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Abstract

Automatic Feature Engineering (AFE) aims to extract use-
ful knowledge for interpretable predictions given data for the
machine learning tasks. Here, we develop AFE to extract de-
pendency relationships that can be interpreted with functional
formulas to discover physics meaning or new hypotheses for
the problems of interest. We focus on materials science appli-
cations, where interpretable predictive modeling may provide
principled understanding of materials systems and guide new
materials discovery. It is often computationally prohibitive to
exhaust all the potential relationships to construct and search
the whole feature space to identify interpretable and predic-
tive features. We develop and evaluate new AFE strategies
by exploring a feature generation tree (FGT) with deep Q-
network (DQN) for scalable and efficient exploration poli-
cies. The developed DQN-based AFE strategies are bench-
marked with the existing AFE methods on several materials
science datasets.

Introduction
Feature engineering (FE) is to create features that capture
hidden dependency relationships in data and improve the
prediction performances of machine learning (ML) algo-
rithms (Brownlee 2014). It usually involves two steps: gen-
erating new feature representations by transforming the orig-
inal raw or primary features in the given dataset, and se-
lecting those engineered features that are important (inter-
pretable and predictive) for the ML tasks. Such prepossess-
ing pipelines and data transformations are crucial and of-
ten take most of the actual efforts in deploying ML algo-
rithms (Bengio, Courville, and Vincent 2013; Heaton 2016).

However, traditional FE is a labor-intensive and time-
consuming task, which requires complex exercises being
performed in an iterative manner with trial and error,
driven by domain knowledge developed over time (Bengio,
Courville, and Vincent 2013; Khurana et al. 2016). Thus
such methods are usually problem-specific and not generally
applicable to different datasets, limiting their direct adop-
tion in corresponding applications, especially when both do-
main knowledge and available training data are scarce. Com-
pared to traditional FE methods, Automated Feature Engi-
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neering (AFE) (Khurana et al. 2016; Kaul, Maheshwary,
and Pudi 2017) has attracted much attention in recent lit-
erature. For example, many black-box deep neural network
based AFE models (Long, Lu, and Cui 2019; Fan et al. 2019)
have shown their great potential to improve the correspond-
ing ML algorithms’ performance and be general to be im-
plemented on different datasets without too much additional
manual labor. However, on one hand, the brute force way to
generate and select features by exhausting the possible fea-
ture transformations takes too much time and is difficult to
scale up with the number of original raw features. On the
other hand, a good interpretability to the generated features
is usually hard to attain through such black-box methods.

For the materials science problems we study in this pa-
per, finding the actuating mechanisms of a certain property
or function and describing it in terms of a set of physically
meaningful variables is the desired scientific solution (Ghir-
inghelli et al. 2015). Such a set of physical variables with
corresponding parameters that uniquely describe the ma-
terial and its function of interest, can be denoted as “de-
scriptors”. One of the purposes of discovering descriptors
in materials-science data, is to predict a target functional
property of interest for a given complete class of materials
(Ghiringhelli et al. 2017). Hence, AFE for materials science
faces two main challenges to build better ML models: a good
interpretability of the engineered descriptors from raw fea-
tures, and the scalability and efficiency to select important
descriptors from the often enormous generated feature space
for the given target of interest.

A fundamental paradigm in materials science is the
existence of causal relationships–typically referred to as
Process-Structure-Property (PSP) relationships–that con-
nect processing (i.e., the modifications to a material cur-
rent state), structure (i.e., the multi-scale arrangement of the
material), and properties (i.e., the response of the material
to an external stimulus). The navigation of this PSP space
is enormously resource-intensive, regardless of whether this
query is on physical experiments or computational ones. As
a result, it often takes more than two decades to identify,
develop, and finally deploy a novel material in real-world
applications—a key bottleneck that Materials Genome Ini-
tiative (MGI) tried to resolve. Attempting to use physics-
agnostic machine learning methods to infer these relation-
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ships is limited by the scarcity of the available training data.
Moreover, one would be interested in discovering relation-
ships that connect features to properties/behaviors as these
relationships can be further exploited to design/discover
materials with optimal properties. AFE enables us to use
physics constraints in the machine learning models and also
enables the discovery of design rules for materials based on
fundamental principles.

