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Abstract

We study MNL bandits, which is a variant of the traditional
multi-armed bandit problem, under risk criteria. Unlike the
ordinary expected revenue, risk criteria are more general
goals widely used in industries and business. We design al-
gorithms for a broad class of risk criteria, including but not
limited to the well-known conditional value-at-risk, Sharpe
ratio, and entropy risk, and prove that they suffer a near-
optimal regret. As a complement, we also conduct experi-
ments with both synthetic and real data to show the empirical
performance of our proposed algorithms.

Introduction
Dynamic assortment optimization is one of the fundamen-
tal problems in online learning. It has wide applications in
industries, for example retailing and advertisement. To mo-
tivate the study of the problem, let us consider e-commerce
companies like Amazon and Wish who want to sell products
to online users when they visit the websites and search for
some type of products, for example, headphones. Such com-
panies usually have a variety of products with that type in
a warehouse to sell. Due to the space constraints of a web-
site, it is not possible to exhibit all of the available prod-
ucts. Hence, each time when an online user visits the web-
site, only a limited number of products can be displayed.
When an online user buys a product, the company will get
some profit. So one natural goal for the company is to dis-
play on the website an assortment consisting of several prod-
ucts such that the expected revenue is maximized. However,
in practice, a company may have more complex strategies
other than simply maximizing its revenue, and general risk
criteria may be better choices to serve such goals. For ex-
ample, in risk management, a very common risk criterion
called expected shortfall or conditional value at risk (CVaR)
is defined as the expected revenue under a certain percentile.
If we only consider the expected revenue, we may lead to
focus on recommending some products producing high rev-
enue but purchased only by a small portion of users. If the
company wishes to maintain a higher level of active and di-
versified users, then CVaR is more appropriate. Whether it is
still possible for the sales manager of the company to design
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a near-optimal sales strategy when the goal is changed, for
example to a kind of risk criteria, is a very practical prob-
lem and to the best of our knowledge, has not been studied
before.

Suppose a company has N products of a certain category
to sell during a sales season, which can be represented by
[N ], where [N ]

def
= {1, 2, . . . , N} and each product corre-

sponds to an element in [N ]. Let T be the total number of
times such products are searched during a sales season and
St be the assortment displayed by the website at tth time of
the request. The aforementioned sales activity can be mod-
eled by the following game which runs in T time steps: at
time step 1 6 t 6 T , when an assortment St ⊂ [N ] is dis-
played by the website, the online user will make a choice,
i.e., whether to buy a product in St or purchase nothing.
Following the previous motivation example, we add a car-
dinality constraint, which means the number of products in
St can not exceed a predefined number K 6 N . Let ct de-
note the choice of the online user at time t. When ct = i, it
means that the online user buys product i. For convenience,
we use ct = 0 to represent the situation when the online user
does not purchase anything. In general, ct can be viewed as
a random variable and there is no doubt that the multinomial
logit model (MNL) (Agrawal et al. 2019) has become the
most popular one to model the behavior of the online user,
i.e., ct, when St is provided. Dynamic assortment optimiza-
tion with the MNL choice model is also called MNL bandits.
In this model, each product i is assumed to be related to an
unknown preference parameter vi and the probability that a
visiting online user chooses product i given assortment St is
defined by

P(ct = i)
def
=

vi
1 +

∑
j∈St

vj
, (1)

where we set the preference parameter of no-purchase v0 =
1. Note that this assumption does not harm the model too
much since one can easily scale vi’s to satisfy this condition.
Following the literature, we also assume no-purchase is the
most frequent choice i.e., 0 6 vi 6 1, which is often a
reasonable assumption in sales activities.

During the last decade, MNL bandits has attracted much
attention (Rusmevichientong, Shen, and Shmoys 2010;
Sauré and Zeevi 2013; Agrawal et al. 2017, 2019; Dong et al.
2020). However, all of the previous works consider maxi-
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mizing the expected revenue, which is not always appropri-
ate for practical applications. In this paper, we are interested
in designing algorithms for a general class of risk criteria.

