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Abstract

The increasing demand for democratizing machine learning
algorithms calls for hyperparameter optimization (HPO) so-
lutions at low cost. Many machine learning algorithms have
hyperparameters which can cause a large variation in the train-
ing cost. But this effect is largely ignored in existing HPO
methods, which are incapable to properly control cost during
the optimization process. To address this problem, we develop
a new cost-frugal HPO solution. The core of our solution is a
simple but new randomized direct-search method, for which
we provide theoretical guarantees on the convergence rate and
the total cost incurred to achieve convergence. We provide
strong empirical results in comparison with state-of-the-art
HPO methods on large AutoML benchmarks.

Introduction

Machine learning algorithms usually involve a number of hy-
perparameters that have a large impact on model accuracy and
need to be set appropriately for each task (Melis, Dyer, and
Blunsom 2018). For practitioners to easily and confidently
apply generic ML algorithms, methods that can automati-
cally tune these hyperparameters at low cost are needed. It
motivates research in efficient hyperparameter optimization
(HPO) (Falkner, Klein, and Hutter 2018). HPO is generally
considered as a black-box function optimization problem
where evaluating the black-box function is expensive as train-
ing and validating a model can be time-consuming. Further,
this evaluation cost can be directly affected by a subset of
hyperparameters. For example, in gradient boosted trees, the
variation of the number of trees and the depth per tree can
result in a large variation on training and validation time. In
such scenarios, sample efficiency cannot be directly trans-
lated to cost frugality. Unfortunately, there has not been a
generic HPO formulation that considers the existence of such
cost-related hyperparameters, as previous work is mostly fo-
cused on the case where the evaluation cost is constant or
some special case of variable cost (detailed in Related Work
Section). In this paper, we provide such a formulation to fill
this gap and propose a cost-frugal solution.
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Problem Formulation

Let f(x) denote the validation loss of the concerned ma-
chine learning algorithm under the given training dataset!
and hyperparameter configuration x. Let g(x) denote the
evaluation cost? incurred when obtaining f(x). In general,
g(x) is not constant in the hyperparameter configuration
space X'. Instead, there may exist x;,x2 € X such that
g(x1) > g(x2). The goal of an HPO algorithm 7 is to find
x* = arg min, ¢y f(x). The total cost incurred during this

loss optimization process is G () Zfi"l g(x;), where K
is the number of function evaluations involved when x* is
found by algorithm 7. In this paper, we formulate the cost-
frugal HPO problem as follows: the HPO algorithm 7 needs
to find x* while keeping its total cost G(7) small. When cost
is indeed constant with respect to x, G(7) naturally degen-
erates to the number of iterations for convergence times a
constant, and thus 7 is naturally cost-frugal as long as it has
a good convergence property. In the case where cost-related
hyperparameters exist, this formulation enables a characteri-
zation of the HPO algorithm 7’s cost behavior.

Contribution

In this paper, we take a fresh and unique path of addressing
this problem based on randomized direct search, and develop
a frugal optimization method CFO. Our solution is designed
toward both small iteration number before convergence and
bounded cost per iteration, which lead to low total evaluation
cost under mild conditions. Specifically, CFO is built upon
our newly proposed randomized direct search method FLOW?,
which can have an approximately optimal total cost when
minimizing loss. Our solution is backed by both theoretical
and empirical studies.

On the theoretical side, we first prove that FLOW? enjoys

a convergence rate of O(\/i%) even in the non-convex case

under a common smoothness condition. This convergence
result is of independent interest in the theory of derivative-
free optimization. Then we prove that due to FLOW?’s unique

"'We assume the concerned ML algorithm, training datasets and
validation methods are all fixed.

2Throughout this paper, evaluation cost refers to the computa-
tion/time needed for training and validating an ML algorithm with
the given training and validation dataset.



update rule, when it is combined with a low-cost initialization,
the cost in any iteration of FLOW? can be upper bounded
under reasonable conditions, and the total cost for obtaining
an e-approximation of the loss is bounded by O(de~?) times
the optimal configuration’s cost by expectation. To the best
of our knowledge, such theoretical bound on cost does not
exist in any HPO literature.

