) is stable if and only if the eigenvalues
of the matrix A (10) have negative real components, i.e.,

Spec(A) ⊂ C−. (13)

We provode its proof in Appendix B. Theorem 1 provides
a sufficient and necessary condition (13) that guarantees the
stability of iteration (8). Unfortunately, for off-policy learn-
ing, the matrix A (10) can not guarantee the condition (13)
holds, which implies the iteration (8) may be divergent and
unstable. Now, we use the following example (Touati et al.
2018) to illustrate the instability lies in the iteration (8).
Example 1. For the MDP in Figure 1, we assign the fea-
tures {(1, 0)>, (2, 0)>, (0, 1)>, (0, 2)>} to the state-action
pairs {(s1, right), (s2, right), (s1, left), (s2, left)},
From the dynamic transition shown in Figure 1 , we have

Pπ =

0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0

 ,Φ =

1 0
2 0
0 1
0 2

 ,Ξ =
1

2
I4×4.

s1 s2

left right

0.5

0.5

Figure 1: Counterexample, Two-State MDP: behavior policy
µ(right|·) = 0.5 and target policy π(right|·) = 1.

Then, according to (10), we have

A = Φ>Ξ(I−γλPπ)−1(γPπ−I)Φ =

(
6γ−γλ−5
2(1−γλ) 0

3γ
2 − 5

2

)
,

and the eigenvalues of A are: 6γ−γλ−5
2(1−γλ) and 5

2 . For any ini-

tial θ0 = (θ0,1, θ0,2)
>, let E[θt+1] =: (θt+1,1, θt+1,2)>

be the expectation of iteration (8), according to (9), the
first component of E[θt+1|θt] is: θt+1,1 = θ0,1

∏t
i=0

(
1 +

αi
6γ−γλ−5
2(1−γλ)

)
. For any λ ∈ (0, 1), if γ ∈ ( 5

6−λ , 1), then
6γ−γλ−5
2(1−γλ) is a positive scalar, which implies A can not be a

negative matrix. Furthermore, if step size αt :
∑
i≥0 αt =

∞, we have 2

|θt+1,1| = |θ0,1|
t∏
i=0

(
1 + αi

6γ − γλ− 5

2(1− γλ)

)
→ +∞, (14)

which implies the way (8) to extend Expected Sarsa(λ)
with linear function approximation via off-line estimate is
unstable for off-policy learning.

On-Line Gradient Expected Sarsa(λ)
The above discussion of the instability for off-policy learn-
ing shows that we should abandon the off-line update (8).
In this section, we provide a convergent on-line algorithm:
Gradient Expected Sarsa(λ) (GES(λ)), which is based
on the popular TD fixed point method.

The TD fixed point method (Sutton et al. 2009a; Bertsekas
2011; Dann et al. 2014) is widely used for policy evaluation
and it focuses on finding the value function satisfies

Φθ = ΠBπλΦθ, (15)

where Π = Φ(Φ>ΞΦ)−1Φ>Ξ. It has been shown that if the
projected Bellman operator ΠBπλ has a fixed point θ?, then it
is unique (Lagoudakis and Parr 2003; Bertsekas 2011), and
such a fixed-point θ? also satisfies the linear system (12).

Instead of using the method of value iteration accord-
ing to the projected Bellman operator ΠBπλ , we derive the
algorithm on the mean square projected Bellman equation
(MSPBE) (Sutton et al. 2009a) as follows,

min
θ

MSPBE(θ, λ) =: min
θ

1

2
‖Φθ −ΠBπλ(Φθ)‖2Ξ

= min
θ

1

2
‖Aθ + b‖2M−1 , (16)

2Eq.(14) is a direct result of the following conclusion that could
be found in any calculus textbook. Let pi = 1+ ai, where ai > 0,
if
∑∞

i=1 ai = +∞, then
∏∞

i=1 pi =
∏∞

i=1(1 + ai) = +∞.
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Algorithm 1 Gradient Expected Sarsa(λ) (GES(λ))

