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Abstract

Visual saliency has emerged as a major visualization tool for
interpreting deep reinforcement learning (RL) agents. How-
ever, much of the existing research uses it as an analyzing
tool rather than an inductive bias for policy learning. In this
work, we use visual attention as an inductive bias for RL
agents. We propose a novel self-supervised attention learn-
ing approach which can 1. learn to select regions of interest
without explicit annotations, and 2. act as a plug for exist-
ing deep RL methods to improve the learning performance.
We empirically show that the self-supervised attention-aware
deep RL methods outperform the baselines in the context of
both the rate of convergence and performance. Furthermore,
the proposed self-supervised attention is not tied with spe-
cific policies, nor restricted to a specific scene. We posit that
the proposed approach is a general self-supervised attention
module for multi-task learning and transfer learning, and em-
pirically validate the generalization ability of the proposed
method. Finally, we show that our method learns meaning-
ful object keypoints highlighting improvements both qualita-
tively and quantitatively.

Introduction
In recent years, deep reinforcement learning methods (Mnih
et al. 2013, 2015, 2016) have achieved great success in large
part driven by the revolution in convolution neural networks
(CNN) and feed-forward networks as function approxima-
tors. Most methods directly use the CNN extracted features
of entire images as state representation and then perform
reasoning over this representation. Humans, on the other
hand, tend to focus on salient areas of interest such as ob-
jects (Borji, Sihite, and Itti 2012) and faces (Judd et al. 2009)
for understanding a scene, allowing them to quickly process
most relevant parts of the observations during decision mak-
ing (Wyart and Tallon-Baudry 2009).

Researchers (He et al. 2015; Wang et al. 2015; Zhao et al.
2015; Hou et al. 2017) have made significant efforts in scene
understanding by performing saliency detection via image
segmentation. However, most of these methods depend on
human-annotated training datasets (Liu et al. 2010; Alpert
et al. 2011). Collecting such datasets can be infeasible and
come at the expense of time and manual labor. Moreover,
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these methods are highly incumbent on the data distribu-
tion seen during training and generalize poorly to unseen
tasks. Instead, we resort to unsupervised learning methods
that do not need extra information and explicit supervision
in the form of labelled datasets. Specifically, we are inter-
ested in building reinforcement learning (RL) agents which
learn representations guided by an understanding of what is
important in a scene for sequential decision making.

One approach to learning such meaningful representa-
tions is via attention masks; as they create a bottleneck
where the gradients are driven by the final RL task objective
(specified via a reward signal). We refer to this approach as
top-down attention. However, the meaning and quality of the
learned masks via the top-down approach are typically task-
specific and therefore hard to generalize across unseen sce-
narios. Moreover, top-down attention masks are often used
as interpretation tools for understanding the learned poli-
cies (Yang et al. 2018; Shi et al. 2020). Contrary to the top-
down attention methods, we propose an approach for generic
understanding of the scene regardless of the tasks or poli-
cies, and use it to guide the learning of policies as opposed
to explaining them (Greydanus et al. 2018).

Object-oriented representation is a long-standing ap-
proach to understanding and simplifying a scene (Eslami
et al. 2016; Greff, Van Steenkiste, and Schmidhuber 2017;
Kosiorek et al. 2018; Greff et al. 2019; Lin et al. 2020). Re-
cent works (Zhang et al. 2018; Jakab et al. 2018; Kulka-
rni et al. 2019; Minderer et al. 2019; Gopalakrishnan, van
Steenkiste, and Schmidhuber 2021) try to obtain object key-
points in an unsupervised manner. However, current unsu-
pervised keypoints detection methods including the Trans-
porter (Kulkarni et al. 2019) are limited in that they do not
deal with variable number of objects, scale, and classes of
objects. Furthermore, the use of object-oriented representa-
tion for deep RL has not been extensively explored. For in-
stance, how to obtain a meaningful state representation given
these objects is not immediately clear and remains an open
question.