On the empirical side, we perform extensive evaluations
using a latest AutoML benchmark (Gijsbers et al. 2019)
which contains large scale classification tasks. We also enrich
it with datasets from a regression benchmark (Olson et al.
2017) to test regression tasks. Compared to existing random
search algorithm and four variations of Bayesian optimiza-
tion, CFO shows better anytime performance and better final
performance in tuning a popular library XGBoost (Chen and
Guestrin 2016) and deep neural networks on most of the tasks
with a significant margin.

Related Work

The most dominating search strategy for HPO is Bayesian
optimization (BO), which uses probabilistic models to ap-
proximate the blackbox function to optimize. Notably ef-
fective BO-based HPO methods include Gaussian process
(GP) (Snoek, Larochelle, and Adams 2012), tree Parzen esti-
mator (TPE) (Bergstra et al. 2011) and sequential model-
based algorithm configuration method (SMAC) (Hutter,
Hoos, and Leyton-Brown 2011). However, classical BO-
based methods are mainly designed for minimizing the total
number of function evaluations, which does not necessar-
ily lead to low evaluation cost. Some recent work studies
ways to control cost in HPO using multi-fidelity optimiza-
tion. FABOLAS (Klein et al. 2017) introduces dataset size
as an additional degree of freedom in Bayesian optimiza-
tion. Hyperband (Li et al. 2017) and BOHB (Falkner, Klein,
and Hutter 2018) try to reduce cost by allocating gradually
increasing ‘budgets’ in the search process. The notion of bud-
get can correspond to either sample size or the number of
iterations for iterative training algorithms. These solutions
assume the evaluation cost to be equal or similar for each
fixed ‘budget’, which is not necessarily true when there exist
cost-related hyperparameters. These solutions also require
a predefined ‘maximal budget’ and assume the optimal con-
figuration is found at the maximal budget. So the notion of
budget is not suitable for modeling even a single cost-related
hyperparameter whose optimal value is not necessarily at
maximum, e.g., the number K in K-nearest-neighbor algo-
rithm. The same is true for two other multi-fidelity methods
BOCA (Kandasamy et al. 2017) and BHPT (Lu et al. 2019).

The only existing method for generic cost-related hyperpa-
rameters is Gaussian process with expected improvement per
second (GPEIPS) (Snoek, Larochelle, and Adams 2012). It
models the evaluation cost using another Gaussian process,
and heuristically adds the estimated cost into the acquisition
function. Although this method is applicable to generic cost-
related hyperparameters, there is no theoretical guarantee on
either the optimization of loss or cost.
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Algorithm 1 FL.OW?

1: Inputs: Stepsize § > 0, initial point xo which has a low
cost, i.e., small g(xg), and number of iterations K.

2: Initialization: Obtain f(x()

3: fork=0,1,2,..., K — 1do

4: Sample uy, uniformly at random from unit sphere S
5: if f(xr + dug) < f(xx) then x; 11 = x3, + duy
6: else if f(x; — duy) < f(x1) then

7. Xp+1 = XE — ouy,

8: else x;41 = xy,

Method

In this section we first present our proposed randomized
direct search method FLOW?; then we present theoretical
guarantees about both convergence and the cost of FLOW?;
at last we present our cost-frugal HPO method CFO, which
is built upon FL.OW? and several practical adjustments.

FLOW?

The proposed algorithm FLOW? is presented in Algorithm 1,
taking the step size §, the number of iterations K, and the
initial value x as the input. We denote by x; the incumbent
configuration at iteration k. FLOW? proceeds as follows: at
each iteration k, we sample a vector uy uniformly at random
from a (d — 1)-unit sphere S. Then we compare loss f(xj +
duy) with f(xy), if f(xg + dug) < f(xg), then xp4q is
updated as xj + duy; otherwise we compare f(x; — dug)
with f(xg). If the loss is decreased, then x4 1 is updated as
Xj, — 0uy, otherwise x4 1 stays at xy.