1: Initialization: ω0 = 0, θ0 = 0, α0 > 0, β0 > 0, T ∈ N.
2: e−1 = 0
3: for t = 0 to T do
4: Observe {St, At, Rt+1, St+1, At+1} ∼ µ
5: ρt = π(At|St)

µ(At|St)
6: et = λγρtet−1 + φt
7: δt = Rt+1 + γθ>t Eπφ(St+1, ·)− θ>t φt
8: ωt+1 = ωt + βt(etδt − φtφ>t ωt)
9: θt+1 = θt − αt(γEπ[φ(St+1,·)]− φt)e>t ωt

10: end for
11: Output:{θt, ωt}Tt=1

where ‖x‖Ξ = x>Ξx is a weighted norm, andM = Φ>ΞΦ.
We provide the derivation of (16) in Appendix C.1.

Since the computational complexity of the invertible ma-
trix M−1 is very large, it is too expensive to use stochastic
gradient method to solve the problem (16) directly. Let

g(ω) =
1

2
‖ω‖2M − b>ω (17)

Ψ(θ, ω) = (Aθ + b)>ω − 1

2
‖ω‖2M = θ>Aω − g(ω).

According to Liu et al. (2015), the original problem (16) is
equivalent to the convex-concave saddle-point problem

min
θ

max
ω
{Ψ(θ, ω)}. (18)

Proposition 1. If (θ?, ω?) is the solution of problem (18),
then θ? is the solution of original problem (16), i.e.,

θ? = arg min
θ

MSPBE(θ, λ).

We provide the proof of Proposition 1 in Appendix C.2.
Proposition 1 illustrates that the solution of (16) is contained
in the problem (18). Gradient update is a natural way to solve
problem (18) (ascending in ω and descending in θ):

ωt+1 = ωt + βt(Aθt + b−Mωt), (19)

θt+1 = θt − αtA>ωt, (20)

where αt, βt is step-size, t ≥ 0.
However, since A, b, and M are versions of expecta-

tions, we can not get the transition probability in practice.
A practical way is to find the unbiased estimators of them.
Let e0 = 0, ρt = π(At|St)

µ(At|St) , et = λγρtet−1 + φt, b̂t =

Rt+1et, Ât = et(γEπ[φ(St+1,·)] − φt)>, M̂t = φtφ
>
t . Ac-

cording to the Theorem 9 of (Maei 2011), we have

Eµ[Ât] = A,Eµ[b̂t] = b,Eµ[M̂t] = M. (21)

Replacing the expectations in (19) and (20) by correspond-
ing unbiased estimates, we define the stochastic on-line im-
plementation of (19) and (20) as follows,

ωt+1 = ωt + βt(Âtθt + b̂t − M̂tωt), (22)

θt+1 = θt − αtÂ>t ωt. (23)

We provide more details in Algorithm 1.

Finite-Time Performance Analysis
In this section, we mainly focus on the finite-time perfor-
mance of GES(λ). Theorem 2 shows the proposed GES(λ)
with a true gradient can converge at a linear rate under a con-
crete step-size. Furthermore, to investigate how the step-size
influences finite-time performance, we establish Theorem 3.
We develop a technique of Lyapunov function (Gupta et al.
2019) to prove Theorem 3, before we present the main re-
sult, we provide the motivation and some necessary details
of Lyapunov function.

Throughout this paper, we make two additional standard
assumptions, which are widely used in reinforcement learn-
ing (Wang et al. 2017; Bhandari et al. 2018; Xu et al. 2019).

Assumption 2 (Boundedness of Feature Map, Reward). The
features {φt}t≥0 is uniformly bounded by φmax. The re-
ward function is uniformly bounded by Rmax. The impor-
tance sampling ρt is uniformly bounded by ρmax.

Assumption 3 (Solvability of Problem). The matrix A is
non-singular and rank(Φ) = p.

