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Abstract

Over the past half-decade, many methods have been consid-
ered for neural architecture search (NAS). Bayesian optimiza-
tion (BO), which has long had success in hyperparameter
optimization, has recently emerged as a very promising strat-
egy for NAS when it is coupled with a neural predictor. Recent
work has proposed different instantiations of this framework,
for example, using Bayesian neural networks or graph convo-
lutional networks as the predictive model within BO. However,
the analyses in these papers often focus on the full-fledged
NAS algorithm, so it is difficult to tell which individual com-
ponents of the framework lead to the best performance.
In this work, we give a thorough analysis of the “BO + neural
predictor” framework by identifying five main components:
the architecture encoding, neural predictor, uncertainty cali-
bration method, acquisition function, and acquisition function
optimization. We test several different methods for each com-
ponent and also develop a novel path-based encoding scheme
for neural architectures, which we show theoretically and em-
pirically scales better than other encodings. Using all of our
analyses, we develop a final algorithm called BANANAS,
which achieves state-of-the-art performance on NAS search
spaces. We adhere to the NAS research checklist (Lindauer
and Hutter 2019) to facilitate best practices, and our code is
available at https://github.com/naszilla/naszilla.1

Introduction
Since the deep learning revolution in 2012, neural networks
have been growing increasingly more complex and special-
ized (Krizhevsky, Sutskever, and Hinton 2012; Huang et al.
2017; Szegedy et al. 2017). Developing new state-of-the-art
architectures often takes a vast amount of engineering and
domain knowledge. A rapidly developing area of research,
neural architecture search (NAS), seeks to automate this pro-
cess. Since the popular work by Zoph and Le (2017), there
has been a flurry of research on NAS (Liu et al. 2018; Pham
et al. 2018; Liu, Simonyan, and Yang 2018; Kandasamy
et al. 2018b; Elsken, Metzen, and Hutter 2018; Jin, Song,
and Hu 2018). Many methods have been proposed, includ-
ing evolutionary search, reinforcement learning, Bayesian
optimization (BO), and gradient descent. In certain settings,
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zeroth-order (non-differentiable) algorithms such as BO are
of particular interest over first-order (one-shot) techniques,
due to advantages such as simple parallelism, joint opti-
mization with other hyperparameters, easy implementation,
portability to diverse architecture spaces, and optimization of
other/multiple non-differentiable objectives.

BO with Gaussian processes (GPs) has had success in deep
learning hyperparameter optimization (Golovin et al. 2017;
Falkner, Klein, and Hutter 2018), and is a leading method for
efficient zeroth order optimization of expensive-to-evaluate
functions in Euclidean spaces. However, initial approaches
for applying GP-based BO to NAS came with challenges that
limited its ability to achieve state-of-the-art results. For exam-
ple, initial approaches required specifying a distance function
between architectures, which involved cumbersome hyperpa-
rameter tuning (Kandasamy et al. 2018b; Jin, Song, and Hu
2018), and required a time-consuming matrix inversion step.

Recently, Bayesian optimization with a neural predictor
has emerged as a high-performing framework for NAS. This
is similar to GP-based BO, except the GP is replaced with
a neural network that is trained to predict the accuracy of
unseen neural networks. This framework avoids the afore-
mentioned problems with BO in NAS: there is no need to
construct a distance function between architectures, and the
neural predictor scales far better than a GP model. Recent
work has proposed different instantiations of this framework,
for example, Bayesian neural networks with BO (Springen-
berg et al. 2016), and graph neural networks with BO (Shi
et al. 2019; Ma, Cui, and Yang 2019). However, the analyses
often focus on the full-fledged NAS algorithm, making it
challenging to tell which components of the framework lead
to the best performance.

In this work, we start by performing a thorough analysis
of the “BO + neural predictor” framework. We identify five
major components of the framework: architecture encoding,
neural predictor, uncertainty calibration method, acquisition
function, and acquisition function optimization. For example,
graph convolutional networks, variational autoencoder-based
networks, or feedforward networks can be used for the neural
predictor, and Bayesian neural networks or different types of
ensembling methods can be used for the uncertainty calibra-
tion method. After conducting experiments on all components
of the BO + neural predictor framework, we use this analysis
to define a high-performance instantiation of the framework,

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10293



which we call BANANAS: Bayesian optimization with neural
architectures for NAS.