FLOW? is a simple but carefully designed randomized di-
rect search method. Intuitively speaking, when a low-cost
initialization point is provided, FLOW? starts from a low-
cost region and gradually moves towards low-loss region,
attempting to avoid evaluations on high-cost and high-loss
hyperparameters. Although the algorithm does not explicitly
use the cost information except a requirement of a low-cost
initial point, it does implicitly leverage relations between the
configurations and their corresponding cost, and the loss and
cost of each configuration. FLOW? has some very nice prop-
erties including bounded number of iterations and bounded
cost per iteration, which together make FLOW? cost-frugal.
We remark that existing randomized search methods fail to
bound the total cost as we demonstrate analytically later in
this section and empirically in the Experiment Section. In
the following, we elaborate more on FLOW?’s cost frugality,
along with the comparison with existing methods.

Insights about the frugality of FLOW?. We first recognize
that the exact analytic form of g(x) is usually not completely
present, mainly because hyperparameters can have complex
interactions with the training and inference of an ML algo-
rithm. g(x) can be observed after evaluating x (i.e., after
the training and validation of the ML algorithm using x),
and in some cases estimated after enough observations. It is
highly non-trivial how to effectively incorporate the observed
or estimated cost information into the search process with-
out affecting the convergence of loss. For example, simply
downweighting the priority of high-cost configurations (as



used in GPEIPS) may make an HPO algorithm spend a long
time evaluating many cheap but high-loss configurations. In
addition, from the engineering perspective, cost observations
are not necessarily reliable or available depending on the
runtime environment. Therefore, FLOW? is designed not to
require the exact analytic form of cost function or estimation
from observations. Instead, FLOW? specializes its new con-
figuration proposal and incumbent configuration update rules
while doing a randomized direct search. Perhaps surprisingly,
our algorithm without explicit usage of any observed or esti-
mated cost information outperforms previous work using that
information. Our algorithm does implicitly leverage some
properties of the cost function such as Lipschitz continuity,
which are detailed in the cost analysis of FLOW? subsection.
When FLOW?’s specialized update rules are combined with
those properties, it can restrict its search in a subspace of
the original search space where the cost of each point is not
unnecessarily high, without violation of its convergence rate.

Here let us briefly explain how our update rules are spe-
cialized for the sake of cost frugality. Let x2** denote the cur-
rently best configuration (i.e., having the lowest loss) found
in FLOW? at iteration k. Since at every iteration FLOW? first
checks whether the proposed new points x; + duy can de-
crease loss before updating xj41 to X £ duy, or to xy, it
guarantees at any iteration k, (Property 1) xj, = x2*' is al-
ways true; (Property 2) the next incumbent configuration
X1 1s always in a neighboring area of x; (Property 3) ex-
cept the initialization step, evaluations of new configurations
are only invoked in line 5 or line 6 of Algorithm 1, which
correspond to a cost of at most g(xj + duy) + g(xx — duy).
Property 1 and Property 2 can help us establish a bound on
the difference between the cost of the new incumbent con-
figuration g(xy+1) and the cost of the currently best point
g(xts"). If the starting point Xy is initialized at the low-cost
region?, we can further prove that g(x. 1) will not be too
much larger than g(x*). Combining the above conclusions
with Property 3, we bound the cost incurred in each iteration
of FL.OW?. Then with the convergence guarantee, we can
finally bound the total cost incurred in FLOW? (detailed in
Proposition 2 and Theorem 3).

Comparison with existing algorithms. Compared to our
method, commonly used Bayesian optimization methods in
HPO cannot guarantee Property 2 and 3 introduced before
and thus can hardly have a theoretical guarantee on the total
cost. Our method is closely related to directional direct search
methods (Kolda, Lewis, and Torczon 2003) and zeroth-order
optimization (Nesterov and Spokoiny 2017). Directional di-
rect search methods can guarantee Property 1 and 2 but they
usually cannot guarantee Property 3 and do not have a good
convergence result. Our method inherits advantages of zeroth-
order optimization (Nesterov and Spokoiny 2017) in terms
of being able to use randomized function evaluations to ap-
proximate gradient information (directional derivative in our
case) for general black-box functions, which is the key for
our good convergence rate guarantee. However, zeroth-order
optimization methods usually cannot guarantee Property 1.