Problem Formulation
Suppose for each product i ∈ [N ], selling it successfully can
make the company a profit of ri, which is known beforehand.
Without loss of generality, we assume ri ∈ (0, 1]. This can
always be achieved by proper scaling. Moreover, the profit
for no-purchase is r0 = 0. Then at time step t > 1, when
assortment St ⊂ [N ] and preference parameter vector v =
(v1, . . . , vN ) are provided, the profit can be represented by
a random variable X(St,v) defined by

P(X(St,v) = ri) = P(ct = i) =
vi

1 +
∑
j∈St

vj
(2)

for i = 0 and all i ∈ St. In addition, we denote by F (St,v)
the cumulative distribution function toX(St,v). Given time
horizon T , one natural goal, as explained in the introduction,
is to find a policy equipped by the decision maker such that
the expected revenue, i.e.,

T∑
t=1

R(St,v) =
T∑
t=1

E [X(St,v)] (3)

is maximized, where R(St,v) represents the expected profit
when St is served. This has been investigated previously in
(Agrawal et al. 2017, 2019).

In this paper, instead of expectation, we consider a gen-
eral class of risk criteria. Some examples of such risk criteria
can be found in (Cassel, Mannor, and Zeevi 2018). Suppose
D is the convex set of cumulative distribution functions. In
general, we consider the risk criterion U which is a function
fromD to R. In the case of expectation, U(F ) =

∫
xdF (x).

In particular, since we assumed that ri ∈ (0, 1], we will only
need F ∈ D[0, 1], where we denote by D[0, 1] the subspace
ofD consisting of F that is the cumulative distribution func-
tion of random variable X taking values on [0, 1]. The goal
of this paper is to find a policy such that the following quan-
tity

E

[
T∑
t=1

U(F (St,v))

]
(4)

is maximized. Let S∗ be the smallest assortment such that
U(F (S∗,v)) = max

S⊂[N ],|S|6K
U(F (S,v)).

The regret of the game after T time steps, which is a quan-
tity measuring the difference between the optimal policy and
policy π used by the decision maker, is defined as

Rπ
T ([N ],v, r)

def
= TU(F (S∗,v))− E

[
T∑
t=1

U(F (St,v))

]
. (5)

where r = (r1, · · · , rN ) and v = (v1, · · · , vN ).
When it is clear from the context, we usually omit the

policy π and parameters ([N ],v, r). Without much effort,
we can see that maximizing (4) is equivalent to minimizing
the regret (5).

Related Work and Our Contribution
To the best of our knowledge, we are the first to study MNL
bandits under general risk criteria.

In the past decade, there have been many works on the
MNL bandit problem considering maximizing the expected
revenue (3). In (Rusmevichientong, Shen, and Shmoys
2010; Sauré and Zeevi 2013), the authors assumed the gap
between the best and the second-to-the-best assortments is
known and proposed “Explore-then-Commit” algorithms.
Later in (Agrawal et al. 2019), the authors proposed the
state-of-the-art UCB-type algorithm with a regret upper
bound O(

√
NT lnT ). Authors in (Agrawal et al. 2017) uti-

lized the Bayesian method i.e., Thompson Sampling to de-
sign an algorithm which performs well in practice. For the
expected revenue, it is showed in (Chen and Wang 2018) that
the lower bound for the regret is Ω(

√
NT ).

There are a lot of previous works studying different risk
criteria in multi-armed bandits (Sani, Lazaric, and Munos
2012; Maillard 2013; Galichet, Sebag, and Teytaud 2014;
Zimin, Ibsen-Jensen, and Chatterjee 2014; Vakili and Zhao
2016). In (Cassel, Mannor, and Zeevi 2018), the authors es-
tablished a thorough theory to deal with general risk criteria.