In this paper, we propose a Feature Generation
Tree (FGT) and focus on novel AFE strategies by com-
bining FGT exploration with Deep Reinforcement Learn-
ing (DRL) (Mnih et al. 2015) to address both the inter-
pretability and scalability challenges. Instead of employ-
ing a brute-force way to perform algebraic operations on
the raw features in a given dataset and then selecting im-
portant descriptors, we combine the generating and select-
ing processes together by constructing FGTs and developing
the corresponding tree exploration policies guided by deep
Q-Network (DQN). An efficient exploration of the promi-
nent descriptors can be attained in the growing feature space
based on the allowed algebraic operations, and our new AFE
strategies, constructing interpretable descriptors based on a
list of operations according to the DRL learned policies, are
more scalable and flexible with the performance-complexity
trade-off with the help of adjustable batch size for generating
intermediate features. More critical to materials science and
other scientific ML (SciML) problems, our FGT provides a
flexible framework for incorporating prior knowledge (e.g.
physics constraints) to generate and select features. This is
important for interpretable learning with physics constraints
under data scarcity and uncertainty as the space connecting
intrinsic materials attributes/features to materials behavior is
vast, sparse, and complex in nature.

We have benchmarked different feature exploration strate-
gies for FGT, such as one-step greedy and Monte-Carlo tree
search. Deep Q-network (DQN)-guided FGT has shown bet-
ter empirical performance, by which we achieve better trade-
offs between efficiency, scalability, and accuracy. Compared
to the exhaustive method in (Ouyang et al. 2018) that screens
all features given the complexity, our AFE is more scalable
and efficient. Furthermore, compared to other AFE meth-
ods based on DQN and graph search, our AFE can identify
complex non-linear features while abiding by physics prin-
ciples, which leads to interpretable features of functional
forms with good predictive power by adopting a linear re-
gressor or classifier on top of them.

Related Work
Desirable FE should attain considerable improvement of
prediction performance, generalizability, as well as good in-
terpretability with little manual labor. Thus, Deep Feature
Synthesis (Kanter and Veeramachaneni 2015), extracts fea-
tures based on explicit functional relationships without ex-
perts’ domain knowledge through stacking multiple primary
features and implementing operations or transformations on
them. But it suffers from efficiency and scalability problems
due to its brute-force way to generate and select features.
Kaul et al. (Kaul, Maheshwary, and Pudi 2017) proposed

Autolearn by regression-based feature learning through min-
ing pairwise feature associations. While it avoids overfitting,
to which deep Learning based FE methods are amenable,
and improves the efficiency by selecting subsets of engi-
neered features according to stability and information gain,
it does not directly produce intepretable features. Khurana
et al. (Khurana et al. 2016) introduced Cognito, which for-
mulates the feature engineering problem as a search on the
transformation tree with an incremental search strategy to
explore the prominent features and later extended the frame-
work by combining RL with a linear functional approxima-
tion (Khurana, Samulowitz, and Turaga 2018) to improve
the efficiency. A similar framework has recently been de-
veloped by Zhang et al. (Zhang et al. 2019), who also used
a tree-like transformation graph with the DRL policy. It
improves the policy learning capability compared to Cog-
nito. However, both frameworks do not explicitly incorpo-
rate available prior knowledge into the AFE procedures.

For AFE in materials science applications, several meth-
ods have been developed, such as the method based on
compressed sensing (Ghiringhelli et al. 2017) and more
recent Sure Independent Screening and Sparse Operation
(SISSO) (Ouyang et al. 2018) by brute-force search to gen-
erate and select subsets of generated features by the sure
independent screening (Fan and Lv 2008) together with
sparse operators such as Least Absolute Shrinkage and Se-
lection Operator (LASSO) (Tibshirani 1996). These meth-
ods pose an scalability challenge with the exponentially
growing memory requirement to store intermediate features
and high computational complexity to search for features.

Methodology
In this section, we introduce our new AFE strategies, which
are based on the formulated feature generation tree (FGT)
exploration guided by deep Q-network (DQN). More criti-
cally, we facilitate a flexible intermediate feature generation
procedure that helps achieve good performance-complexity
trade-off as well as flexible integration of available physics
constraints as prior knowledge.

Engineering Descriptors in Functional Forms
Given a datasetD0 =< F0, y >, where F0 denotes the finite
set of p variables as raw or primary features {f00 , f10 , ..., f

p
0 }

and y denotes the target vector, we need to construct sets
of engineered features Fi = {g1(F0, c1), g2(F0, c2), . . . }
based on functional forms with allowed algebraic operations
to generate interpretable and predictive descriptors for y.
The function gm(·) consists of a set of algebraic operations
φ, from an operation set O, implemented on features in F0.
The operation set O can be pre-defined, for example, with
the following unary and binary operations:

O = {exp(·), log(·), (·)2, (·)3, (·)−1,
√
·, 3
√
·,+,−,×,÷}.