*We call a region low-cost region if g(x) < g(x*) for all x in
that region, and high-cost region otherwise.
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Because of the reasons above, it is difficult for both types of
the aforementioned methods to establish a bound on the cost
similar to FLOW?. Our method also shares a similar spirit
with hypergradient descent techniques (Maclaurin, Duve-
naud, and Adams 2015; Pedregosa 2016) in the sense that we
are all trying to use approximated gradient information (with
respect to hyperparameters) to guide the search. However,
the application of hypergradient descent techniques depends
on how the training algorithm works while our method is
applicable to general black-box functions.

Convergence of FLOW?

Insights about convergence. From the convergence perspec-
tive, FLOW? is built upon the insight that if f(x) is dif-
ferentiable* and § is small, w can be consid-
ered as an approximation to the directional derivative of
loss function on direction u, i.e., f},(x). By moving toward
the directions where the approximated directional derivative
w ~ f/(x) is negative, it is likely that we can
move toward regions that can decrease the loss. Following
this intuition, we establish rigorous theoretical guarantees for
the convergence of FLOW? in both non-convex and convex
cases under a L-smoothness condition.

Condition 1 (L-smoothness). Differentiable function f is
L-smooth if for some non-negative constant L, Vx,y € X,
[f(y) = f(x) = V) (y —x))| < 5y — x||*, where
V f(x) denotes the gradient of f at x.

Proposition 1. Under Condition 1, FLOW’ guarantees
2 . .

Fxr) = ELf (xps1)[xi] > 6-cal| V£ (i) |2 = £5-. in which

_ 2I'(4) ) .
€= B vE and T'(+) denotes the Gamma function.

This proposition provides a lower bound on the ex-
pected decrease of loss for every iteration in FLOW?, i.e.,
f(xk) — E[f (xg+1)|xx], where expectation is taken over the
randomly sampled directions uy.

Proof idea The main challenge in our proof lies in the fact
that while uy, is sampled uniformly from the unit hypersphere,
the update condition (Line 5 and 6, which are also designed
with the purpose of cost control) filters certain directions,
and complicates the computation of the expectation. The
main idea of our proof is to partition the unit sphere S into
different regions according to the value of the directional
derivative. For the regions where the directional derivative
along the sampled direction uy has large absolute value,
it can be shown that our moving direction is close to the
gradient descent direction using the L-smoothness condition,
which leads to large decrease in loss. We prove that even
if the loss decrease for u in other regions is 0, the overall
expectation of loss decrease is close to the expectation of
absolute directional derivative over the unit sphere, which
equals to cq|| f(xz)|2

*For non-differentiable functions we can use smoothing tech-
niques, such as Gaussian smoothing (Nesterov and Spokoiny 2017)
to make a close differentiable approximation of the original objec-
tive function.



In the following two theorems we characterize the rate of
convergence to the global optimal point x* in the convex case
and to first-order stationary points in the non-convex case.

Theorem 1 (Convergence of FLOW? in the convex case). If
f is convex and satisfies Condition 1, E[f (xg)] — f(x*) <

SegK
TR

e ro + LQ‘STdR, in which cq is defined as in Proposition I,

f(XO) - f(x*) and R = manG[K]HXk _ X*H2~ If
cgVK
6o o BIF(e)] = Fox) < =g + 20

Theorem 2 (Convergence of FLOW? in the non-convex case).

.. . ro+1 LK§>
Under Condition 1, minge(r) E[||V f(xx)||2] < %,

in which é = O0(Vd), andro = f(x0) — f(x*). By letting
V£ 6ee)2] = O( 7).

VK

The proof of the theorems above is based on Proposition 1.
It is obvious that when the cost is constant, a good conver-
gence of loss directly translates to a good bound on the total
cost. However this is not necessarily true when cost-related
hyperparameters exist, in which case a naive upper bound for
G(m) can be as large as K* maxyxcx g(x), recalling that K*
denotes the number of iterations used by 7 to find x*.

To

d o \/% minge g B[

Cost Analysis of FLOW?

In this section, we provide a rigorous analysis of the cost
behavior of FLOW?.