In order for the neural predictor to achieve the highest accu-
racy, we also define a novel path-based architecture encoding,
which we call the path encoding. The motivation for the path
encoding is as follows. Each architecture in the search space
can be represented as a labeled directed acyclic graph (DAG)
– a set of nodes and directed edges, together with a list of
the operations that each node (or edge) represents. However,
the adjacency matrix can be difficult for the neural network
to interpret (Zhou et al. 2018), since the features are highly
dependent on one another. By contrast, each feature in our
path encoding scheme represents a unique path that the tensor
can take from the input layer to the output layer of the archi-
tecture. We show theoretically and experimentally that this
encoding scales better than the adjacency matrix encoding,
and allows neural predictors to achieve higher accuracy.

We compare BANANAS to a host of popular NAS algo-
rithms including random search (Li and Talwalkar 2019),
DARTS (Liu, Simonyan, and Yang 2018), regularized evo-
lution (Real et al. 2019), BOHB (Falkner, Klein, and
Hutter 2018), NASBOT (Kandasamy et al. 2018b), local
search (White, Nolen, and Savani 2020), TPE (Bergstra et al.
2011), BONAS (Shi et al. 2019), BOHAMIANN (Springen-
berg et al. 2016), REINFORCE (Williams 1992), GP-based
BO (Snoek, Larochelle, and Adams 2012), AlphaX (Wang
et al. 2018), ASHA (Li and Talwalkar 2019), GCN Predic-
tor (Wen et al. 2019), and DNGO (Snoek et al. 2015). BA-
NANAS achieves state-of-the-art performance on NASBench-
101 and is competitive on all NASBench-201 datasets. Sub-
sequent work has also shown that BANANAS is competitive
on NASBench-301 (Siems et al. 2020), even when compared
to first-order methods such as DARTS (Liu, Simonyan, and
Yang 2018), PC-DARTS (Xu et al. 2019), and GDAS (Dong
and Yang 2019).

Finally, to promote reproducibility, in the full version of
the paper we discuss how our experiments adhere to the NAS
best practices checklist (Lindauer and Hutter 2019). In partic-
ular, we experiment on well-known search spaces and NAS
pipelines, run enough trials to reach statistical significance,
and release our code.

Our contributions. We summarize our main contributions.

• We analyze a simple framework for NAS: Bayesian op-
timization with a neural predictor, and we thoroughly
test five components: the encoding, neural predictor, cal-
ibration, acquisition function, and acquisition function
optimization.
• We propose a novel path-based encoding, which improves

the accuracy of neural predictors. We give theoretical
and experimental results showing that the path encoding
scales better than the adjacency matrix encoding.
• We use our analyses to develop BANANAS, a high perfor-

mance instantiation of the above framework. We empiri-
cally show that BANANAS is state-of-the-art on popular
NAS benchmarks.

Related Work
NAS has been studied since at least the 1990s and has gained
significant attention in the past few years (Kitano 1990; Stan-
ley and Miikkulainen 2002; Zoph and Le 2017). Some of the
most popular recent techniques for NAS include evolution-
ary algorithms (Maziarz et al. 2018), reinforcement learning
(Zoph and Le 2017; Pham et al. 2018), BO (Kandasamy
et al. 2018b), and gradient descent (Liu, Simonyan, and Yang
2018). For a survey of neural architecture search, see (Elsken,
Metzen, and Hutter 2018).

Initial BO approaches defined a distance function between
architectures (Kandasamy et al. 2018b; Jin, Song, and Hu
2018). There are several works that predict the validation
accuracy of neural networks (Klein et al. 2017; Deng, Yan,
and Lin 2017; Istrate et al. 2019; Zhang, Ren, and Urtasun
2018; Baker et al. 2017). A few recent papers have used
Bayesian optimization with a graph neural network as a pre-
dictor (Ma, Cui, and Yang 2019; Shi et al. 2019), however,
they do not conduct an ablation study of all components of
the framework. In this work, we do not claim to invent the BO
+ neural predictor framework, however, we give the most in-
depth analysis that we are aware of, which we use to design
a high-performance instantiation of this framework.