(1)
For each function, ci denotes the complexity of the corre-
sponding generated feature—the number of algebraic oper-
ations. For example, the function exp(f00 )× (f10 )

2+
√

(f20 )
has the complexity of 5. Here, Fi denotes the iteratively gen-
erated feature set with the maximum allowed complexity ci.
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From the whole feature space F = F0 ∪ F ′is, our
goal is to find such an optimal feature set F ∗ =
{(f1)∗, (f2)∗, . . . }(∀(fd)∗ ∈ F ∗, (fd)∗ ∈ F) that max-
imizes the prediction performance score, for example by
classification or regression accuracy, AL{F ′, y}:

F ∗ = argmax
∀fk∈F ′,fk∈F,ci<cmax

AL{F ′, y}, (2)

where L denotes the prediction model, which can be lin-
ear regression or Support Vector Machine (SVM) for inter-
pretability with generated features, and F ′ denotes the set of
all generated features.

Feature Generation Tree (FGT)
To approximate the optimal feature set F ∗, we intro-
duce the Feature Generation Tree (FGT) illustrated in Fig-
ure 1 to iteratively construct the feature space and trans-
form the problem into a tree search problem for efficient
AFE. Each node in FGT represents a feature set Fi and
each edge represents an operation φ. We denote (F d)∗ =
{(f1)∗, (f2)∗, . . . , (fd)∗} as the top d optimal features
when we choose the cardinality of F ∗ as d, and (fd)∗ as
the selected optimal feature for the dth dimension of (F d)∗.
The FGT exploration aims to search for the optimal features
(f1)∗, (f2)∗, . . . one by one. The corresponding complete
AFE procedure constructs the feature subspace F d sequen-
tially as the search space of each (fd)∗ exploration. Itera-
tions start from the root node F0, which represents the pri-
mary feature set. At some node Fi, we choose an opera-
tion φi according to the policy π as detailed in the follow-
ing subsection, then move forward to the next node, gen-
erate the new feature set Fj(j > i) and add the gener-
ated features to F d. Meanwhile, the generated new feature
set F ′ = (F d−1)∗ ∪ {fd} will be fed to the predictive
model L to obtain the score AL{F ′, y}, where (F d−1)∗ =
{(f1)∗, (f2)∗, . . . , (fd−1)∗} for each (fk)∗ ∈ F k(1 6 k 6
d − 1), representing the top d − 1 optimal feature set cho-
sen from the previous feature subspace F k; and fd ∈ F d.
The FGT will grow by repeating the operations above until
it attains the maximum complexity cmax. Then a new iter-
ation will start again to grow FGT to find (fd)∗. When F ′
achieves our desired prediction performance score, we will
stop or look for the next optimal descriptor (fd+1)∗. Note
that the feature subspace F d is the union of all Fi’s in all ex-
plored FGT’s when looking for (fd)∗, and the whole feature
space F is the union of all F d’s.

Reinforcement Learning for FGT Exploration
AFE by FGT exploration can be considered as a finite
Markov Decision Process (MDP) problem. Considering the
huge feature space and the large available operation set we
may have, we adopt DQN (Mnih et al. 2015) with experi-
ence replay to learn the policy π for choosing φ’s during
FGT exploration. Formally, we define the states, actions and
rewards for our AFE formulation as follows:
• state F di , denoting a primary or generated feature set

when looking for the dth optimal descriptor;
• action π(F di ) = φi, denoting an operation in the set O;

Figure 1: Example of a feature generation tree

• reward: R(F di , φi) = max
F ′

(1.001 − AL{F ′, y})−1,

where 0 6 AL{F ′, y} 6 1 and F ′ = (F d−1)∗ ∪ {fd},
for (F d−1)∗ = {(f1)∗, (f2)∗, . . . , (fd−1)∗} for each
(fk)∗ ∈ F k(1 6 k 6 d− 1) and fd ∈ φi(F di ).
Each node in FGT represents a state and each edge an

action. To find the optimal F ∗ with the lowest cardinality
to meet the desired prediction performance score threshold,
our AFE will first look for (F 1)∗, and then look for (F 2)∗,
or more if the set of resulting descriptors does not meet
the score threshold within the allowed budget (maximum
number of exploration iterations). To have a flexible explo-
ration procedure for both performance-complexity trade-off
and incorporation of prior knowledge, each (fd)∗ in F ∗ can
be chosen from the top n features with highest rewards in
the corresponding feature subspace F d, composing a can-
didate set Sd. So (F d−1)∗ can have multiple combinations
according to the whole candidate sets S = {S1, . . . , Sd−1},
and F ′ also has multiple combinations according to differ-
ent (F d−1)∗ and fd. Consequently the reward is computed
as the maximum reward over F ′.