Condition 2 (Lipschitz continuity of cost function g(x)). V
X1,X3 € X, |g(x1) — g(x2)| < U x z(x1 — X2), in which
U is the Lipschitz constant, and z(xy1 — X3) Is a particular
distance function of X1 — Xa. For example z(-) can be the
Euclidean norm on the cost-related subset of the dimensions.

Condition 2 recognizes the existence of a certain degree
of continuity in the cost function. Using the gradient boosted
trees example, let x = (z1, x2, 23), where the three coordi-
nates represent the tree number, max tree depth and learning
rate respectively. The assumption implies that the difference
between g((50,10,1;)) and g((51,11,l)), where /; and I5
are two settings of the learning rate, should not be too large.

Using the notations defined in Condition 2, we define
D = U X maxyes z(du), which is intuitively the largest
distance between the points in two consecutive iterations of
FLOW? considering the fact that the new point is sampled
from the (d — 1)-unit sphere surrounding the incumbent point.
We denote by x* a locally optimal point of f.

Condition 3 (Local monotonicity between cost and loss). V
X1,X2 € X, if 2D + g(X*) > g(x1) > g(x2) > g(X*), then
f(x1) > f(x2).

Condition 3 states that when the cost surpasses a locally
optimal point X*’s cost, i.e., g(x) > g(X*), with the increase
of the evaluation cost in a local range, the loss does not
decrease. Intuitively, for most ML models, when the model’s
complexity’ is increased beyond a suitable size, the model’s
performance would not improve with the increase on the
model’s complexity due to overfitting.

SModel complexity is usually positively correlated with evalua-
tion cost.
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Proposition 2 (Bounded cost change in FLOW?). If Condi-
tion 2 is true, then g(xx+1) < g(xx) + D, Vk.

Proposition 3 (Bounded cost for any function evaluation of
FLOW?). Under Condition 2 and 3, if g(x¢) < g(X*), then
g(x) < g(x*) + D, Vk.

Proposition 3 asserts that the cost of each evaluation is
always within a constant away from the evaluation cost of
the locally optimal point. The high-level idea is that FLOW?
will only move when there is a decrease in the validation loss
and thus the search procedure would not use much more than
the locally optimal point’s evaluation cost once it enters the
locally monotonic area defined in Condition 3.

Let G(FLOW?) denotes the expected total evaluation cost
for FLOW? to approach a first-order stationary point f(X*)
within distance €, and K* as the expected number of itera-
tions taken by FLOW? until convergence. According to Theo-
rem2, K* = O(4).

2
Theorem 3 (Expected total evaluation cost of FLOW?).
Under Condition 2 and Condition 3, if K* < [%],

D

G(Frow’) < K*(g(x*) + g(x0)) + 2K*D; else,
G(FLow?) < 2K*g(x*) 4+ 4K*D — (% — 1)y, in which

7 =9g(X") = g(x0) > 0.

Theorem 3 shows that the total evaluation cost of FLOW?
depends on the number of iterations K *, the maximal change
of cost between two iterations D, and the evaluation cost
gap v between the initial point xy and x*. From this result
we can see that as long as the initial point is a low-cost
point, i.e., ¥ > 0, and the step size is not too large such
that D < g(x*), the evaluation cost is always bounded by
G(FLOW?) < 4K*- (9(7) + g(x0) + D) = O(de~2)g(X").
Notice that g(X*) is the minimal cost to spend on evaluating
the locally optimal point X*. Our result suggests that the total
cost for obtaining an e-approximation of the loss is bounded
by O(de?2) times that minimal cost by expectation. When
g is a constant, our result degenerates to the bound on the
number of iterations. We have not seen cost bounds of similar
generality in existing work.

Remark 1. To the best of our knowledge, the only theoreti-
cal analysis for HPO problems that considers cost appears
in Hyperband (Li et al. 2017). They derived a theoretical
bound on the loss with respect to the input budget. How-
ever, as introduced in the Related Work Section, their notion
of ‘budget’ is not suitable for modeling generic cost-related
hyperparameters.