There is also prior work on using neural network models
in BO for hyperparameter optimization (Snoek et al. 2015;
Springenberg et al. 2016), The explicit goal of these papers
is to improve the efficiency of Gaussian process-based BO
from cubic to linear time, not to develop a different type
of prediction model in order to improve the performance
of BO with respect to the number of iterations. We provide
additional related work details in the full version of the paper.

Subsequent work. Since its release, several papers have
included BANANAS in new experiments, further showing
that BANANAS is a competitive NAS algorithm (Krishna
et al. 2020; Siems et al. 2020; Nguyen et al. 2020; Ru et al.
2020; Wei et al. 2020). Finally, a recent paper conducted a
study on several encodings used for NAS (White et al. 2020),
concluding that neural predictors perform well with the path
encoding.

BO + Neural Predictor Framework
In this section, we give a background on BO, and we de-
scribe the BO + neural predictor framework. In applications
of BO for deep learning, the typical goal is to find a neu-
ral architecture and/or set of hyperparameters that lead to
an optimal validation error. Formally, BO seeks to compute
a∗ = argmina∈A f(a), where A is the search space, and
f(a) denotes the validation error of architecture a after train-
ing on a fixed dataset for a fixed number of epochs. In the
standard BO setting, over a sequence of iterations, the results
from all previous iterations are used to model the topology
of {f(a)}a∈A using the posterior distribution of the model
(often a GP). The next architecture is then chosen by optimiz-
ing an acquisition function such as expected improvement
(EI) (Močkus 1975) or Thompson sampling (TS) (Thompson
1933). These functions balance exploration with exploitation
during the search. The chosen architecture is then trained and
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Figure 1: A neural architecture (left), is decomposed into a
set of its paths from input to output (middle), which is then
encoded as a one-hot vector (right).

used to update the model of {f(a)}a∈A. Evaluating f(a) in
each iteration is the bottleneck of BO (since a neural network
must be trained). To mitigate this, parallel BO methods typi-
cally output k architectures to train in each iteration, so that
the k architectures can be trained in parallel.

BO + neural predictor framework. In each iteration of
BO, we train a neural network on all previously evaluated
architectures, a, to predict the validation accuracy f(a) of
unseen architectures. The architectures are represented as
labeled DAGs (Ying et al. 2019; Dong and Yang 2020), and
there are different methods of encoding the DAGs before they
are passed to the neural predictor (Ying et al. 2019; White
et al. 2020), which we describe in the next section. Choices
for the neural predictor include feedforward networks, graph
convolutional networks (GCN), and variational autoencoder
(VAE)-based networks. In order to evaluate an acquisition
function, we also compute an uncertainty estimate for each
input datapoint. This can be accomplished by using, for ex-
ample, a Bayesian neural network or an ensemble of neural
predictors. Given the acquisition function, an optimization
routine is then carried out, which returns the next architec-
ture to be evaluated. In the next section, we give a thorough
analysis of the choices that must be made when instantiating
this framework.

Analysis of the Framework
In this section, we give an extensive study of the BO + neural
predictor framework. First, we discuss architecture encod-
ings, and we define a novel featurization called the path
encoding. Then we conduct an analysis of different choices
of neural predictors. Next, we analyze different methods for
achieving calibrated uncertainty estimates from the neural
predictors. After that, we conduct experiments on different
acquisition functions and acquisition function optimization
routines. Finally, we use these analyses to create our algo-
rithm, BANANAS.

Throughout this section, we run experiments on the
NASBench-101 dataset (experiments on additional search
spaces are given in the full-length paper). The NASBench-
101 dataset (Ying et al. 2019) consists of over 423,000 neural
architectures from a cell-based search space, and each archi-

tecture comes with precomputed validation and test accura-
cies on CIFAR-10. The search space consists of a DAG with
7 nodes that can each take on three different operations, and
there can be at most 9 edges between the nodes. We use the
open source version of the NASBench-101 dataset (Ying et al.
2019). We give the full details about the use of NASBench-
101 in the full version of the paper. Our code is available at
https://github.com/naszilla/naszilla.