We here argue that attention masks are a better technique
to help the learning of policies given current tools. Attention
masks aim to find salient areas in a scene and account for
any number of regions in that they are not restricted to spe-
cific object categories or count. More importantly, since it
has the same form as that of the original image (i.e. a map of
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Figure 1: Proposed self-supervised attention module pipeline. The core idea is to employ a self-supervised loss through an
auto-encoder architecture with a bottleneck. The module tries to reconstruct the target image xt by using minimal information
(features of foreground regions) from the target image xt, and other needed information from source image xs. The mask
generator outputs the foreground attention masks for the input images as Ψ(xs) and Ψ(xt). We have 1−Ψ(xs) as the background
regions of the source image. The decoder reconstructs the target image using the foreground features of the target image and
background features of the source image. Image reconstruction losses and `1 sparsity over attention masks are used.

the attention values v.s. a map of pixel values), it is straight-
forward to plug in any existing deep RL methods for deci-
sion making once we have constructed such a representa-
tion. Inspired by Transporter (Kulkarni et al. 2019), we pro-
pose a self-supervised attention module which is designed
for learning attention masks instead of object keypoints. The
module is an auto-encoder like architecture with a bottle-
neck in attention masks that it needs to correctly identify the
regions of interest to perform the image reconstruction. The
learning is performed in an unsupervised manner, where the
self-supervised attention module is not related to a specific
task as the top-down attention methods. This view would po-
tentially lead to a better generalization ability. The proposed
attention module is shown in Figure 1.

The learned attention masks are class-agnostic, in that
they are not limited in response to certain object categories.
Moreover, they account for various shapes, number of ob-
jects, as opposed to pre-defined number of objects during
training (Kulkarni et al. 2019). Furthermore, we show that
one could easily extract object keypoints as well from our
learned masks, demonstrating the flexibility of our method.
Our main contributions and findings are as follows:

1. We design a self-supervised attention mask module that
learns general-purpose attention masks through a novel
self-supervised loss.

2. We incorporate the self-supervised attention module in
deep RL methods, and empirically show gains in both the
convergence speed and final scores in single-task setting.

3. We empirically demonstrate that the attention learned via
our self-supervised approach results in generalization ca-

pabilities in both transfer and multi-task settings.

4. We extract object keypoints from our masks and show
that they are qualitatively and quantitatively better than
the Transporter (Kulkarni et al. 2019), further highlight-
ing the efficacy of our method.

Self-Supervised Attention for Reinforcement
Learning

In this section, we first describe the proposed method for
learning attention masks in a self-supervised manner. We
then show how the self-supervised attention module can be
plugged in existing RL methods to improve policy learning.

Method: Self-Supervised Attention Module
Our aim is to learn a mask that indicates the potential of each
location in the visual input being the region of interest. Here-
after, we refer to the region of interest as the foreground, and
background otherwise. Inspired by the Transporter (Kulka-
rni et al. 2019) model, we design a bottleneck architecture
to reconstruct images, which could ideally differentiate be-
tween the interested foreground and background, in a self-
supervised manner. Contrary to Transporter, our attention
module learns the foreground attention mask rather than a
pre-defined number of keypoints. The overall architecture
is shown in Figure 1.

Given a source frame xs and a target frame xt, randomly
sampled from one game-play, we design the self-supervised
learning task as reconstructing the target frame xt from the
source frame xs. We use auto-encoder with bottleneck to
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Figure 2: Attention-aware Reinforcement Learning. Pipeline
demonstrating the proposed self-supervised attention mod-
ule as a plug for existing deep RL methods. The shaded
blue area shows the original deep RL pipeline with a CNN.
In addition, the mask generator outputs the attention mask
for the current frame. We then use this attention mask as a
plug by changing the original feature maps of visual obser-
vation to a multiplication of the attention mask and feature
maps. The RL method then reasons upon this modified fea-
ture maps. The mask generator is identical to the one in the
self-supervised attention module, which is detailed in Fig-
ure 1. The Self-supervised Attention Module is trained using
pairs of images from a trajectory buffer.

construct xt. First, the encoder extracts features of xs and
xt as Φ(xs),Φ(xt) ∈ RH′×W ′×D respectively.

The mask generator outputs the mask maps of xs and xt
as Ψ(xs),Ψ(xt) ∈ [0, 1]H

′×W ′
, indicating the probability

of being interested for the corresponding feature map loca-
tion. The features used for reconstructing xt are then calcu-
lated as follows:

Φ̂ (xs,xt) ,

background features︷ ︸︸ ︷
(1−Ψ (xs)) · (1−Ψ (xt)) · Φ (xs)

+ Ψ (xt) · Φ (xt)︸ ︷︷ ︸
foreground features

. (1)

Finally, besides the original auto-encoder pipeline that the
decoder reconstructs x̂tauto from features Ψ(xt), the decoder
also takes in the features Φ̂ (xs,xt) and outputs the recon-
structed x̂t.