Algorithm 1 DQN for Automatic Feature Engineering

1: input: Primary features F0, Action set O
2: for d = 1, 2, . . . do
3: Construct new DQN
4: Clear Buffer
5: for episode = 1, 2, . . . , N do
6: for i = 0, 1, . . . , do
7: φi = ε-Greedy Method(Fi, ε)
8: F di+1, Ri, ci+1 = FGT Grow {F di , φi, ci}
9: Buffer← {F di , F di+1, φi, Ri, ci+1}

10: Train DQN with experience replay
11: if Ri > threshold then
12: goto Output
13: end if
14: if ci ≥ cmax then
15: break
16: end if
17: end for
18: end for
19: S← Candidate set Sd with n features of highest Ri
20: end for
21: Output: Optimal feature set F ∗ chosen from S
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Algorithm 2 FGT Grow

1: input: Feature set F di , action φi, complexity ci
2: if φi is unary then
3: F di+1 = φi(F

d
i ), ci+1 = ci + 1, Ri = R(F di , φi)

4: else
5: L = ∅
6: Randomize B from feature space F
7: for each fs in B do
8: L← φi(F

d
i , f

s)
9: end for

10: Select F di+1 from L with maximum R(F di , φi)

11: Ri = R(F di , φi), ci+1 = ci + (cs of fs) + 1
12: end if
13: F← F di+1

14: Output: Feature set F di+1, RewardRi, Complexity ci+1

It is worth noticing that we have different types of al-
gebraic operations in O. When we apply unary operations
φu on a feature set Fi, it will apply φu on all the features
in Fi and results in the new generated feature set Fj =
{φu(f1), φu(f2), . . . }. However, when we apply binary op-
erations φb on Fi, beside the one feature in the Fi, we have
to choose another one feature in the whole feature space to
complete the operation, resulting the exploding of the cor-
responding feature subspace with the new generated feature
set as Fj = {φb(f1, fs)} ∪ {φb(f2, fs)} ∪ . . . . Clearly,
if we enumerate fs from all the features in F, it is compu-
tationally prohibitive as Fj grows exponentially. Thus, we
introduce the flexible batch sampling to randomly sample
a feature subspace B from F as a “Batch Set” each time
and enumerate fs only from B to achieve the performance-
complexity trade-off, and take the maximum reward from
all the combinations as the reward. When prior knowledge
is available as physics constraints on applying correspond-
ing operations to specific feature groups, this batch sampling
procedure can naturally take care of them.

The pseudo-code for the basic AFE strategy of FGT ex-
ploration with DQN is provided in Algorithms 1 and 2. Let
us denote the number of raw features, unary and binary oper-
ations, desired descriptors, and the maximum number of al-
lowed operations to one feature by P ,Nu,Nb, d, and r. Fur-
ther we denote the batch size in AFE byB, and the candidate
set in AFE and subspace in SISSO by S. The computational
complexity of our AFE by DQN-guided FGT exploration
is then given by O(Sd−1P

∑r
i=0N

r−i
u N i

bB
i). By contrast,

SISSO has a complexity ofO(
∑2r−1

i=0 P 2r−iN2r−i−1
b N i

u)+

O(Sd), increasing double exponentially with r.

Experiments
To evaluate our proposed AFE strategies, we perform exper-
iments with three real-world materials science datasets: one
for classification of metal/non-metal materials, one for re-
gression to get alloy elastic behavior based on alloy compo-
sitions, and the third dataset for predicting material’s phase
transition temperature with the physics constraints of feature
groups. In these experiments, we assume that we have a lim-

ited computation budget and set the same upper bound of the
allowed runtime for each experiment. We run all the exper-
iments on the platform with the hardware configuration of
Intel Xeon E5-2670, 64GB 1866MHz RAM and 2 NVIDIA
k20 GPUs. In the following experiments, “descriptors” de-
note the engineered features in the final optimal feature set.
For each dataset, we perform each algorithm with the same
setup 10 times to report descriptors based on the best per-
forming sets of descriptors obtained in the given runtime
budget in one run, as well as use the average of the size of
feature space and running time for the scalability and effi-
ciency comparison.