Architecture encodings. The majority of existing work
on neural predictors use an adjacency matrix representation
to encode the neural architectures. The adjacency matrix
encoding gives an arbitrary ordering to the nodes, and then
gives a binary feature for an edge between node i and node
j, for all i < j. Then a list of the operations at each node
must also be included in the encoding. This is a challenging
data structure for a neural predictor to interpret because it
relies on an arbitrary indexing of the nodes, and features
are highly dependent on one another. For example, an edge
from the input to node 2 is useless if there is no path from
node 2 to the output. And if there is an edge from node 2
to the output, this edge is highly correlated with the feature
that describes the operation at node 2 (conv 1x1, pool 3x3,
etc.). A continuous-valued variant of the adjacency matrix
encoding has also been tested (Ying et al. 2019).

We introduce a novel encoding which we term the path
encoding, and we show that it substantially increases the per-
formance of neural predictors. The path encoding is quite
simple to define: there is a binary feature for each path from
the input to the output of an architecture cell, given in terms of
the operations (e.g., input→conv 1x1→pool 3x3→output).
To encode an architecture, we simply check which paths are
present in the architecture, and set the corresponding features
to 1s. See Figure 1. Intuitively, the path encoding has a few
strong advantages. The features are not nearly as dependent
on one another as they are in the adjacency matrix encod-
ing, since each feature represents a unique path that the data
tensor can take from the input node to the output node. Fur-
thermore, there is no longer an arbitrary node ordering, which
means that each neural architecture maps to only one encod-
ing (which is not true for the adjacency matrix encoding).
On the other hand, it is possible for multiple architectures
to map to the same path encoding (i.e., the encoding is well-
defined, but it is not one-to-one). However, subsequent work
showed that architectures with the same path encoding also
have very similar validation errors (White et al. 2020), which
is beneficial in NAS algorithms.

The length of the path encoding is the total number of pos-
sible paths in a cell,

∑n
i=0 q

i, where n denotes the number of
nodes in the cell, and q denotes the number of operations for
each node. However, we present theoretical and experimental
evidence that substantially truncating the path encoding, even
to length smaller than the adjacency matrix encoding, does
not decrease its performance. Many NAS algorithms sam-
ple architectures by randomly sampling edges in the DAG
subject to a maximum edge constraint (Ying et al. 2019). Intu-
itively, the vast majority of paths have a very low probability
of occurring in a cell returned by this procedure. Therefore,
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Figure 2: Performance of BANANAS with the path encoding
truncated to different lengths. Since each node has 3 choices
of operations, the “natural” cutoffs are at powers of 3.

by simply truncating the least-likely paths, our encoding
scales linearly in the size of the cell, with an arbitrarily small
amount of information loss. In the following theorem, let
Gn,k,r denote a DAG architecture with n nodes, r choices of
operations on each node, and where each potential forward
edge (n(n−1)2 total) was chosen with probability 2k

n(n−1) (so
that the expected number of edges is k).

Theorem 0.1 (informal). Given integers r, c > 0, there
exists an N such that ∀ n > N , there exists a set of n paths
P ′ such that the probability that Gn,n+c,r contains a path
not in P ′ is less than 1

n2 .

For the formal statement and full proof, see the full version
of the paper. This theorem says that when n is large enough,
with high probability, we can truncate the path encoding to
a size of just n without losing information. Although the
asymptotic nature of this result makes it a proof of concept,
we empirically show in Figure 2 that in BANANAS running
on NASBench-101, the path encoding can be truncated from
its full size of

∑5
i=0 3

i = 364 bits to a length of just twenty
bits, without a loss in performance. (The exact experimental
setup for this result is described later in this section.) In
fact, the performance after truncation actually improves up
to a certain point. We believe this is because with the full-
length encoding, the neural predictor overfits to very rare
paths. In the full version of the paper, we show a similar
result for NASBench-201 (Dong and Yang 2020): the full
path encoding length of

∑3
i=0 5

i = 156 can be truncated to
just 30, without a loss of performance.