Ideally, we want the decoder to use the features that com-
bine the background features from xs and foreground fea-
tures from xt to reconstruct xt as in Eq. 1. However, directly
optimizing the reconstruction loss between xt and x̂t would
give a trivial solution for masks that Ψ(xt) = 1, which is
not in our interest. Therefore, we propose to add a penalty
term for the masks that leads to minimize the locations that
are identified as regions of interest. We can also interpret
this penalty term acts as a sparsity regularizer. The overall
loss for training the self-supervised attention mask is defined

as a combination of the reconstruction losses and sparsity
penalty, as follows:

Lattention = ‖x̂t − xt‖22∗ + ‖x̂tauto − xt‖22︸ ︷︷ ︸
reconstruction loss

+ λm‖Ψ(xt)‖1︸ ︷︷ ︸
sparsity penalty

. (2)

where ‖ · ‖22∗ is squared-`2 norm with threshold δ, that ig-
nores the terms that have a squared value less than δ. It is
defined as follows:

‖y‖22∗ =
∑
k

y2k, ∀k if y2k > δ. (3)

We ignore the error when the squared-`2 distance of a
pixel location between the reconstruct x̂t and target xt is
below δ. This allows the model to ignore small changes that
might occur in the background, focusing on salient parts of
the reconstruction. δ is a hyper-parameter. The second term
in the reconstruction loss is the original auto-encoder loss,
which is used for regulating the feature space to be mean-
ingful.
λm is a hyper-parameter that balances the total number of

regions of interest. Since there is a penalty for positions that
are identified as regions of interest, the loss would force the
model to select relatively more important (necessary) parts
from xt and ignoring the background in xs with less penalty.

Attention-Aware Reinforcement Learning
We now discuss the utilization of the self-supervised atten-
tion module as a plug for existing deep RL methods. For any
deep RL methods that uses a convolutional neural network
(CNN), the idea is to exploit the intermediate features ex-
tracted by the CNN. Specifically, we multiply the features
learned via the attention mask, and leave everything else un-
changed for the policy learning. The deep RL methods with
CNN is abstracted in the top blue area of Figure 2 demon-
strating the attention-aware RL pipeline in Figure 2. The at-
tention module is highlighted in bottom gray area and can be
used as a plug for any deep RL method.

For the baseline RL algorithm, we use Advantage Actor
Critic (A2C) (Mnih et al. 2016). For a visual observation
x, a convolutional neural network (CNN) extracts interme-
diate feature maps as f(x) ∈ RH′×W ′×C . The policy and
state value function is then predicted using the feed-forward
networks π(at|f(x)), V (f(x)) as function approximators.
Policy gradient is used to train the networks, and we refer to
the loss as LRL, as used in Mnih et al. (2016).

For the attention-aware RL learning shown in Figure 2, in
addition to the original CNN extracting intermediate feature
maps as f(x), an additional self-supervised attention mod-
ule is used, which takes the visual state x and produces the
attention mask Ψ(x) ∈ RH′×W ′

through the mask genera-
tor. The original feature f(x) is multiplied by the attention
mask, obtaining the new feature as Ψ(x)f(x). Thus, the pol-
icy and state value functions for A2C method are predicted
as π(at|Ψ(x)f(x)), V (Ψ(x)f(x)).
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Figure 3: Single-task Learning. Average (over 5 random seeds) test scores during learning of A2C with/without the our self-
supervised attention mask. Our method consistently performs better than the baseline in both convergence speed and test scores.

The self-supervised attention module could be trained of-
fline or jointly trained in an online fashion with the RL
agent. For offline training, we sample source and target im-
age pairs {(xs, xt)} from a pre-collected image set or of-
fline trajectories, and minimize the loss Lattention in Eq. 2.
For joint training with RL agent, the source and target im-
age pairs {(xs, xt)} are sampled from the online trajectory
of the current agent (as in single task learning experiments).
The total training loss is:

L = LRL + Lattention. (4)
The plugged attention module tries to simplify the original
features by suppressing the response of background regions,
which helps the abstraction of the observation, and thus im-
proves policy learning.