As claimed by Xu et al., (2019), Assumption 2 can be en-
sured by normalizing the feature maps {φt}t≥1 and when
µ(·|s) is non-degenerate for all s ∈ S . Besides, Assump-
tion 2 implies the boundedness of the estimators Ât, M̂t and
b̂t. For the limitation of space, we provide more details and
discussions in Remark 5 (see Appendix D.1).

Assumption 3 requires the non-singularity of the matrix
A, which implies the optimal parameter θ? = −A−1b is
well defined. The feature matrix Φ has linearly independent
columns implies the matrix M is non-singular.

Linear Convergence Rate under True Grdient
We consider the first-order optimality condition of the prob-
lem (18), i.e., the optimal solution (θ?, ω?) satisfies{

∇θΨ(θ?, ω?) = A>ω? = 0,

∇ωΨ(θ?, ω?) = −∇g(ω?) +Aθ? = 0.
(24)

According to the Fact 1 and the condition (24), we have

ω? = (∇g)−1(Aθ?) = ∇g?(Aθ?),

which implies ω? can be represented by θ?, thus, we mainly
focus on the performance of {θt}t≥1.

Theorem 2. {(θt, ωt)}t≥0 is generated by (19)-(20). Let
∆θt = ‖θt − θ?‖22, ∆ωt = ‖ωt − ∇g?(Aθt)‖22, ν =
2κ2(A)κ(M)λmax(A)

λmin(M)
,andDt = ν∆θt+∆ωt . If we choose

step-size α = λmin(M)(
λmax(M)+λmin(M)

)(
λ2max(A)

λmin(M)
+νλmax(A)

) , β =

2
λmax(M)+λmin(M) , under Assumption 1-3, we have

E[Dt+1] ≤
(

1− 1

12κ3(M)κ4(A)

)
E[Dt]. (25)

Furthermore, we have

E[‖θt − θ?‖22] ≤ 1

ν

(
1− 1

12κ3(M)κ4(A)

)t
E[D0]. (26)
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Remark 1. We provide its proof in Appendix C.3. Recall the
factDt = ν∆θt+∆ωt ≥ ν∆θt , which implies the inequality

E[‖θt−θ?‖22] ≤ E[Dt]

ν

(25)

≤ 1

ν

(
1− 1

12

1

κ3(M)κ4(A)

)t
E[D0].

The term (1 − 1
12

1
κ3(M)κ4(A) ) ∈ (0, 1) implies GES(λ) pro-

duces the sequence {θt}t≥0 converges to the optimal solu-
tion at a linear convergence rate. After some simple algebra,
with a computational cost of

O
(

max
{

1,
λmax(A)

λmax(M)ν

}(
1− 1

12κ3(M)κ4(A)

)
log

1

δ

)
,

the output of Algorithm 1 closes to (θ?, ω?) as follows,

E[‖θt − θ?‖22] ≤ δ2, E[‖ωt − ω?‖22] ≤ δ2.

Remark 2. Theorem 2 provides a concrete step-size that de-
pends on the some unknown parameters. As suggested by Du
et al. (2017), Touati et al. (2018), and Voloshin et al. (2019),
we can use Monte Carlo method to estimate the unknown
parameters.

A Further Analysis of Lyapunov Function for
Stochastic Gradient
In this section, we propose Theorem 3 that illustrates a rela-
tionship between the performance of GES(λ) and step-size.

The proof of Theorem 3 involves a novel Lyapunov func-
tion technique, we start by presenting the motivation behind
such Lyapunov function. Let

H = −A>M−1A,L = 2A.