Our Contribution Note that directly applying the algo-
rithm proposed in (Cassel, Mannor, and Zeevi 2018) will

lead to a regret of Ω

(√(
N
K

)
T

)
since each assortment cor-

responds to an arm, which is far from being optimal. We can
not simply take each product as an arm since the optimal as-
sortment may consist of multiple products due to that there
is an involved relationship between the risk criterion of the
assortment and the underlying preference parameters, which
is characterized by the following two complex structures: a
general (and non-specific) risk function and the multinomial
logit choice model. In this paper, we are able to gain a clearer
understanding of the challenge raised by these two complex
structures. To be more specific, we recognize three mild con-
ditions that are easy to verify and show that the class iden-
tified by the aforementioned conditions encompasses most
of the risk criteria that are of interest in literature (see Ta-
ble 1). We also design and analyze the algorithmic frame-
work, proving that our algorithm achieves Õ(

√
NT ) regret

for any general risk criterion that belongs to the class.

Assumptions
In this section, we first present the aforementioned three as-
sumptions the risk criterion U should satisfy.

Assumption 1 (Quasiconvexity). U is quasiconvex on
D[0, 1], i.e., for any λ ∈ [0, 1] and F1, F2 ∈ D[0, 1], it satis-
fies

U(λF1 + (1− λ)F2) 6 max{U(F1), U(F2)}. (6)

In addition to quasiconvexity, we also make the following
two assumptions on U .

Assumption 2 (Boundedness). For any F ∈ D[0, 1] it holds
that |U(F )| 6 γ1.
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Assumption 3 (One-sided Lipschitz Condition). For any
v′ > v, i.e., v′i > vi for all i ∈ [N ], and S ⊂ [N ], it
holds that

U(F (S,v′))− U(F (S,v))

6
γ2

1 +
∑
i∈S vi

[∑
i∈S

(v′i − vi)

]
.

Note that here γ1 and γ2 are universal constants related to
the risk criterion U .

We note that quasiconvexity is a natural assumption as
most practical risk criteria considered in literature are quasi-
convex. In Table 1, we give a list of the risk criteria consid-
ered, which are all quasiconvex as shown in (Cassel, Man-
nor, and Zeevi 2018). To complement, we also show in Ta-
ble 1 that whether a risk criterion satisfies Assumption 2 and
Assumption 3, and give concrete values of γ1 and γ2. It turns
out that all the risk criteria listed in Table 1 satisfy all three
assumptions except VaR, which does not meet Assumption
3 since it is discontinuous in v,

Algorithms
Due to space constraints, we only show RiskAwareUCB,
which is a variant of the UCB-type algorithm proposed in
(Agrawal et al. 2019), and its guarantee. In a similar way,
we also propose RiskAwareTS, a variant of the Thomp-
son Sampling algorithm proposed in (Agrawal et al. 2017).
Please refer to Appendix B for its precise description and
near-optimal guarantee.

The high level idea of the proposed algorithm
RiskAwareUCB is as follows. We divide all the time
steps i.e., [T ] into small episodes. During each episode `,
the same assortment S` is repeatedly provided to the online
user until a no-purchase outcome is observed. Specifically,
in each episode `, we are providing the assortment

argmaxS⊂[N ],|S|6K U(F (S, ṽ`)),

where ṽ` is an optimistic estimate of the real unknown pref-
erence parameters before the start of episode `. The details
of RiskAwareUCB is described in Algorithm 1 where ti,` is
the number of times the online users buy product i in the
`th episode and Ti(`) denotes the collection of episodes for
which product i is served until episode ` (exclusive).

Then we have the following theoretical upper bound for
RiskAwareUCB.
Theorem 4. Suppose the risk criterion U satisfies Assump-
tion 1, 2 and 3. The regret (5) incurred by the decision maker
using RiskAwareUCB is upper bounded by Õ(

√
NT ) after

T time steps, where Õ hides poly-logarithmic factors in N
and T .