Experiments
We now evaluate the proposed method in different settings
to demonstrate the efficacy of the self-supervised attention
mask module. We evaluate our method on Atari ALE (Belle-
mare et al. 2013; Brockman et al. 2016) games. First, we
show that RL agents equipped with the self-supervised at-
tention masks perform better in both convergence speed and
the scores obtained in a single-task setting. Then, we demon-
strate that one universal attention mask could be applied
across different tasks, showcasing the generalization ability.
Finally, we show that the learned attention mask could en-
able transfer to unseen tasks. The implementation details in-
cluding experiment setups, network architectures and hyper-
parameters are provided in the appendix. The source code is
available here. 1

Single-task Learning
In the single-task setting, the self-supervised attention mod-
ule and the RL agent are jointly trained in an online fashion

1https://github.com/happywu/Self-Sup-Attention-RL

for each game using the loss defined in Eq 4. Pairs of source
and target frames are randomly sampled from the agent’s tra-
jectory to train the attention module. The results are shown
in Figure 3. We observe that by masking the features us-
ing the attention, the agents learn faster and perform better
than the baseline A2C method on Atari games shown in Fig-
ure 3. The qualitative performance indicates that the atten-
tion mask learned is indeed helpful for the understanding of
the scene. By only seeing regions of interest, the scene is
potentially simplified for understanding and reasoning.

We show additional results using another baseline method
i.e. ACKTR (Wu et al. 2017) shown in Figure 4. It is ob-
served that the self-supervised attention-aware agents per-
form consistently better on the games shown. We report the
average performance averaged over 5 independent runs.

Comparison with Top-Down Attention. To compare
with the top-down (goal-driven) attention, we simply uti-
lize the attention mask as well without the use of Lattention,
where the supervision signals come from the RL objec-
tives. More specifically, the intermediate feature f(x) is
multiplied by the masks Ψ(x) generated from the mask
generator, obtaining Ψ(x)f(x), the same way as the self-
supervised attention-aware RL. However, the parameters
of Ψ(x) are learned by back-propagating gradients from
π(at|Ψ(x)f(x)), V (Ψ(x)f(x)) using chain-rule, with the
only loss LRL. We compare this top-down attention guided
RL with our self-supervised attention-aware RL. The results
are shown in Figure 5. We find that the top-down attention
guided RL could perform better or worse than the baseline
method without attention masks. The top-down attention
is guided only by the final objective. Thus the quality and
meaning of it highly depend on the task-specific RL objec-
tive. On the other hand, the self-supervised attention-aware
RL agents perform better than both the top-down attention
guided RL as well as the baseline.
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Figure 4: Single-task Learning. Average (over 5 random
seeds) test scores during learning of ACKTR algorithm
with/without our self-supervised attention mask.Our method
consistently performs better than the baseline in both con-
vergence speed and test scores.

Multi-task Learning
One mask module across different tasks. Unlike the key-
points representation in Transporter (Kulkarni et al. 2019),
where the keypoints are linked to specific objects, or the top-
down attention masks that are related to specific RL objec-
tives, the self-supervised attention masks are not semanti-
cally restricted in specific scenes or RL objectives. Conse-
quentially, we could intuitively train the mask module across
a range of tasks, potentially resulting in a universal (of mul-
tiple games) attention mask for many tasks.

To show the generalization ability of the self-supervised
attention module, we train the attention module in a multi-
task setting. More specifically, we train the self-supervised
mask module on frames jointly collected from three different
games (Asteroids, Assault, Ms.Pacman) using a random pol-
icy. For each training iteration, image pairs (xs, xt) are ran-
domly sampled from the three games, and the networks are
trained using Lattention. We then apply the universal trained
self-supervised mask module to RL learning of these dif-
ferent games by multiplying the intermediate features f(x)
to get Ψ(x)f(x). The agents learn to play each game sepa-
rately from scratch using LRL and the attention module pa-
rameters are fixed. The results are shown in Figure 6. We see
that this universal attention module facilitates learning poli-
cies on different games, achieving nearly the same perfor-
mance compared to using the self-supervised attention mod-
ule specifically trained on one game as in single-task setting
(as shown in Figure 3). We conjure that the training data cov-
ering a variety of tasks is the potential cause for the attention
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Figure 5: Single-task Learning - Comparison with top-down
attention. Comparison between our self-supervised attention
module, and top-down mask module as a plug for A2C. Av-
erage (over 5 random seeds) test scores during training are
reported. Our self-supervised attention consistently outper-
forms the top-down attention method.

module to have better generalization abilities.