For DQN, we have adopted a two-layer Q-network with
the corresponding hidden dimensions {150,120} and the
relu activation function is used for both layers. The fol-
lowing hyperparameters are set for DQN training: Learning
rate: 0.001; Experience replay batch size: 64; Gamma: 0.99;
Epsilon: 1.0 (decay 0.99 and min 0.05). Our code is open-
source and available at https://github.com/ziyux/AFE.

Classification
The classification problem is based on a dataset of
10 prototype structures (NaCl, CsCl, ZnS,CaF2, Cr3Si,
SiC, T iO2, ZnO, FeAs,NiAs) with a total number of
260 materials from one of the experiments reported
in Ouyang et al. (2018), which includes seven primary
features (IEA, IEB , χA, χB , xA, xB , VCell/

∑
Vatom) for

each material. The classification problem is to predict
whether a given material is metal or not.

In this set of experiments, we test three different kernels
as the classification model, including linear Support Vector
Machine (SVM), Logistic Regression (LR), and 5-Nearest
Neighbours (5-NN). We generate descriptors based on an
operation set O = {exp(·), log(·), (·)2,

√
·,+,−,×,÷} to

search for a set of two descriptors. The upper bound of the
runtime for each descriptor is set to 8 hours and the maxi-
mum feature complexity cmax is 7 for fair comparison with
SISSO in Ouyang et al. (2018).

When applying binary operations to generate new fea-
tures, we explore different sizes of Batch Sets, denoted
as B in Table 3, to evaluate the performance-complexity
trade-off by limiting the total number of combinations
of feature pairs for corresponding operations to speed up
the feature generating process. To study the influence of
the size of Batch Sets, we have tested five batch sizes:
{1, 000, 2, 500, 5, 000, 7, 500, 10, 000}. The generalizability
of generated descriptors is evaluated by hold-out testing, first
randomly splitting the dataset with 182 materials in the train-
ing set and the remaining 78 materials in the test set (7:3). As
materials belonging to the same prototype may share infor-
mation, to further guarantee that the AFE and model train-
ing processes do not get additional information about testing
data, we also adopt another hold-out testing setup by taking
one prototype of materials, CaF2, to be the test set, and all
the remaining prototypes for training. In this setup, 225 ma-
terials are for training set and 35 for testing.

In Table 1, we compare our AFE strategies with pri-
mary features, One-step Greedy FGT exploration, and
SISSO (Ouyang et al. 2018). With random hold-out test,
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Kernels Methods Descriptors Accuracy
Training Prediction

Linear
SVM

Primary Features IEA, IEB , χA, χB , xA, xB , VCell/
∑
Vatom 0.9780 0.9615

SISSO
(f1)∗ = IEAIEB

χAxB
(χ2
A − χB

Vcell∑
Vatom

)

(f2)∗ = IE2
B(xA + Vcell∑

Vatom
)( Vcell∑

Vatom
/χA − χA

χB
)

0.9890 0.9487

One-step Greedy
guided FGT

(f1)∗ = χA − χB + logχA − VCell∑
Vatom

(f2)∗ = χ2
A − χAχB −

2xA

expχB

0.9615 0.9743

DQN-guided FGT
(f1)∗ =

√
expχA − VCell∑

Vatom

(f2)∗ = log xA + (χA ∗ IEA) VCell∑
Vatom

0.9890 0.9872

Logistic
Regression

Primary Features IEA, IEB , χA, χB , xA, xB , VCell/
∑
Vatom 0.9615 0.9615

SISSO
IEAIEB

χAxB
(χ2
A − χB

Vcell∑
Vatom

)

(f2)∗ = IE2
B(xA + Vcell∑

Vatom
)( Vcell∑

Vatom
/χA − χA

χB
)

1.0000 0.9487

DQN-guided FGT (f1)∗ = 2 ∗ logχA − Vcell/
∑
Vatom − χB

(f2)∗ = χB ∗ logχA/IEA
0.9838 0.9743

5-NN

Primary Features IEA, IEB , χA, χB , xA, xB , VCell/
∑
Vatom 0.9450 0.8846

SISSO
IEAIEB

χAxB
(χ2
A − χB

Vcell∑
Vatom

)

(f2)∗ = IE2
B(xA + Vcell∑

Vatom
)( Vcell∑

Vatom
/χA − χA

χB
)