Before proceeding, we first prove the following key
lemma, which says that the risk gain of the optimal assort-
ment calculated by an optimistic estimate of the preference
parameters is never worse than that of S∗.
Lemma 5 (Monotone Maximum). For any v′ > v, it holds
that

max
S⊂[N ],|S|6K

U(F (S,v′)) > U(F (S∗,v)).

Algorithm 1: RiskAwareUCB(N,K, r, U)

1 Initialize t← 1, `← 1, ṽ`i ← 1 for i ∈ [N ] and
Ti(`)← ∅ for i ∈ [N ]

2 while t 6 T do
3 S` ← argmaxS⊂[N ],|S|6K U(F (S, ṽ`))

4 Initialize ti,` ← 0 for i ∈ [N ]
5 repeat
6 Serve S` and observe customer choice ct
7 if ct 6= 0 then tct,` ← tct,` + 1
8 t← t+ 1
9 until t > T or ct−1 = 0

10 for i ∈ [N ] do
11 if i ∈ S` then Ti(`+ 1)← Ti(`) ∪ {`}
12 else Ti(`+ 1)← Ti(`)
13 `← `+ 1, Ti(`)← |Ti(`)| for i ∈ [N ]

14 v̄`i ←
∑

`′∈Ti(`)
ti,`′

Ti(`)
for i ∈ [N ]

15 ṽ`i ← min

{
v̄`i +

√
v̄`i ·

48 ln(
√
N`+1)

Ti(`)
+

48 ln(
√
N`+1)

Ti(`)
, 1

}
for i ∈ [N ]

Proof. Fix S, we first prove that U(F (S,u)) is a quasicon-
vex function with respect to vector u. This statement can be
easily verified by noticing that for any λ ∈ [0, 1] and u′, we
have

U(F (S, λu + (1− λ)u′))

= U

(
λ(1 +

∑
i∈S ui)

λ(1 +
∑
i∈S ui) + (1− λ)(1 +

∑
i∈S u

′
i)
F (S,u)

+
(1− λ)(1 +

∑
i∈S u

′
i)

λ(1 +
∑
i∈S ui) + (1− λ)(1 +

∑
i∈S u

′
i)
F (S,u′)

)
6 max{U(F (S,u)), U(F (S,u′))}
where the last inequality is due to quasiconvexity of U on
D[0, 1].

Next, we show the following lemma.

Lemma 6. Given a quasiconvex function V (u) defined on
[0, 1]n, suppose there is a point ū = (ū1, · · · , ūn) ∈ [0, 1]n

satisfying that V (ū) > V (u) for any point u 6= ū such
that ui = ūi or 0 for each i from 1 to n. Then we have that
V (u′) > V (ū) for any u′ > ū.

Proof. For the sequence of points u(i) = (u
(i)
1 , . . . , u

(i)
n )

with i = 1, 2, . . . , n such that

u
(i)
j =

{
ūj j 6= i

0 j = i,

we have that V (u(i)) < V (ū). For any u′ > ū and u′ 6= ū,
we define

λi =

(
u′i − ūi
ūi

)( n∑
i=1

u′i − ūi
ūi

)−1
.
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Risk Criterion (Parameter) Property γ1 γ2
VaRα Quasiconvex 1 Not Exist

CVaRα Convex 1 3/α
nth-moment Linear 1 1

Entropy risk (θ) Convex 1 2eθ/θ
Below target semi-variance (r) Linear r2 2r2

Negative variance Convex 1
4

6
Mean-variance (ρ) Convex 1 + ρ

4 2 + 6ρ
Sharpe ratio (r, ε) Quasiconvex 1√

ε
2ε−1/2 + 3ε−3/2

Sortino ratio (r, ε) Quasiconvex 1√
ε

2ε−1/2 + ε−3/2

Table 1: Widely Used Risk Criteria

Here λi ∈ [0, 1] for all i = 1, 2, · · · , n and
∑n
i=1 λi = 1.