Let Q1 and Q2 be the solutions of the following equations{
−H>Q1 −Q1H = I

M>Q2 +Q2M = I.
(27)

Since both M and −H are Hurwitz matrix, the solution of
the linear system (27) alway exists (Lakshminarayanan et al.
2018; Srikant and Ying 2019). Let Q be a matrix as follows,

Q =
1

p1 + p2

(
p1 0
0 p2

)
,

where p1 = ‖Q1A
>‖opQ1, p2 = ‖Q2M

−1AL‖opQ2. Fi-
nally, we define %t and zt as follows,

%t = ωt −M−1Aθt, zt = (θt − θ?, %t − %?)>, (28)

where %? = ω? −M−1Aθ?. Lyapunov function L(zt) is:

L(zt) = z>t Qzt. (29)

Motivation of Lyapunov Function We consider the ex-
pected difference of iteration (22)-(23) as follows

1

α
E[θt+1 − θt|Yt−τ ] =E[−Âtωt|Yt−τ ] (30)

α

β

E[ωt+1 − ωt|Yt−τ ]

α
=E[Âtθt + b̂t − M̂tωt|Yt−τ ], (31)

where Yt−τ = {θt−τ , ωt−τ , Xt−τ}, and the sequenceXt =:
{S0, A0, S1, A1, · · · , St, At} denotes a Markov chain ac-
cording to Algorithm 1. The expectation is conditioned suf-
ficiently in the past information of the underlying Markov
chain. Approximating the left parts of (30)-(31) by deriva-
tives, then we have the ordinary differential equation (ODE):{

θ̇(t) = −Aω(t),
α
β ω̇(t) = Aθ(t) + b−Mω(t),

(32)

where θ(t), ω(t) ∈ Rp of (32) are the functions that are
defined on the continuous time (0,∞). The update rule of
(22)-(23) can be thought of as a discretization of the ODE
(32) that is known as singular perturbation ODE (chapter 11
of (Khalil and Grizzle 2002)), our goal is to provide a non-
asymptotic analysis of GES(λ) according to the asymptoti-
cally stable equilibrium of ODE (32). According to Khalil
and Grizzle (2002), the following Lyapunov function L(t)
is widely used as a stability criteria for the ODE (32),

L(a, t) =a
(
ω(t)−M−1Aθ(t)

)>
Q2

(
ω(t)−M−1Aθ(t)

)
+ (1− a)θ>(t)Q1θ(t), (33)

where a ∈ (0, 1). Our L(zt) (29) can be seen as a discretiza-
tion of L(t) (33) after a proper choice of a, which inspires
us to conduct the Lyapunov function L(zt).
Lemma 1. Under Assumption 1-3, there exists a positive
scalar τ such that: t ≥ τ ,

E[L(zt+1)]− E[L(zt)] ≤ −α
(1

2
κ1 −

α

β
κ2

)
E[L(zt)]

+ 2α2ζ2λmax(Q)c̃b
2, (34)

where the constants κ1,κ2, ζ =: C1 +
β

α
C2, c̃b are defined

in Appendix D.
Finally, we know

E[‖zt‖22] ≤ (λmin(Q))−1E[L(zt)],

applying the result of (34) recurrently, we have Theorem 3.
Theorem 3. Let η1 = 4ζ2τ2(‖z0‖2 + c̃b)

2 + ‖z0‖22),
η2 = 2κ(Q)ζ2λmax(Q)c̃b

2

1
2κ1−αβ κ2

. Under Assumption 1-3, there ex-

ists a positive scalar τ such that: t ≥ τ ,

E[‖zt‖22] ≤ α2η1

(
1− α

λmax(Q)

(1

2
κ1 −

α

β
κ2

))t−τ
+ αη2.

Remark 3. Recall zt = (θt − θ?, %t − %?)>, then E[‖θt −
θ?‖22] ≤ E[‖zt‖22], which implies the expected mean square
error of θt − θ? is also upper-bounded by the result of The-
orem 3. Furthermore, after a total computational cost of

τ +O
(1

δ
log

1

δ

)
,

the Algorithm 1 outputs θt closes to the optimal solution θ?
as follows,

E[‖θt − θ?‖22] ≤ O(τδ).
Remark 4. Theorem 3 shows that the upper-bounded error
consists of two different parts: the first error bound depends
on both step-size and the size of samples, and this error
decays geometrically as the number of iteration increases;
while the second part is only determined by the step-sizes
and it is independent of the number of iterations.
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Algorithm Step-size Convergence Rate TD Fixed Point
TD(0)