1.0000 0.9487

DQN-guided FGT (f1)∗ = (IEA + χB) ∗ IEB ∗ χB/(expχA −
(

Vcell∑
Vatom

)2
)

(f2)∗ = log(IEB/Vcell/
∑
Vatom)− xA

1.0000 0.9487

Linear
SVM
with

Type Split

Primary Features IEA, IEB , χA, χB , xA, xB , VCell/
∑
Vatom 0.9822 0.9428

SISSO
(f1)∗ = IEB(χA+IEA)

χA
exp ( Vcell∑

Vatom
/χA)

(f2)∗ = ( IEB

χA
+ Vcell∑

Vatom
/xB)(IEB + Vcell∑

Vatom
) Vcell

χA

∑
Vatom

1.0000 0.6000

DQN-guided FGT
(f1)∗ = logχB − (χA/

VCell∑
Vatom

)2

(f2)∗ = xB + log IEA +
√
IEB + VCell∑

Vatom
/χA

0.9689 0.9143

Table 1: Metal vs. non-metal classification descriptors

we can see that with linear SVM, both One-step Greedy
and DQN-guided FGT strategies can engineer predictive de-
scriptors with the improved prediction accuracy compared
to the model with primary features. When constructing fea-
tures using training samples, SISSO and DQN-guided FGT
strategies can get the best training accuracy. However, as
shown in the table, SISSO is prone to overfitting and has
a rather lower prediction accuracy than the model with pri-
mary features. By contrast, DQN-guided FGT exploration
has more stable and significant improvement on the predic-
tion accuracy. For LR, SISSO has the best training accu-
racy, but again it overfits. Our DQN-guided FGT strategies
can provide both improvement on the training and prediction
accuracy over primary features, and has the highest predic-
tion accuracy. For 5-NN, both SISSO and DQN-guided FGT
achieve the same prediction power, significantly improving
the training and prediction accuracy over primary features,
but both suffer from overfiting due to the non-linearity na-
ture of the 5-NN classifier. We note that as the engineered
descriptors are often non-linear, it is desirable to simply
adopt linear predictors based on these descriptors for gen-
eralizable and interpretable learning. For hold-out test split
by material type, SISSO has the best training accuracy but
overfits. Our DQN-guided FGT has better performance than
SISSO but is not better than the model with primary fea-
tures. This demonstrates the difficulty in applying machine
learning methods in materials science. Materials systems are

often heterogeneous with potential non-linear phase transi-
tions. Without physics knowledge or sufficient data, simpler
predictive models may be more robust.

In the rows marked as “classification” in Table 3, we
compare the scalability and efficiency of SISSO and DQN
by calculating the average number of generated intermedi-
ate features and the total runtime to identify interpretable
and predictive descriptors. For our DQN-guided FGT explo-
ration, different batch sizes B have been tested and linear
SVM is used. In these experiments, all these different se-
tups attain the similar best training accuracy with the same
runtime budget. Together with the results in Table 1, we can
see that our AFE strategies can attain similar training accu-
racy and better prediction accuracy compared to the results
by SISSO while our strategies construct a much smaller fea-
ture space than SISSO’s to identify the predictive descrip-
tors. In addition to better scalability, with a suitable Batch
Set size, for example, B =1,000 or 2,500, our AFE strate-
gies with DQN can also be computationally more efficient
than SISSO, taking less runtime to find the descriptors. With
a small batch size, FGT exploration can iterate faster and
DQN can also converge to stable policies faster; while with
a large batch size, our AFE strategies generate more inter-
mediate features in the binary operation steps and thus can
lower the chance of overlooking some promising features
with long-term benefits in increasing predictive power.
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Kernels Methods Descriptors
R2 Score
RMSE

Training Prediction

Linear
Regression

Primary Features C11, C12, C44,K,G,E,AR,CR,
ea, phi,m, rho, val, chi

0.9736
13.923

0.9545
17.045

SISSO
(f1)∗ = (C11 −K)C12/m−

√
Kea

(f2)∗ = (E −K)2/(phi/AR− rho/chi)
(f3)∗ = val − logC44/ log chi

0.9887
9.115

0.9654
15.742

One-step Greedy
guided FGT

(f1)∗ = val − CR
√
C44/val

(f2)∗ = val +m/(AR · C12)

(f3)∗ =
√
rho+ expCR

AR2

0.9804
12.013

0.9647
15.906

DQN-guided FGT
(f1)∗ = val − (CR− ea)/ logE
(f2)∗ = (expAR logE)/ log rho

(f3)∗ = (expCR+ chi− val) exp
√
K

0.9813
11.720

0.9708
14.460

Table 2: Alloy elastic behavior regression descriptors with prediction performances