Neural predictors. Now we study the neural predictor, a
crucial component in the BO + neural predictor framework.
Recall from the previous section that a neural predictor is a
neural network that is repeatedly trained on the current set of
evaluated neural architectures and predicts the accuracy of
unseen neural architectures. Prior work has used GCNs (Shi
et al. 2019; Ma, Cui, and Yang 2019) or VAE-based architec-
tures (Zhang et al. 2019) for this task. We evaluate the per-
formance of standard feedfoward neural networks with either
the adjacency matrix or path-based encoding, compared to

VAEs and GCNs in predicting the validation accuracy of neu-
ral architectures. The feedforward neural network we use is a
sequential fully-connected network with 10 layers of width
20, the Adam optimizer with a learning rate of 0.01, and the
loss function set to mean absolute error (MAE). We use open-
source implementations of the GCN 2 and VAE (Zhang et al.
2019). See the full version of the paper for a full description
of our implementations.

In Figure 3 (left), we compare the different neural predic-
tors by training them on a set of neural architectures drawn
i.i.d. from NASBench-101, along with validation accuracies,
and then computing the MAE on a held-out test set of size
1000. We run 50 trials for different training set sizes and
average the results. The best performing neural predictors are
the feedforward network with the path encoding (with and
without truncation) and the GCN. The feedforward networks
also had shorter runtime compared to the GCN and VAE,
however, the runtime of the full NAS algorithm is dominated
by evaluating neural architectures, not by training neural
predictors.

Uncertainty calibration. In the previous section, we evalu-
ated standalone neural predictors. To incorporate them within
BO, for any datapoint, neural predictors need to output both
a prediction and an uncertainty estimate for that prediction.
Two popular ways of achieving uncertainties are by using a
Bayesian neural network (BNN), or by using an ensemble
of neural predictors. In a BNN, we infer a posterior dis-
tribution over network weights. It has been demonstrated
recently that accurate prediction and uncertainty estimates in
neural networks can be achieved using Hamiltonian Monte
Carlo (Springenberg et al. 2016). In the ensemble approach,
we train m neural predictors using different random weight
initializations and training set orders. Then for any datapoint,
we can can compute the mean and standard deviation of
these m predictions. Ensembles of neural networks, even
of size three and five, have been shown in some cases to
give more reliable uncertainty estimates than other leading
approaches such as BNNs (Lakshminarayanan, Pritzel, and
Blundell 2017; Beluch et al. 2018; Choi et al. 2016; Snoek
et al. 2019; Zaidi et al. 2020).

We compare the uncertainty estimate of a BNN with an
ensemble of size five for each of the neural predictors de-
scribed in the previous section. We use the BOHAMIANN
implementation for the BNN (Springenberg et al. 2016), and
to ensure a fair comparison with the ensembles, we train it
for five times longer. The experimental setup is similar to
the previous section, but we compute a standard measure of
calibration: root mean squared calibration error (RMSCE) on
the test set (Kuleshov, Fenner, and Ermon 2018; Tran et al.
2020). See Figure 3 (middle). Intuitively, the RMSCE is low
if a method yields a well-calibrated predictive estimate (i.e.
predicted coverage of intervals equals the observed coverage).
All ensemble-based predictors yielded better uncertainty esti-
mates than the BNN, consistent with prior work. Note that
RMSCE only measures the quality of uncertainty estimates,
agnostic to prediction accuracy. We must therefore look at

2https://github.com/ultmaster/neuralpredictor.pytorch
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Figure 3: Performance of neural predictors on NASBench-101: predictive ability (left), accuracy of uncertainty estimates (middle),
performance in NAS when combined with BO (right).

prediction (Figure 3 left) and RMSCE (Figure 3 middle)
together when evaluating the neural predictors.