Then the convex combination of u(i)

ũ =
n∑
i=1

λiu
(i)

is on the same line as u′ and ū. By the quasiconvexity of
V , we have that V (ũ) 6 maxni=1 V (u(i)) < V (ū). If we
define λ = 1

1+
∑n

i=1 λi
, then

V (ū) = V (λũ + (1− λ)u′) 6 max{V (ũ), V (u′)},

which means we must have V (ū) 6 V (ū′).

Let S† be the smallest assortment such that

U(F (S†,v′)) = max
S⊂[N ],|S|6K

U(F (S,v′)). (7)

Together with Lemma 6, we obtain that U(F (S†,v′)) >
U(F (S∗,v′)) > U(F (S∗,v)), which concludes the proof
of this lemma.

Lemma 7. Given any ` > 0 and C1, C2 > 0, we define
event

E` =

{
∀i ∈ [N ], vi 6 ṽ`i 6 vi + C1

√
vi ln(

√
N`+ 1)

Ti(`) ∨ 1

+ C2
ln(
√
N`+ 1)

Ti(`) ∨ 1

}
.

There exist real numbers C1, C2 > 0 such that

P(E`) > 1− 1

`

for any `.
Lemma 7 can be easily derived from Lemma 4.1 of

(Agrawal et al. 2019). So we omit its proof here.

Proof of Theorem 4. Before proceeding, we introduce sev-
eral notations. Let L be the total number of episodes when
RiskAwareUCB stops after T steps. Denote l` by the length
of the `th episode. Moreover, set ni = Ti(L), which is the
total number of episodes product i is served before the Lth
episode.

Using the law of total expectation, we rewrite the regret
as

RT = E

[
L∑
`=1

l` (U(F (S∗,v))− U(F (S`,v)))

]

= E

[
L∑
`=1

E[l`(U(F (S∗,v))− U(F (S`,v))) | H`]

]
,

where H` is the history before episode `. Since S` is deter-
mined byH`, there is

RT = E

[
L∑
`=1

E[l` | H`](U(F (S∗,v))− U(F (S`,v)))

]
.

Given S`, we know that l` follows a geometric distribu-
tion with parameter 1/(1 +

∑
i∈S`

vi). Hence we have
E[l` | H`] 6 1 +

∑
i∈S`

vi. We put inequality here since
the last episode may end due to time limit. Using aforemen-
tioned inequality, we further derive

RT 6 E

[
L∑
`=1

E

[(
1 +

∑
i∈S`

vi

)

× (U(F (S∗,v))− U(F (S`,v)))

]]

= E

[
L∑
`=1

Eδ`

]
, (8)

where we have defined δ`
def
= (1 +

∑
i∈S`

vi) ×
(U(F (S∗,v))− U(F (S`,v))).

We now focus on bounding Eδ`. By a simple calculation,
we get

Eδ` = E[δ`1Ec` ] + E[δ`1E` ]

6 2γ1(N + 1)P(Ec` ) + E[δ` | E`]P(E`)

6
2γ1(N + 1)

`
+ E[δ` | E`]P(E`), (9)

where in the second last inequality, we upper bound δ` using
vi 6 1 and Assumption 2, and the last inequality is due to
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Lemma 7. By Lemma 5 and Assumption 3, we get
E[δ` | E`]

6 E

[
(1 +

∑
i∈S`

vi)(U(F (S`, ṽ
`)− U(F (S`,v)) | E`

]

6 E

γ2 ∑
i∈S`

C1

√
vi ln(

√
N`+ 1)

Ti(`) ∨ 1

+C2
ln(
√
N`+ 1)

Ti(`) ∨ 1

)]
, (10)

where in the last equality we have used the definition of
event E`. By (9) and (10), we have

Eδ` 6
2γ1(N + 1)

`
+ E

γ2 ∑
i∈S`

C1

√
vi ln(

√
N`+ 1)

Ti(`) ∨ 1

+C2
ln(
√
N`+ 1)

Ti(`) ∨ 1

)]
. (11)