Dataset Average
Performance

Methods

SISSO DQN-guided FGT
B=1,000 B=2,500 B=5,000 B=7,500 B=10,000

Classification Feature Space 1,253,648,288 235,864 330,624 452,598 378,985 473,275
Runtime (hours) 7.8 4.6 6.2 10.3 8.4 11.1

Regression Feature Space 84,827,777,031 960,730 1,225,284 823,402 972,289 1,130,305
Runtime (hours) 35.9 7.7 10.0 9.7 8.2 11.4

Table 3: Scalability and efficiency comparison for metal vs. non-metal classification and alloy elastic behavior regression (Note:
‘Feature Space’ here refers to the total number of generated intermediate features until the final descriptors are found.)

Regression
We implement our AFE strategies for another materials sci-
ence dataset studying alloy elastic constants, in which 14
primary features are made from elemental properties us-
ing the rule-of-mixtures: crystal radius (CR), atomic radius
(AR), electron affinity (ea), ionization potential (phi), melt-
ing point (m), density (rho), number of valence electrons
(val), electronegativity (chi). And the elastic constants:C11,
C12, C44, and bulk modulus (K), shear modulus (G), and
Young’s modulus (E). For brevity, we refer average prop-
erties, e.g., C11average as C11 throughout the paper (un-
less specified). The target elastic constant C11m is the first-
principle calculated value for an alloy in the quinary alloy
system Mo-W-Ta-V-Nb.

Our DQN-guided FGT strategies are implemented
to search for a set of three descriptors with the
maximum complexity cmax set to 7 for this regres-
sion problem. Specifically, we use the operation set
{exp(·), log(·), (·)2,

√
·,+,−,×,÷} and limit the upper

bound of the runtime for each descriptor to be 6 hours for
FGT methods. Linear regression is adopted to predict C11 m

by engineered descriptors. The prediction performance is
evaluated based on the R2 score and root-mean-square er-
ror (RMSE). For the training vs. test set split, we randomly
separate the dataset with the ratio 7:3, resulting in 58 mate-
rials in the training set and 25 materials in the test set. Table
2 shows the best performing descriptors in 10 runs for each
methods and Table 3 shows the average size of feature space
and running time when DQN with different batch size attain

the same maximum training R2 score in the time budget for
the first time for scalability and efficiency comparison.

From Tables 2 and 3 (regression rows), all the feature en-
gineering strategies can improve the prediction performance
compared with the model with primary features. SISSO has
the highest training R2 score with the much higher cost
of significantly larger feature space and longer runtime to
search for three final descriptors than our AFE strategies
with DQN. On the other hand, without considering potential
long-term benefits when constructing intermediate features,
one-step greedy cannot perform better than SISSO or DQN-
based strategies. With small datasets, SISSO again shows the
tendency of overfitting. Our AFE strategies with DQN attain
similar training R2 scores as SISSO does but have the high-
est prediction R2 score with the derived descriptors, showing
its potential to derive physics meaningful descriptors with
better scalability and computational efficiency.

Regression with Physics Constraints
We also implement our AFE algorithm on a physics-
constrained dataset, which consists of 14 elemental proper-
ties as primary features {G1, G2, . . . , G14} for each of 40
possible constituting elements. Here Gi = {f1i , f2i , ..., f40

i }
with f ji representing the ith property of the jth element. The
elemental properties are weighted based on each element’s
contribution for a given material. We apply our AFE strate-
gies to derive sets of descriptors based on these 14×40 pri-
mary features and fit a regression model to predict the target
of the transformation temperature Af .
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Kernels Methods Descriptors
R2 Score
RMSE

Training Prediction

Linear
Regression

Primary Features G1, . . . , G14
0.7070
78.303

0.5762
97.446

DQN-guided FGT
(Constrained method 1)

(f1)∗ = (G3(G1 +G5)/G1)/G13

(f2)∗ = (G
1
2
7 + (G2(G1 −G2)))(G5 +G−23 )

0.7301
75.159

0.5816
96.817

DQN-guided FGT
(Constrained method 2)

(f1)∗ = G2
3 + (G1 +G10)(

√
G5 −G12)

(f2)∗ = G8(G2 −G6G13)−G2
6G13 −G2

4 −G2
1

0.7268
75.605

0.5472
100.724

Table 4: Descriptors derived by physics-constrained AFE and their performance (Note: Descriptors for constrained method 1
and 2 can be interpreted as gm(G1, . . . , G14) = gm(

∑
j(f

j
1 ), . . . ,

∑
j(f

j
14)) and gm(G1, . . . , G14) =

∑
j gm(f j1 , . . . , f

j
14).)