Remark 2. Theorem 3 holds as long as Lipschitz continuity
(Condition 2) and local monotonicity (Condition 3) are sat-
isfied. It does not rely on the smoothness condition. So the
cost analysis has its value independent of the convergence
analysis. This general bound can be further reduced when the
computational complexity of the ML algorithm with respect
to the hyperparameters is partially known (in O(-) notation
instead of the exact analytic form).

Due to the space limit, all proof details and how the bound
on the total cost can be further reduced are deferred to the
technical report of this paper (Wu, Wang, and Huang 2020).
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Figure 1: Performance over time. Lines correspond to mean loss over 10 folds, and shades correspond to 95% confidence intervals

Practical Adjustments

Despite the theoretical guarantee on its good convergence
rate and expected total cost, vanilla FLOW? presented in Algo-
rithm 1 is not readily applicable for HPO problems because
(1) the possibility of getting stuck into local optima; (2) step-
size is needed as a hyperparameter of FLOW?; and (3) the
existence of discrete hyperparameters. Fortunately, those lim-
itations can be effectively addressed using commonly used
practical techniques in optimization. By adopting the practi-
cal adjustments listed below, we turn FLOW? into an off-the-
shelf HPO solution, which is named as CFO (short for Cost-
Frugal Optimization) and presented in Algorithm 2. It is also
worth mentioning that in our empirical evaluations, we used
the same practical adjustments on an existing zeroth-order
optimization method in order to verify the unique advantages
of FLOW? in terms of frugality.

Randomized restart of FLOW?. Similar to most of the other
local search algorithms, FLOW? may suffer from getting
trapped in a local optimum. One common solution to re-
lieve this pain is to restart the algorithm when no progress is
observed (Marti, Moreno-Vega, and Duarte 2010; Zabinsky,
Bulger, and Khompatraporn 2010; Gyoérgy and Kocsis 2011).
Following the same spirit, we restart CFO from a randomized
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starting point when no progress is made in it. Specifically,
in our work, the ‘no progress’ signal is determined by the
number of consecutive no improvement interactions and the
value of stepsize. The randomized starting point is generated
by adding a Gaussian noise g to the original initial point xg.

Dynamic adjustments of stepsize §. To achieve the con-
vergence rate proved before, the stepsize of FLOW?, i.e., §
needs to be set as a constant that is proportionally to 1/ VEK*,
which is difficult to be specified beforehand. Adaptive step-
size is prevalent in iterative optimization and search algo-
rithms (Boyd, Boyd, and Vandenberghe 2004). In our work,
we propose a self-adjustable stepsize rule, which shares the
same spirit with the adaptive rule in (Konnov 2018). The
stepsize is initially §;,,;¢, which we set to be V/d. Tt will be de-
creased when the number of consecutively no improvement
iterations is larger than 29~1. Specifically, § is discounted
by a factor of Ln, in which the reduction ratio n > 1 is

intuitively the ratio between the total number of iterations
taken since the last restart and the total number of iterations
taken to find the best configuration since the last restart. By
doing so, the stepsize reduction ratio 1 does not need to be
pre-specified but is self-adjustable to the progress made by



Algorithm 2 CFO

: Inputs: 1. Feasible search space X, the dimensionality
of which is d. 2. Initial low-cost configuration x.
Initialization: Set initial value x = x (and get f(x)),
8 =0init, k =k =n=r=0,["" = tinf

3: while Budget allows do

4: Sample u uniformly at random from S

5: xT ¢+ Projy(x + du), x~ + Proj(x — du)
6: if f(x') < f(x) thenx + x*

7: elseif f(x7) < f(x) thenx + x~

8: elsen < n+1

9: if f(x) < ("> then [ «— f(x)and k' < k
10: k+—k+1

11:  ifn =291 then

12: n 0,8 6, in whichn = 47

13: if 6 < djower then

14: k < 0, 7 « +inf

15: Reset x + X + g, where g ~ N(0,I)
16: r<r-+1landd < r+ d;nit

the search. In order to prevent § from becoming too small,
we also impose a lower bound on it and stop decreasing &
once it reaches the lower bound djyer, Which is also designed
in a self-adjustable manner.