Transfer Learning
Transfer mask across tasks. To further validate the transfer
ability of the self-supervised attention module, we design a
pipeline that shows the learned attention mask can general-
ize to related scenes which it has never seen during training.
First, the self-supervised mask module is trained on frames
from the source domain Atari game, JourneyEscape or As-
sault using the loss Lattention. We then fix the parameters of
the attention module, and apply it to the RL learning of the
target domain game Asteroids and Carnival in another in-
stance, using the self-supervised attention-aware RL. The re-
sults are shown in Figure 7. Notably, even when the attention
module has never seen any frames from the target games, the
attention masks are still beneficial for the learning of agents
as it provides significant gains in the performance. This fur-
ther highlights that the proposed self-supervised module can
generalize to unseen scenarios that have similar visual com-
ponents, indicating the transfer ability.

Bottom-up Object Extraction
While our approach does not rely on a predefined number
of keypoints and results in task-agnostic attentive represen-
tation learning, the ability to extract object keypoints could
be potentially useful as it provides means to represent the
knowledge in the form of objects which is akin to human
understanding of the world. In this section, we show prelim-
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Figure 6: Multi-task Learning. Comparison between the baseline method A2C, A2C with the self-supervised attention module,
A2C with the the universal attention module jointly trained on three games. Average (over 5 random seeds) test scores during
training are reported. The universal attention guided policies perform comparable to those with the self-supervised attention
trained on single-task.
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Figure 7: Transfer Learning. Comparison between the base-
line method A2C and A2C with the fix attention module
trained on JourneyEscape or Assault. Average (over 5 ran-
dom seeds) test scores during training are reported. We note
that the attention module has the ability to transfer across
games.

inary results on using our self-supervised attention module
to extract object keypoints, with the potential to facilitate
object-centric RL. We extract object locations from the self-
supervised attention masks. Specifically, each cell in the at-
tention mask map is considered as a candidate for the center
of one object. Non-maximum suppression (NMS) (Rosen-
feld and Thurston 1971) is applied upon the learned atten-
tion mask to get the object center proposals. We end up with
k object keypoints by taking the k max object proposals with
the attention mask value. The pseudocode is provided in the
appendix.

We compare with Transporter (Kulkarni et al. 2019) as
shown in Figure 8. We find that the objects extracted from
the self-supervised attention masks are reasonably focused
on salient objects, as compared to both the ground truth
objects extracted from (Anand et al. 2019) and the Trans-
porter (Kulkarni et al. 2019) method. Further, we could eas-
ily adjust the number of object keypoints by using differ-
ent k, in contrast to Transporter (Kulkarni et al. 2019), in
which the number of keypoints has to be predefined during
the training. We notice that the object keypoints extracted
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Figure 8: Qualitative Analysis. Comparison of object key-
points extracted form the self-supervised attention masks,
Transporter (Kulkarni et al. 2019) and the ground truth. The
number of object keypoints k are set to the same as Trans-
porter. Our method successfully focuses on important ob-
jects and is visually better than Transporter.

for Ms. Pacman in Figure 8 focused mainly on Ms. Pacman
and monsters, when the number of keypoints k was set to 7.
The resulting keypoints also focused on the remaining pel-
lets, when increasing k from 7 to 10 as shown in Figure 9.
This further demonstrates the flexibility of our method.

We further quantify the improvements in comparison with
the baseline i.e. Transporter (Kulkarni et al. 2019) through
recall and precision metrics. We compute these metrics us-
ing the predicted object locations and the ground truth loca-
tions from Anand et al. (2019). Two keypoints with a dis-
tance less than a threshold ε are considered as a success-
ful detection. ε is determined as in the baseline. The num-
ber of keypoints k is the same as in Transporter. We report
in Table 1 that our method performs better than (Kulka-
rni et al. 2019) in both recall and precision. Both quanti-
tative and qualitative measures highlight the soundness of
the self-supervised attention mask and extracted object key-
points. Given the flexibility of our self-supervised attention
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Frostbite Berzerk Ms. Pacman
Recall Prec Recall Prec Recall Prec

Transporter 0.74 0.56 0.32 0.27 0.33 0.23
Ours 0.76 0.57 0.54 0.46 0.72 0.52

Table 1: Recall and Precision (Prec) comparison on different
games with Transporter (Kulkarni et al. 2019). Our method
performs better than Transporter in both recall and precision
metrics in all 3 games tested here.

Figure 9: Variable Number of Object Keypoints Extraction
using the self-supervised attention masks for Ms.Pacman.
The number of keypoints are easily adjustable.

masks, the extracted objects could potentially be used to
form object-centric representation for RL agents, which is
scope for future work.