Finally, we evaluate the performance of each neural pre-
dictor within the full BO + neural predictor framework. We
use the approach described in the previous section, using in-
dependent Thompson sampling and mutation for acquisition
optimization (described in more detail in the next section).
Each algorithm is given a budget of 47 TPU hours, or about
150 neural architecture evaluations on NASBench-101. That
is, there are 150 iterations of training a neural predictor and
choosing a new architecture to evaluate using the acquisition
function. The algorithms output 10 architectures in each it-
eration of BO for better parallelization, as described in the
previous section. After each iteration, we return the test error
of the architecture with the best validation error found so far.
We run 200 trials of each algorithm and average the results.
This is the same experimental setup as in Figure 2, as well
as experiments later in this section and the next section. See
Figure 3 (right). The two best-performing neural predictors
are an ensemble of GCNs, and an ensemble of feedforward
neural networks with the path encoding, with the latter hav-
ing a slight edge. The feedforward network is also desirable
because it requires less hyperparameter tuning than the GCN.

Acquisition functions and optimization. Now we ana-
lyze the BO side of the framework, namely, the choice of
acquisition function and optimization strategy. We consider
four common acquisition functions that can be computed
using a function value estimate and uncertainty estimate for
each input datapoint: Thompson sampling (TS) (Thompson
1933), upper confidence bound (UCB) (Srinivas et al. 2009),
expected improvement (EI) (Močkus 1975), and probability
of improvement (PI) (Kushner 1964). We also consider a
variant of TS called independent Thompson sampling (ITS),
which uses a unique posterior function sample for each input
architecture. Later, we show that ITS has strong empirical
performance.

First we give the formal definitions of each acquisition
function. Suppose we have trained an ensemble of M pre-
dictive models, {fm}Mm=1, where fm : A → R for all m.
Let ymin denote the lowest validation error of an architecture
discovered so far. Following previous work (Neiswanger et al.
2019), we use the following acquisition function estimates

for an input architecture a ∈ A:

φTS(x) = fm̃(x), m̃ ∼ Unif (1,M) (1)

φITS(x) = f̃x(x), f̃x(x) ∼ N (f̂ , σ̂2) (2)

φUCB(x) = f̂ − βσ̂ (3)
φEI(a) = E [1 [fm(a) > ymin] (ymin − fm(a))] (4)

=

∫ ymin

−∞
(ymin − y)N

(
f̂ , σ̂2

)
dy

φPI(x) = E [1 [fm(x) > ymin]] (5)

=

∫ ymin

−∞
N
(
f̂ , σ̂2

)
dy

In these acquisition function definitions, 1(x) = 1 if x is
true and 0 otherwise, and we are making a normal approx-
imation for our model’s posterior predictive density, where
we estimate parameters

f̂ =
1

M

M∑
m=1

fm(x), and σ̂ =

√∑M
m=1(fm(x)− f̂)2

M − 1
.

In the UCB acquisition function experiments, we set the
tradeoff parameter β = 0.5. We tested each acquisition func-
tion within the BO + neural predictor framework, using muta-
tion for acquisition function optimization and the best neural
predictor from the previous section - an ensemble of feed-
forward networks with the path encoding. The experimental
setup is the same as in previous sections. See Figure 5 (left).
We see that the acquisition function does not have as big
an effect on performance as other components, though ITS
performs the best overall. Note also that both TS and ITS
have advantages when running parallel experiments, since
they are stochastic acquisition functions that can be directly
applied in the batch BO setting (Kandasamy et al. 2018a).

Next, we test different acquisition function optimization
strategies. In each iteration of BO, our goal is to find the
neural architecture from the search space which minimizes
the acquisition function. Evaluating the acquisition function
for every neural architecture in the search space is compu-
tationally infeasible. Instead, we create a set of 100-1000
architectures (potentially in an iterative fashion) and choose
the architecture with the value of the acquisition function in
this set.
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Figure 4: Diagram of the BANANAS neural predictor.

The simplest strategy is to draw 1000 random architectures.
However, it can be beneficial to generate a set of architecture
that are close in edit distance to architectures in the training
set, since the neural predictor is more likely to give accu-
rate predictions to these architectures. Furthermore, local
optimization methods such as mutation, evolution, and lo-
cal search have been shown to be effective for acquisition
function optimization (Balandat et al. 2019; Kandasamy et al.
2018b; Wilson, Hutter, and Deisenroth 2018). In “mutation”,
we simply mutate the architectures with the best validation
accuracy that we have found so far by randomly changing
one operation or one edge. In local search, we iteratively
take the architectures with the current highest acquisition
function value, and compute the acquisition function of all ar-
chitectures in their neighborhood. In evolution, we iteratively
maintain a population by mutating the architectures with the
highest acquisition function value and killing the architec-
tures with the lowest values. We give the full details of these
methods in the full version of the paper. The experimental
setup is the same as in the previous sections. See Figure 5
(middle). We see that mutation performs the best, which in-
dicates that it is better to consider architectures with edit
distance closer to the set of already evaluated architectures.