Projection of the proposed configuration. In practice, the
newly proposed configuration x 4 u is not necessarily in the
feasible hyperparameter space X, especially when discrete
hyperparameters exist. In such scenarios, we use a projection
function Proj . (+) to map it to the feasible space X.

We provide the detailed justifications on the design ratio-
nale of CFO in (Wu, Wang, and Huang 2020).

Discussions

(1) No tuning needed. We realized the practical adjustments
in CFO in a way that is self-adjustable and does not require
on any tuning. (2) Low-cost initialization. The low-cost ini-
tialization is fairly easy to perform in practice because we
do not have any requirement on the performance (in terms
of loss) of it. (3) Parallelization. Our method is easy to be
parallelized. When extra resource is available, instead of
doing purely sequential random restarts, we can start mul-
tiple FLOW? search threads with different initial points and
run them in parallel. (4) Categorical hyperparameters. Our
current method FLOW? is primarily designed for the opti-
mization of numerical hyperparameters with solid theoretical
guarantees. In practice, it is possible to extend it to handle
categorical hyperparameters. For example, we can encode
categorical choices as integers. But instead of using a fixed
mapping between the integer encoding and the categorical
choices, we randomly reassign the categorical choices when
the projected integer for a categorical dimension changes.

CFO is available in an open-source AutoML library
FLAMLS with all the extensions discussed.

Shttps://github.com/microsoft/FLAML/tree/main/flaml/tune
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Experiment

We perform an extensive experimental study using a lat-
est open source AutoML benchmark (Gijsbers et al. 2019),
which includes 39 classification tasks. We enriched it with
14 regression tasks’ from PMLB (Olson et al. 2017). All the
datasets are available on OpenML. Each task consists of a
dataset in 10 folds, and a metric to optimize: Roc-auc for
binary tasks, log-loss for multi-class tasks, and 12 score for
regression tasks. We include 5 representative HPO methods
as baselines, including random search (RS) (Bergstra and
Bengio 2012), Bayesian optimization with Gaussian Process
and expected improvement (GPEI) and expected improve-
ment per second (GPEIPS) as acquisition functions respec-
tively (Snoek, Larochelle, and Adams 2012), SMAC (Hutter,
Hoos, and Leyton-Brown 2011), and BOHB (Falkner, Klein,
and Hutter 2018). The latter four are all based on Bayesian
optimization. Among them, BOHB was shown to be a state of
the art multi-fidelity method. We consider the training sample
size to be the resource dimension required in BOHB. GPEIPS
considers cost by building a probabilistic model about the
configuration cost and using expected improvement per sec-
ond as the acquisition function. In addition to these existing
HPO methods, we also include an additional method CFO-0,
which uses the same framework as CFO but replaces FLOW?
with the zeroth-order optimization method ZOGD (Nesterov
and Spokoiny 2017). Notice that like FLOW?, ZOGD is not
readily applicable to the HPO problem, while the CFO frame-
work permits ZOGD to be used as an alternative local search
method. The comparison between CFO-0 and CFO would
allow us to evaluate the contribution of FL.OW? in controlling
the cost in CFO. All the methods start from the same initial
point as the one used in CFO.

We compare their performance in tuning 9 hyperparame-
ters for XGBoost, which is one of the most commonly used
libraries in many machine learning competitions and appli-
cations. In addition to XGBoost, we also evaluated all the
methods on deep neural networks. The experiment setup and
comparison conclusion are similar to those in the XGBoost
experiment. Due to space limit, we the results on deep neural
networks in (Wu, Wang, and Huang 2020).

Performance curve. To investigate the effectiveness of
CFO’s cost control, we visualize the performance curve over
an one-hour wall clock time period. We include the perfor-
mance curves in tuning XGBoost on 6 datasets in Figure 1
and put the rest in the appendix. These 6 datasets represent
a diverse group: The two rows in Figure 1 include three
small datasets and large datasets respectively. In each row,
the three datasets are for binary classification, multi-class
classification, and regression task respectively. The curves
show that overall it takes RS and classical BO-based methods
much longer time to reach low loss, because they are prone
to trying unnecessarily expensive configurations. In our ex-
periments, GPEIPS outperforms GPEI in some cases (for
example, adult) but tends to underperform GPEI on small
datasets (for example, car) probably due to its penalization
on good but expensive configurations even when budget is