The reason for the constraints is that, in materials sys-
tems, rules must be followed to ensure fundamental science
laws not violated. A material can not have elemental con-
tributions that sum to less than or greater than one. To re-
veal underlying physical meaning, the elemental properties
can not be combined in a way that results in an element
preference, such as leaving specific elements and the corre-
sponding properties out of the model. These rules constrain
our possible AFE into two ways. The first is to sum up all
the features with the same property across the different ele-
ments, and then apply AFE on them. The second is to imple-
ment AFE on features with the same element across different
properties and then add them up to perform the regression.

In both implementation methods, we choose the ac-
tion space to be {exp(·), log(·), (·)2, (·)−1,

√
·,+,−,×,÷}.

Due to the increasing number of primary features in this
dataset compared to previous datasets, SISSO is not com-
putationally feasible to identify predictive descriptors within
the runtime budget. We report the results based on our AFE
strategies with DQN. Specifically, we search for a set of two
descriptors of the maximum allowed complexity cmax at 15
with the runtime budget of 6 hours for each descriptor. We
compute the R2 score and RMSE with linear regression to
evaluate the prediction performances of engineered descrip-
tors. For the training vs. test set split, we randomly separate
the dataset with the ratio 8:2, resulting in 472 materials in
the train set and 118 materials in the test set.

Table 4 shows the results from the two physics-
constrained methods. We can see that the derived predic-
tors by the first constrained AFE method achieves the best
training and prediction R2 scores and RMSEs, demonstrat-
ing again that our AFE can help identify interpretable and
predictive descriptors. We note that, although the second
constrained AFE method can find the descriptors with better
training R2 score than the model with only primary features,
the testing R2 score is low. One reason is that the second
strategy searches for descriptors considering algebraic oper-
ations on primary features from 40 possible elements. With
the limited number of training samples, this is more prone to
overfitting than the first constrained AFE method operating
on the 14 summarized primary features (i.e.

∑
j f

j
i ). We ex-

pect that the performance can be improved when more prior
physics knowledge and constraints are available to further
restrict the feasible feature space.

We have further compared our AFE with a recently

developed physics-informed Genetic Programming (GP)
method (Hernandez et al. 2019) to arrive at analytical many-
body classical inter-atomic potentials. With the same simu-
lated molecular dynamics data and experimental setup in the
paper, our AFE has achieved the total system energy predic-
tion with a mean absolute error (MAE) of 119 meV within
12 hours. By contrast, the reported model GP1 by GP in Her-
nandez et al. (2019) had a prediction MAE of 132 meV after
360 CPU hours on the same training and test sets.

Conclusions
In this paper, we present a physics-constrained AFE frame-
work based on the DQN-guided feature generation tree ex-
ploration for predictive modeling in materials science, where
interpretability is critical to help subsequent critical decision
making. The recently developed SISSO (Ouyang et al. 2018)
generates all the complex features and then selects “explan-
able” ones by sure independent screening, which requires
generating an enormous number of complex features (dou-
ble exponential with respect to the number of allowed op-
erators for feature generation), leading to the exponential
memory and computation complexity. On the other hand,
one-step greedy AFE may lose promising features due to the
non-monotonic relationship between features and prediction
accuracy. Our proposed AFE strategies tackle these prob-
lems by approximating the expected future reward of fea-
ture generation through DQN, and replacing the exhaustive
feature generation by DQN-guided FGT exploration consid-
ering physics prior knowledge. Consequently, our AFE en-
hances scalability and computational efficiency without sac-
rificing prediction performance.

The results of our real-world materials science experi-
ments have demonstrated the potential of our DQN-guided
FGT exploration in reducing the runtime and enhancing the
scalability for automatic feature engineering. More impor-
tantly, the engineered descriptors are interpretable with the
corresponding lists of algebraic operations on the original
primary features. Our physics-constrained AFE can be gen-
eralized to other sciML problems involving complex sys-
tems, where training data tend to be scarce and noisy as
obtaining data can be difficult, time-consuming, and costly.
Generalizable learning under data scarcity and uncertainty
is critical in these problems, and interpretable instead of
“blackbox” learning helps new knowledge discovery and
better decision making.
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