BANANAS: Bayesian optimization with neural architec-
tures for NAS. Using the best components from the pre-
vious sections, we construct our full NAS algorithm, BA-
NANAS, composed of an ensemble of feedforward neural
networks using the path encoding, ITS, and a mutation ac-
quisition function. See Algorithm 1 and Figure 4. Note that
in the previous sections, we conducted experiments on each
component individually while keeping all other components
fixed. In the full version of the paper, we give further analysis
varying all components at once, to ensure that BANANAS is
indeed the optimal instantiation of this framework.

For the loss function in the neural predictors, we use mean
absolute percentage error (MAPE) because it gives a higher
weight to architectures with lower validation losses:

L(ypred, ytrue) =
1

n

n∑
i=1

∣∣∣∣∣y
(i)
pred − yLB

y
(i)
true − yLB

− 1

∣∣∣∣∣ , (6)

where y(i)pred and y(i)true are the predicted and true values of the
validation error for architecture i, and yLB is a global lower

Algorithm 1 BANANAS

Input: Search space A, dataset D, parameters
t0, T, M, c, x, acquisition function φ, function
f(a) returning validation error of a after training.
1. Draw t0 architectures a0, . . . , at0 uniformly at random
from A and train them on D.
2. For t from t0 to T ,

i. Train an ensemble of neural predictors on
{(a0, f(a0)), . . . , (at, f(at))} using the path encod-
ing to represent each architecture.

ii. Generate a set of c candidate architectures from A
by randomly mutating the x architectures a from
{a0, . . . , at} that have the lowest value of f(a).

iii. For each candidate architecture a, evaluate the acqui-
sition function φ(a).

iv. Denote at+1 as the candidate architecture with mini-
mum φ(a), and evaluate f(at+1).

Output: a∗ = argmint=0,...,T f(at).

bound on the minimum true validation error. To parallelize
Algorithm 1, in step iv. we simply choose the k architec-
tures with the smallest values of the acquisition function and
evaluate the architectures in parallel.

BANANAS Experiments
In this section, we compare BANANAS to many other pop-
ular NAS algorithms on three search spaces. To promote re-
producibility, we discuss our adherence to the NAS research
checklist (Lindauer and Hutter 2019) in the full version of
the paper. In particular, we release our code, we use a tabular
NAS dataset, and we run many trials of each algorithm.

We run experiments on NASBench-101 described in the
previous section, as well as NASBench-201 and the DARTS
search space. The NASBench-201 dataset (Yang, Esperança,
and Carlucci 2020) consists of 15625 neural architectures
with precomputed validation and test accuracies for 200
epochs on CIFAR-10, CIFAR-100, and ImageNet-16-120.
The search space consists of a complete directed acyclic
graph on 4 nodes, and each edge can take on five different op-
erations. The DARTS search space (Liu, Simonyan, and Yang
2018) is size 1018. It consists of two cells: a convolutional
cell and a reduction cell. Each cell has four nodes that have
two incoming edges which take on one of eight operations.

Performance on NASBench search spaces. We compare
BANANAS to various popular NAS algorithms: random
search (Li and Talwalkar 2019), regularized evolution (Real
et al. 2019), BOHB (Falkner, Klein, and Hutter 2018),
NASBOT (Kandasamy et al. 2018b), local search (White,
Nolen, and Savani 2020), TPE (Bergstra et al. 2011), BO-
HAMIANN (Springenberg et al. 2016), BONAS (Shi et al.
2019), REINFORCE (Williams 1992), GP-based BO (Snoek,
Larochelle, and Adams 2012), AlphaX (Wang et al. 2018),
GCN Predictor (Wen et al. 2019), and DNGO (Snoek et al.
2015). As much as possible, we use the code directly from the
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Figure 5: Performance of different acquisition functions (left). Performance of different acquisition function optimization
strategies (middle). Performance of BANANAS compared to other NAS algorithms (right). See the full version of the paper for
the same results in a table.