Putting (11) back into (8), we derive
RT

6 2γ1(N + 1)E

[
L∑
`=1

1

`

]
︸ ︷︷ ︸

(∗)

+ γ2C1

√
ln(
√
NT + 1)E

[
L∑
`=1

∑
i∈S`

√
vi

Ti(`) ∨ 1

]
︸ ︷︷ ︸

(∗∗)

+ γ2C2 ln(
√
NT + 1)E

[
L∑
`=1

∑
i∈S`

1

Ti(`) ∨ 1

]
︸ ︷︷ ︸

(∗∗∗)

. (12)

Note that (∗) 6
∑T
`=1 `

−1 6 lnT + γ, where γ is Eu-
ler’s constant. Next we bound (∗∗). Let K be the set {(i, `) :
Ti(`) = 0}. It is easy to see |K| 6 N . Together with obser-
vation

∑j
i=1

1√
i
6 2
√
j and Jensen’s inequality, we derive

(∗∗) 6 N + E

∑
i∈[N ]

√vi ni∑
j=1

1√
j


6 N + 2E

∑
i∈[N ]

√
vini

 6 N + 2

√√√√√NE

∑
i∈[N ]

vini

,
where ni is the total number of episodes product i is served
before the Lth episode. Noting that

T > E

[
L−1∑
`=1

E[l`|H`]

]

= E

[
L−1∑
`=1

(1 +
∑
i∈S`

vi)

]
> E

∑
i∈[N ]

vini

 ,

we obtain (∗∗) 6 N + 2
√
NT. Finally, we bound (∗ ∗ ∗)

using

(∗ ∗ ∗) 6 N + E

∑
i∈[N ]

(lnni + γ)


6 N(1 + γ) +N ln

∑
i∈[N ] ni

N
6 N(1 + γ) +N lnT

Putting inequalities of (∗), (∗∗) and (∗ ∗ ∗) back into (12),
we obtain

RT 6 2γ1(N + 1)(lnT + γ)

+ γ2C1

√
ln(
√
NT + 1)(2

√
NT +N)

+ γ2C2 ln(
√
NT + 1)(N lnT +N(1 + γ))

= Õ(
√
NT )

and the proof is complete.

Examples of Risk Criteria
In this section, we show that conditional value-at-risk,
Sharpe Ratio, and entropy risk all satisfy Assumption 2 and
Assumption 3. For the proof of the other risk criteria listed
in Table 1, we refer to Appendix A.

For proving the one-sided Lipschitz condition, the follow-
ing lemma is useful. The proof of Lemma 8 is in Appendix
A.

Lemma 8. For any v′ > v, i.e., v′i > vi for all i ∈ [N ], and
S ⊂ [N ], it holds that∑

i∈S

∣∣∣∣ v′i
1 +

∑
i∈S v

′
i

− vi
1 +

∑
i∈S vi

∣∣∣∣ 6
2

1 +
∑
i∈S vi

[∑
i∈S

(v′i − vi)

]
. (13)

Conditional Value-at-risk
Given α ∈ (0, 1], the conditional value-at-risk at α per-
centile for F ∈ D[0, 1] is defined as

CVaRα(F )
def
=

1

α

∫ α

0

VaRβ(F )dβ.

An equivalent definition is

CVaRα(F ) =
1

α

(
α−

∫ 1

0

(F (x) ∧ α)dx

)
.

Proposition 9. CVaRα satisfies Assumption 2 and Assump-
tion 3 with γ1 = 1 and γ2 = 3/α.

Proof. It is easy to see that |CVaRα(F (S,v))| 6 1, which
implies γ1 = 1.

We now show the value of γ2. Without loss of generality,
we can assume that the profit of different products are dif-
ferent since for those items with the same revenue, we can
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combine them into one product and the corresponding ab-
straction parameter is the sum of those of the arms. Given
assortment S, we denote the products in S by [|S|] in the
increasing order of their profit. Then for any k + 1 ∈ [|S|]
and x ∈ [rk, rk+1)

F (S,v′;x)− F (S,v;x) =
1 +

∑k
i=1 v

′
i

1 +
∑|S|
i=1 v

′
i

−
1 +

∑k
i=1 vi

1 +
∑|S|
i=1 vi

.