Related Work
Unsupervised bottom-up salient object detection and seg-
mentation (Itti, Koch, and Niebur 1998) methods have im-
mense potential to simplify the scene for decision making in
the RL paradigm (Sutton and Barto 2018). A naive approach
is to use an off-the-shelf saliency method to foveate regions
of interest in an input image for policy learning (Khetarpal
and Precup 2018). However this would heavily rely on the
training dataset used for the pre-trained saliency model and
therefore has limited performance guarantees. Seeking self-
supervision in the form of non-explicit labels is more ap-
pealing instead. Greydanus et al. (2018) adapts saliency
methods to visualize and interpreting agents. Goel, Weng,
and Poupart (2018) use optical flow as a label to supervise
the learning of the segmentation, and the features for seg-
mentation are augmented for policy learning. Yuezhang,
Zhang, and Ballard (2018) also adapt optical flow between
two frames to serve as an attention map, and then incor-
porate the attention by multiplying the intermediate fea-
tures of agents. Optical flow captures motion information
between frames and thus identifying moving objects. Un-
like Goel, Weng, and Poupart (2018), our self-supervised at-
tention mask does not aim to find moving objects between
two frames, but minimal regions of interest that could recon-
struct the scene. Our supervision signal does not come from
optical flows, but through reconstruction via a bottleneck ar-
chitecture. Optical flow captures local temporal information
and is therefore reliable only for nearby frames. However,
our attention module is able to capture information across a
relatively larger temporal window.

Mott et al. (2019) uses a soft, recurrent, top-down atten-
tion by creating a bottleneck for the learning of agents, lead-
ing to the attention maps which focus on task-relevant infor-
mation. They manage to achieve comparable performance
to the baseline while being interpretable. Shi et al. (2020);
Yang et al. (2018) also utilize a top-down attention map,

where they use an attention map to interpret the behavior
of the policies. In contrast to top-down attention methods,
our self-supervised attention masks are not task-specific, and
could be used across different tasks as shown in the universal
mask experiments in Figure 6.

More recently, Zhang et al. (2019) introduced a human
action and gaze dataset for Atari games. They utilize the an-
notated gaze to predict human action labels, showing that the
gaze information is useful for imitation learning. An inter-
esting approach then is to design auxiliary gaze loss (Saran
et al. 2020) that uses AtariHead dataset to help the inverse
RL and behavioral cloning problems. Unlike these methods,
our self-supervised attention masks do not require any an-
notation of the human gaze or actions. Moreover, we can
directly apply the learned attention masks to model-free RL
methods instead of imitation learning.

Closely related to our work, Zhang et al. (2018); Jakab
et al. (2018) design an auto-encoder architecture with key-
points bottleneck to perform unsupervised object keypoints
detection. Transporter (Kulkarni et al. 2019) extends the
pipeline with a feature transporter mechanism to extract ob-
ject keypoints without the use of temporal transformations
in the form of optical flow. Our self-supervised attention
mask module also utilizes a bottleneck architecture simi-
lar to Transporter. However, our approach has two key dif-
ferences. First, our attention module does not directly gen-
erate object keypoints, and instead learns to produce fore-
ground/background focused attention masks. As a result, we
do not have to predefine the number of keypoints to be de-
tected and could obtain variable number of keypoints from
the learned attention masks. Second, due to the large tempo-
ral window and the ability to capture most relevant regions
of interest, our attention masks could be used across multi-
ple scenarios (such as tasks or scenes), showcasing its better
generalization ability.

Discussion
We designed a self-supervised attention module which can
identify salient regions of interest without explicit hand la-
belled annotations. Our approach is flexible in that the at-
tention mask is not related to particular object semantics or
restricted to specific downstream tasks. It is straightforward
to plug-and-play the proposed method in existing deep RL
approaches with CNNs as feature extractor since the atten-
tion mask has the same form as the CNN extracted feature
maps. Extensive experiments show that the self-supervised
attention module not only improves policy learning in the
single-task setting, but also, in transfer and multi-task set-
tings.

Additionally, we show preliminary results for extracting
object keypoints from the self-supervised attention mask.
The extracted keypoints reasonably focus on interested ob-
jects and are comparable to baseline specially designed for
object keypoints detection. Our approach allows to change
the number of extracted keypoints at inference time without
re-training as required. In the future, this ability to extract
task-agnostic object keypoints could be potentially used to
build symbolic high level representations.
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