NAS Algorithm Source Avg. Test error Runtime Method

Random search (Liu, Simonyan, and Yang 2018) 3.29 4 Random
Local search (White, Nolen, and Savani 2020) 3.49 11.8 Local search
DARTS (Liu, Simonyan, and Yang 2018) 2.76 5 Gradient-based
ASHA (Li and Talwalkar 2019) 3.03 9 Successive halving
Random search WS (Li and Talwalkar 2019) 2.85 9.7 Random
DARTS Ours 2.68 5 Gradient-based
ASHA Ours 3.08 9 Successive halving
BANANAS Ours 2.64 11.8 BO + neural predictor

Table 1: Comparison of NAS algorithms on the DARTS search space. The runtime unit is total GPU-days on a Tesla V100.

open-source repositories, without changing the hyperparam-
eters (but with a few exceptions). For a description of each
algorithm and details of the implementations we used, see the
full version of the paper. The experimental setup is the same
as in the previous section. For results on NASBench-101,
see Figure 5 (right). The top three algorithms in order, are
BANANAS, local search, and BONAS. In the full version
of the paper, we also show that BANANAS achieves strong
performance on the three datasets in NASBench-201.

Performance on the DARTS search space. We test BA-
NANAS on the search space from DARTS. Since the DARTS
search space is not a tabular dataset, we cannot fairly compare
to other methods which use substantially different training
and testing pipelines (Lindauer and Hutter 2019). We use a
common evaluation pipeline which is to train for 600 epochs
with cutout and auxiliary tower (Liu, Simonyan, and Yang
2018; Li and Talwalkar 2019; Yan et al. 2020), where the
state of the art is around 2.6% on CIFAR-10. Other papers
use different evaluation settings (e.g., training for many more
epochs) to achieve lower error, but they cannot be fairly com-
pared to other algorithms.

In our experiments, BANANAS is given a budget of 100
evaluations. In each evaluation, the chosen architecture is
trained for 50 epochs and the average validation error of
the last 5 epochs is recorded. To ensure a fair comparison
by controlling all hyperparameter settings and hardware, we
re-trained the architectures from prior work when they were
available. In this case, we report the mean test error over five

random seeds of the best architecture found for each method.
We compare BANANAS to DARTS (Liu, Simonyan, and
Yang 2018), random search (Liu, Simonyan, and Yang 2018),
local search (White, Nolen, and Savani 2020), and ASHA (Li
and Talwalkar 2019). See Table 1. A new surrogate bench-
mark on the DARTS search space (Siems et al. 2020), called
NASBench-301 was recently introduced. Initial experiments
showed (Siems et al. 2020) that BANANAS was competitive
with nine other popular NAS algorithms, including one-shot
methods (Liu, Simonyan, and Yang 2018; Xu et al. 2019;
Dong and Yang 2019).

Conclusion and Future Work
We conduct an analysis of the BO + neural predictor frame-
work, which has recently emerged as a high-performance
framework for NAS. We test several methods for each com-
ponent: the encoding, neural predictor, calibration method, ac-
quisition function, and acquisition function optimization strat-
egy. We also propose a novel path-based encoding scheme,
which improves the performance of neural predictors. We
use all of this analysis to develop BANANAS, an instantia-
tion of the BO + neural predictor framework which achieves
state-of-the-art performance on popular NAS search spaces.
Interesting follow-up ideas are to develop multi-fidelity or
successive halving versions of BANANAS. Incorporating
these approaches with BANANAS could result in a signifi-
cant decrease in the runtime without sacrificing accuracy.
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Our work is one level of abstraction from real applications,
but our algorithm, and more generally the field of NAS, may
become an important step in advancing the field of artificial
intelligence. Because of the recent push for explicitly reason-
ing about the impact of research in AI (Hecht et al. 2018),
we are hopeful that neural architecture search will be used to
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