(Nathaniel et al. 2015)
αt = O(t−η)
η ∈ (0, 1)

O
( 1√

T

)
Φ>Ξ(γPµ − I)Φθ? = −b

TD(0)
(Dalal et al. 2018a)

∑∞
t=1 αt =∞ O

( 1

T η
)

η ∈ (0, 1)
Φ>Ξ(γPµ − I)Φθ? = −b

TD(0)
(Lakshminarayanan et al. 2018)

Constant O
(

1
T

)
Φ>Ξ(γPµ − I)Φθ? = −b

GTD(0)
(Dalal et al. 2018b) ∑∞

t=1 αt =∞, βtαt → 0

O
(( 1

T

) 1−κ
3
)

κ ∈ (0, 1)
Φ>Ξ(γPπ − I)Φθ? = −b

GTD(0)/GTD2/TDC
(Dalal et al. 2020)

αt = 1
tη1 ,βt = 1

tη2
0 < η2 < η1 < 1

O
( 1

T η1

)
Φ>Ξ(γPπ − I)Φθ? = −b

GTB(λ)
(Touati et al. 2018) αt, βt = O( 1

t ) O
( 1

T

)
Φ>Ξ(I − γλPµ)−1(γPπ − I)Φθ? = −b

SARSA
(Zou et al. 2019) αt = O( 1

t ) O
( log3(T )

T

)
Φ>Ξ(γPµ − I)Φθ? = −b

TDC
(Xu et al. 2019)

max{αt log( 1
αt

), αt}
≤ min{‖θ0−θ

?‖2
2t−1 , C}

Linear Φ>Ξ(γPπ − I)Φθ? = −b

TDC
(Kaledin et al. 2020)

αt = 1
tv , βt = 1

t
v ∈ (0, 1)

O(
1

T
) Φ>Ξ(γPπ − I)Φθ? = −b

GES(λ)
Theorem 3 α = Constant O

(
α) Φ>Ξ(I − γλPπ)−1(γPπ − I)Φθ? = −b

Table 1: Comparison of GTD family algorithms over performance measurement E‖θT − θ?‖22.

Related Works
In this section, we review existing finite-time performance
of GTD algorithms over ‖θT − θ?‖22.

Although the asymptotic analysis of GTD family has
been established in (Sutton et al. 2009a,b; Maei 2011),
which holds only in the limit as the number of iterations
increases to infinity, and we can not get the information of
convergence rate from asymptotic results. This is the main
reason why we focus on the finite-time performance over
‖θT − θ?‖22. It is noteworthy that Liu et al. (2015) firstly in-
troduce primal-dual gap error to measure the convergence
of GTD algorithm, we provide the discussion of finite-time
primal-dual gap error analysis in Appendix E.

Nathaniel et al. (2015) proves that TD(0) (Sutton 1988)
converges at O( 1√

T
) with the step-size αt = O( 1

tη ), η ∈
(0, 1). Later, Dalal et al. (2018a) further explore the prop-
erty of TD(0), they prove the convergence rate of TD(0)

achieves O(e−
λ
2 T

1−η
+ 1

Tη ), but it never reaches O( 1
T ),

where η ∈ (0, 1), λ is the minimum eigenvalue of the matrix
A> + A. Lakshminarayanan et al., (2018) show TD(0) con-
verges atO( 1

T ) with a more relaxed step-size than the works
of (Nathaniel et al. 2015; Dalal et al. 2018a), it only requires
a constant step-size. Recently, Dalal et al. (2018b) proves
GTD(0) family algorithm (Sutton et al. 2009b) converges at
O(( 1