Note that for any x ∈ [rk, rk+1), by Lemma 8

|F (S,v′;x)− F (S,v;x)|

6

∣∣∣∣∣ 1

1 +
∑|S|
i=1 v

′
i

− 1

1 +
∑|S|
i=1 vi

∣∣∣∣∣
+

k∑
i=1

∣∣∣∣∣ v′i

1 +
∑|S|
i=1 v

′
i

− vi

1 +
∑|S|
i=1 vi

∣∣∣∣∣
6

∑|S|
i=1 |v′i − vi|(

1 +
∑|S|
i=1 v

′
i

)(
1 +

∑|S|
i=1 vi

)
+

2

1 +
∑|S|
i=1 vi

[∑
i∈S

(v′i − vi)

]

6
3

1 +
∑|S|
i=1 vi

[∑
i∈S

(v′i − vi)

]
.

Clearly the difference between F (S,v′;x) ∧ α and
F (S,v;x) ∧ α satisfies the same bound. Hence

|CVaRα(F (S,v′))− CVaRα(F (S,v))|

6
1

α

(∫ 1

0

|FX(x) ∧ α− FY (x) ∧ α|dx
)

6
3/α

1 +
∑|S|
i=1 vi

 |S|∑
i=1

(v′i − vi)

 .

Sharpe Ratio
Given a minimum average reward r ∈ [0, 1] and the regular-
ization factor ε, for F ∈ D[0, 1] we define

Shr,ε(F ) =
U1(F )− r√
ε+ σ2(F )

,

where U1(F ) is the mean and σ2(F ) is the variance.

Proposition 10. Shr,ε satisfies Assumption 2 and Assump-
tion 3 with γ1 = 1√

ε
and γ2 = 2ε−1/2 + 3ε−3/2.

Proof. Since σ2(F ) > 0, U1(F ) ∈ [0, 1] and r ∈ [0, 1],
it is easy to see that γ1 = 1√

ε
. For the value of γ2, by the

Lipschitz property of the mean and variance (see Appendix

A), we have

|Shr,ε(F (S,v′))− Shr,ε(F (S,v))|

6

∣∣∣∣∣U1(F (S,v′))− U1(F (S,v))√
ε+ σ2(F (S,v′))

∣∣∣∣∣+ |U1(F (S,v))− r|

×

∣∣∣∣∣ 1√
ε+ σ2(F (S,v′))

− 1√
ε+ σ2(F (S,v))

∣∣∣∣∣
6

1√
ε
|U1(F (S,v′))− U1(F (S,v))|

+
|σ2(F (S,v′))− σ2(F (S,v))|√

ε+ σ2(F (S,v′))
√
ε+ σ2(F (S,v))

× 1√
ε+ σ2(F (S,v′)) +

√
ε+ σ2(F (S,v))

6
1√
ε
|U1(F (S,v′))− U1(F (S,v))|

+
1

2ε
3
2

|σ2(F (S,v′))− σ2(F (S,v))|

6
2ε−1/2 + 3ε−3/2

1 +
∑
i∈S vi

[∑
i∈S

(v′i − vi)

]
.

Entropy Risk
Given the risk aversion parameter θ > 0, the entropy risk
measure for F ∈ D[0, 1] is defined as

Uent(F ) = −1

θ
ln

(∫ 1

0

e−θxdF (x)

)
.

Proposition 11. Uent satisfies Assumption 2 and Assump-
tion 3 with γ1 = 1 and γ2 = 2eθ/θ.

Proof. By Jensen’s inequality, we always have |Uent(F )| 6
1. Given a fixed θ > 0, we know that∑

i∈S
e−θri

vi
1 +

∑
i∈S vi

∈ [e−θ, 1].