7 Among the 120 regression datasets in PMLB, we selected the
ones whose # of instances are larger than 10K.
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Figure 2: Scores in (a)-(c) are normalized loss (100 for CFO, higher score for lower loss). The colored markers in (c) and (d)
correspond to the cases where a baseline reaches score 99.95 within the time budget. The black markers in (c) do not have

corresponding points in (d)

adequate. CFO—0 shares a similar spirit with CEFO-0 because
ZOGD can also be considered as a randomized direct search
method. However, due to the unique designs in FLOW?, CFO
still maintains its leading performance. CFO demonstrates
strong anytime performance, showing its effectiveness in con-
trolling the evaluation cost incurred during the optimization
process. It achieves up to three orders of magnitude speedup
comparing to other methods for reaching any loss level.

Overall optimality of loss and cost. Figure 2a and 2b
present boxplots of normalized scores (100 for CFO, the
higher score for lower loss) obtained by all the baselines
on all the datasets in tuning XGBoost and DNN within the
required time budget. We can observe that CFO has domi-
nating performance in terms of loss on the large collection
of datasets under the same time budget with the others. To
investigate the methods’ optimality on each dataset, we show
the normalized scores obtained on all the datasets for each
method in tuning XGBoost within the required time budget
in Figure 2c. We can see that CFO is able to find the best loss
on almost all the datasets with a large margin comparing to
the baselines. RS or each BO method has 19%-32% datasets
(diversely distributed) with more than 10% gap in score com-
pared to CFO. There are only two cases where CFO’s score is
lower than a baseline, i.e., BOHB, by 0.4%. Figure 2d shows
the time for reaching the best loss of each dataset, which
means reaching up to 0.05% below the highest score by all
the compared methods within the required time budget in
tuning XGBoost. These results show that (1) overall CFO has
the highest ratio (96%) of reaching the best loss in contrast to
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the very low ratios in baselines (less than 19%); (2) on a very
large fraction of the datasets, CFO can reach the best loss
within a small amount of time while the others cannot reach
the same loss within time budget. (3) in the cases where there
are other methods reaching the best loss, CFO almost always
uses the least amount of time.

Conclusion and Future Work

In this work, we take a novel path of addressing the HPO
problem from the cost aspect, which is under-explored in
existing literature but especially important. We consider our
work one of the initial successful attempts to make HPO cost-
frugal, having both dominating empirical performance and
provable theoretical guarantee on the total cost. Our analysis
of cost control is the first of its kind. It is a good starting
point for better understandings of the cost behaviors of HPO
solutions, including what conditions are needed for the HPO
methods to be cost-frugal. As future work, it is worth study-
ing the theoretical guarantees of our method under weaker
conditions of the cost function. It is also worth studying how
to effectively incorporate cost observations into the HPO
algorithms to make it more frugal. In addition, one unique
property of our method is that its iterative update does not
require the exact difference of the compared configurations’
performance and instead only needs the relative order of
them. This unique property can potentially make CFO robust
to noisy configuration evaluations and open up applications
where relative orders of pairwise configurations performance
comparison are easier or cheaper to obtain.
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Ethical Impact

Our work can help reduce the cost of doing hyperparameter
optimization. It can be used to build more efficient automated
machine learning (AutoML) solutions, which can save the ef-
fort and time of data scientists, and allow non-experts to make
use of machine learning models and techniques. In a broader
sense, we consider our work as an important attempt to make
machine learning more economically and environmentally
friendly. The current trend of massive consumption on com-
putation resources in training and tuning machine learning
models brings a tremendous burden to the environment. In
fact, a recent study (Strubell, Ganesh, and McCallum 2020)
quantified the approximate financial and environmental costs
of training deep neural networks, which calls for methods
that can reduce costs and improve equity in machine learn-
ing research and practice. Given this consideration, machine
learning solutions should be designed to be cost-effective
even if the computational budget is not a bottleneck for a
specific task or a specific group of people. The cost-effective
design of our method well aligns with this principle.
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