T )
1−κ
3 ), but nerve reach O( 1

T ), where κ ∈ (0, 1). A
very similar convergence rate appears in (Dalal et al. 2020),
which considers TDC and GTD2. Touati et al. (2018) pro-
pose GTB(λ)/GRetrace(λ), they prove the convergence rate

of GTB(λ)/GRetrace(λ) reahches O( 1
T ). Zou et al. (2019)

show SARSA with linear function approximation converges
at the rate of O

( log3(T )
T

)
. Recently, Kaledin et al. (2020)

further develop two timescale stochastic approximation with
Markovian noise, and they show that TDC converges at a rate
of O( 1

T ) if αt = 1
tv , βt = 1

t , v ∈ (0, 1).
Theorem 3 illustrates our GES(λ) achieves the conver-

gence rate at the same order with step-size. Although Xu et
al., (2019) prove TDC converges at a linear convergence rate,
they require a fussy blockwise diminishing step-size con-
dition: max{αt log( 1

αt
), αt} ≤ {min{‖θ0−θ

?‖2
2t−1 , C}, αt =

O( 1
(t+1)η1 ), βt = O( 1

(t+1)η2 ), 0 < η2 < η1 < 1, where C
is a constant. Apparently, our Theorem 2 requires a simpler
condition of step-size than Xu et al., (2019). It is noteworthy
that our Theorem 2 does not require an additional projec-
tion step (that is unnecessary in practice) that appears in (Xu
et al. 2019).

Significantly, the finite-time performances of (Dalal et al.
2018a; Lakshminarayanan et al. 2018) requires an additional
assumption that all the samples required to update the func-
tion parameters are i.i.d. In this paper, we remove this con-
dition and achieve a better result than theirs.

Experiments
In this section, we test the capacity of GES(λ) for off-policy
evaluation in three typical domains: MountainCar, Baird
Star (Baird 1995), Two-State MDP (Touati et al. 2018). We
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Figure 2: Comparison between a constant step-size and 1√
t
.
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Figure 3: MSPBE and MSE comparison on MountainCar.

compare GES(λ) with three state-of-art algorithms: GQ(λ)
(Maei and Sutton 2010), ABQ(ζ) (Mahmood et al. 2017b),
GTB(λ) (Touati et al. 2018) over two typical measurements:
MSPBE and mean square error (MSE). We choose those
three algorithms as baselines since they are all learning via
expected TD-error δES

t , which is same as GES(λ).
Feature Map and Parameters Recall the states and ac-

tions of MountainCar: S = {(Velocity, Position)} =
[−0.07, 0.07]× [−1.2, 0.6],A = {left, neutral, right}.
In this example, if Velocity > 0, we use behavior pol-
icy µ = ( 1

100 ,
1

100 ,
98
100 ), π = ( 1

10 ,
1
10 ,

8
10 ); else µ =

( 98
100 ,

1
100 ,

1
100 ), π = ( 8

10 ,
1
10 ,

1
10 ). Since the state space is

continuous, we use an open tile coding3 software to extract
feature of states. We set the number of tilings to be 4, and
there are no white noise features. The performance is an av-
erage 5 runs, and each run contains 5000 episodes. As sug-
gested by Sutton and Barto (2018), we set all the initial pa-
rameters to be 0, which is optimistic about causing extensive
exploration.

The Baird Star is an episodic seven states MDP with two
actions: dashed action and solid action. In this example,
we set the behavior policy µ(·|dashed) = 6

7 , µ(·|solid) =
1
7 and target policy π(·|solid) = 1. We choose the feature

map matrix as follows Φ =

(
2I7×7 17×1 07×8

07×8 2I7×7 17×1

)
,

where 0 denotes a matrix whose elements are all 0, and 17×1

denotes a vector whose elements are all 1. The dynamics
of Two-State MDP is presented in Example 1. We set λ =
0.99, γ = 0.99 in all the experiments. The MSPBE/MSE
distribution is computed over the combination of step-size,
(αt,

βt
αt

) ∈ [0.1× 2j |j = −10,−9, · · · ,−1, 0]2.
Effect of Step-size Figure 2 shows the comparison of the

3http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/RLtoolkit/
tilecoding.html
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Figure 4: MSPBE and MSE comparison on Baird Star.
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Figure 5: MSPBE and MSE comparison on Two-State MDP.

empirical MSPBE performance between a constant step-size
and the decay step-sizeO( 1√

t
). Result of Figure 2 illustrates

that the GES(λ) with a proper constant step-size converges
significantly faster than the learning with step-size O( 1√

t
),

which also supports Theorem 2: learning with a proper con-
stant step-size can reach a very faster rate.