By the convexity of the log function and Lemma 8, we have
that

|Uent(F (S,v′))− Uent(F (S,v))|

=
1

θ

∣∣∣∣∣ln
(∑
i∈S

e−θriv′i
1 +

∑
i∈S v

′
i

)
− ln

(∑
i∈S

e−θrivi
1 +

∑
i∈S vi

)∣∣∣∣∣
6
eθ

θ

∣∣∣∣∣∑
i∈S

e−θriv′i
1 +

∑
i∈S v

′
i

−
∑
i∈S

e−θrivi
1 +

∑
i∈S vi

∣∣∣∣∣
6

2eθ/θ

1 +
∑
i∈S vi

[∑
i∈S

(v′i − vi)

]
.
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Figure 1: Synthetic Data
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Figure 2: Real Data

Experimental Evaluation
We evaluate RiskAwareUCB and RiskAwareTS against UCB
and TS where the last two algorithms are set to maximize the
expected revenue in both synthetic and real data. Based on
the BanditPyLib library (Holtz, Tao, and Xi 2020), all of the
algorithms1 are implemented in Python3.

Synthetic Data In this experiment, we fix the number
of products N = 10, cardinality limit K = 4, horizon
T = 106, and set the goal to be U = CVaR0.5. We gener-
ate 10 uniformly distributed random input instances where
vi ∈ [0, 1] and ri ∈ [0.1, 1]. For each input instance, we run
20 repetitions and compute their average as the regret. Fig-
ure 1 shows how the worst regret among all input instances
changes with square root of time.

Real Data In this experiment, we consider the “UCI Car
Evaluation Database” dataset from the Machine Learning
Repository (Dua and Graff 2017) which contains 6 cate-
gorical attributes for N = 1728 cars and consumer ratings
for each car. We fix cardinality limit K = 100, horizon
T = 106, and set the goal to be U = CVaR0.05.

By transforming each attribute to a one-hot vector, we ob-
tain an attribute vectormi ∈ {0, 1}21 for each car. There are
four different values for customer ratings i.e., “acceptable”,
“good”, “very good”, and “unacceptable”. We decode “un-
acceptable” by 0 and others by 1 to represent whether the
customer has the intention to buy the car. We use logistic
regression to predict whether the customer is likely to buy
the car and the probability that the customer buys car i is
modeled by

1

1 + exp(−θTmi)
,

where θ ∈ R21 is an unknown parameter. After the model is
fit with L2 regularization, we set the preference parameter vi

1Please refer to https://github.com/Alanthink/aaai2021 for the
source code.

of car i to be the same as the probability predicted by logistic
regression. Since there is no profit data available for cars in
this dataset, we generate uniformly distributed profit ri from
[0.1, 1] for each car.

We run the experiment for 40 repetitions and compute the
average CVaR0.05 for every consecutive 1000 revealed prof-
its. To save time, when computing the assortment with the
best CVaR0.05, we do a local search, i.e., try to replace a
car, add a car or delete a car, and stops if we can not find a
better assortment. Figure 2 shows the results of the experi-
ment.

Discussion From Figure 1, we can see that both
RiskAwareUCB and RiskAwareTS suffer a

√
t-rate

regret. Moreover, RiskAwareTS performs better than
RiskAwareUCB, which aligns with literature that Thompson
Sampling performs better in practice. From Figure 2, we can
see that the obtained CVaR0.05 under UCB and TS are far
from optimal. However, RiskAwareUCB and RiskAwareTS
perform roughly the same. For both of these experiments,
we can see the proposed algorithms RiskAwareUCB and
RiskAwareTS perform much better than UCB and TS.

Conclusion

In this work, we have shown the near-optimal algorithms for
a general class of risk criteria, which only need to satisfy
three mild assumptions. Experiments with both synthetic
and real data are conducted to validate our results and show
that ordinary algorithms suffer a worse performance when
the goal is changed.
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