Comparison of Empirical MSPBE and MSE In this
section, we use empirical MSPBE = 1

2‖b̂+Âθ‖
2
M̂−1

to eval-

uate the performance, where we evaluate Â, b̂, and M̂ ac-
cording to their unbiased estimators by Monte Carlo method
with 5000 episodes, and our implementation of MSPBE
is inspired by (Touati et al. 2018). Besides, we also com-
pare the performance over a common measurement empir-
ical MSE: MSE = ‖Φθ − qπ‖2Ξ/‖qπ‖2Ξ, where qπ is esti-
mated by simulating the target policy π and averaging the
discounted cumulative rewards over trajectories. The com-
bination of step-size for MSE is the same as previous empir-
ical MSPBE.

Results in Figure 3 to 5 show that our GES(λ) learns faster
with a better performance than GQ(λ), ABQ(ζ) and GTB(λ).
Besides, GES(λ) converges with a lower variance. In the
Two-State MDP and Baird Star experiments, GES(λ) outper-
forms the baselines slightly. This is because both Two-State
MDP and Baird Star are relatively easy; many gradient TD
learning could learn a convergent result. While the advan-
tage of GES(λ) over baselines becomes more significant in
the MountainCar domain, which shows that GES(λ) is more
robust than baselines in the more difficult task.

Conclusion
We propose GES(λ) that extends Expected Sarsa(λ) with
linear function approximation. We prove GES(λ) learns the
optimal solution at a linear convergence rate, which is com-
parable to extensive GTD algorithms. The primal-dual gap
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error of GES(λ) matches the best-known theoretical results,
but we require a simpler condition of step-size. Finally, we
conduct experiments to verify the effectiveness of GES(λ).
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Convergent O(n) Temporal-difference Algorithm for Off-
policy Learning with Linear Function Approximation. In
NeurIPS.

10628



Sutton, R. S.; Mahmood, A. R.; White, M.; et al. 2016. An
emphatic approach to the problem of off-policy temporal-
difference learning. JMLR 17(1): 2603–2631.
Thomas, P. S. 2015. Safe reinforcement learning. Ph.D.
thesis, University of Massachusetts Libraries.
Touati, A.; Bacon, P.-L.; Precup, D.; and Vincent, P. 2018.
Convergent Tree-Backup and Retrace with Function Ap-
proximation. In ICML.
Voloshin, C.; Le, H. M.; Jiang, N.; and Yue, Y. 2019. Empiri-
cal Study of Off-Policy Policy Evaluation for Reinforcement
Learning. arXiv preprint arXiv:1911.06854 .
Wang, G.; Li, B.; Giannakis, G. B.; et al. 2019. A mul-
tistep Lyapunov approach for finite-time analysis of biased
stochastic approximation. arXiv preprint arXiv:1909.04299
.
Wang, Y.; Chen, W.; Liu, Y.; Ma, Z.-M.; and Liu, T.-Y. 2017.
Finite Sample Analysis of the GTD Policy Evaluation Algo-
rithms in Markov Setting. In Advances in Neural Informa-
tion Processing Systems(NeurIPS).
Xu, T.; Zou, S.; Liang, Y.; et al. 2019. Two time-scale off-
policy TD learning: Non-asymptotic analysis over Marko-
vian samples. In NeurIPS.
Zou, S.; Xu, T.; Liang, Y.; et al. 2019. Finite-sample analysis
for SARSA with linear function approximation. In NeurIPS.

10629


