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Abstract

Bipartite network inference is a ubiquitous problem across
disciplines. One important example in the field molecular bi-
ology is gene regulatory network inference. Gene regulatory
networks are an instrumental tool aiding in the discovery of
the molecular mechanisms driving diverse diseases, includ-
ing cancer. However, only noisy observations of the projec-
tions of these regulatory networks are typically assayed. In
an effort to better estimate regulatory networks from their
noisy projections, we formulate a non-convex but analytically
tractable optimization problem called OTTER. This problem
can be interpreted as relaxed graph matching between the
two projections of the bipartite network. OTTER’s solutions
can be derived explicitly and inspire a spectral algorithm, for
which we provide network recovery guarantees. We also pro-
vide an alternative approach based on gradient descent that is
more robust to noise compared to the spectral algorithm. In-
terestingly, this gradient descent approach resembles the mes-
sage passing equations of an established gene regulatory net-
work inference method, PANDA. Using three cancer-related
data sets, we show that OTTER outperforms state-of-the-art
inference methods in predicting transcription factor binding
to gene regulatory regions. To encourage new graph match-
ing applications to this problem, we have made all networks
and validation data publicly available.

Introduction
Bipartite networks are studied across disciplines ranging
from machine learning (Yamanishi 2009), ecology, and eco-
nomics to biology. They focus on the interaction of dif-
ferent types of nodes like vertices in different graphs, pol-
linators and plants, countries and products, or compounds
and proteins. Another prominent example are gene regula-
tory networks consisting of transcription factors (TFs) and
genes (see Fig. 1). These are fundamental objects of study in
molecular biology and their analysis provides insights into
mechanisms underlying the progression of various diseases,
including cancer (Lopes-Ramos et al. 2018; Burkholz and
Quackenbush 2021; Lopes-Ramos et al. 2020).

Often, we do not observe the bipartite network W (e.g.
representing TF–gene interactions) directly but instead have
information about its two associated projections WWT
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(TF–TF cooperation) and WTW (gene–gene interactions,
see Fig. 2). The general objective of this work is to in-
fer W based on noisy observations of its projections P ≈
WWT and C ≈ WTW . We formulate this task as a
non-convex optimization problem, OTTER (Optimize to
Estimate Regulation). It is related to inexact graph match-
ing, as it seeks agreement between two graphs P and C.
W could be interpreted as relaxed permutation matrix that
matches nodes in P (TFs) with nodes in C (genes). As re-
laxed graph matching, OTTER is theoretically tractable but
the solutions are non-unique, since information about W is
lost as a consequence of projecting. To select a solution, we
need a good initial guess W0 of the bipartite network as in-
put in addition to P and C.

Our first contribution is to fully characterize OTTER’s so-
lution space, which depends on the spectral decomposition
of C and P . Hence, two natural choices to solve OTTER are
(1) a spectral algorithm and (2) gradient descent. For both,
we provide theoretical network recovery guarantees. While
the spectral method is robust to small noise, gradient descent
is more reliable in higher noise settings, which are common
in biological applications. As we show on three benchmark
data sets related to gene regulation and cancer, optimiz-
ing OTTER using gradient descent outperforms state-of-the-
art gene regulatory network inference techniques. Among
these techniques is PANDA (Passing Attributes between
Networks for Data Assimilation (Glass et al. 2013)), an es-
tablished GRN inference method. OTTER gradient descent
resembles the corresponding message passing updates, and
it can therefore be interpreted as simplified, theoretically
tractable formulation of PANDA. This formulation enables
us to provide network recovery guarantees and analyze the
effects of noise on the network reconstruction.

Gene regulation Next generation genome sequencing
technology has revolutionized biomedical research and pro-
vides data at an unprecedented scale and speed. The low cost
of this technology facilitates large, genome-scale studies
which provide new insights into gene regulation. The human
genome encodes about 25,000 genes, but not all genes are
activated, or ”expressed,” in every cell type. Gene expression
distinguishes tissues from each other can make the differ-
ence between health and disease, as it controls the produc-
tion of proteins. These proteins influence higher level cel-
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Figure 1: Gene regulation. A. Transcription factors (TFs) are represented by green, blue, and yellow objects that bind to the
genome (gray band) in vicinity of the start site of a gene (black arrow) to regulate its expression. B. Representation of A as
bipartite gene regulatory network.

lular functions, which are often altered during the develop-
ment and progression of different diseases, including cancer.
To gain an understanding of the gene regulatory mechanisms
perturbed by a disease, it is common practice to infer and
compare associated gene regulatory networks (GRNs) (Lao
et al. 2015; Lopes-Ramos et al. 2018; Qiu et al. 2018; Yung
et al. 2019). In many cases, these networks are weighted, bi-
partite, and have a representation as matrixW . W consist of
two types of nodes – transcription factors (TFs) and genes.
A TF is a protein that can bind to the DNA in the vicin-
ity of a gene and regulate its expression. When this occurs,
the TF and target gene are linked in the gene regulatory net-
work, see Fig. 1. TFs are also known to cooperatively regu-
late target genes. One actively studied mechanism by which
TFs cooperate is through the formation of protein complexes
which then go on to bind to DNA. These TF-TF interactions
are an area of active study, and public databases with such
information are actively maintained. In this work, we denote
the TF-TF cooperativity matrix as P .

Genes that are co-regulated are frequently correlated in
their expression levels. We can estimate this co-regulation
using a gene-gene co-expression matrix C estimated from
gene expression data. This is especially attractive because
gene expression is widely available and is context-specific,
i.e., it depends on the tissue type, disease, etc. A more de-
tailed explanation of gene regulation is given in the supple-
ment. We also recommend the review article by Todeschini
et al. (Todeschini, Georges, and Veitia 2014)).

GRN inference is central to deepening our understanding
of diseases on the molecular level, but it is a notoriously
difficult problem. Contributions by researchers working in
different domains like graph matching could therefore have
a great impact. For this reason, we provide benchmark data
sets for three human tissues in the cancer domain (Guebila
et al. 2020). Their use does not require expertise in molecu-
lar biology.

Related work The OTTER objective is inspired by a
state-of-the-art GRN inference method, PANDA (Glass et al.
2013). PANDA integrates multiple data sources through a
message passing approach, which is similar to the gradient
descent of OTTER. A derivation is given in the supplement.
PANDA has been used to investigate gene regulatory rela-
tionships in both tissue specific (Sonawane et al. 2017) as
well as several disease contexts, including chronic obstruc-
tive pulmonary disease (Lao et al. 2015), asthma (Qiu et al.
2018), beta cell differentiation (Yung et al. 2019), and colon
cancer (Lopes-Ramos et al. 2018). OTTER can be seen as

a theoretically tractable simplification of PANDA, which is
amenable to modern optimization techniques and draws con-
nections to graph matching.

Many methods try to infer regulatory relationships solely
based on gene expression with two possible (non-exclusive)
objectives: structure learning and gene expression predic-
tion. Usually, gene expression prediction makes indirect
statements about the interaction structure of variables as
well and thus forms an hypothesis about which TFs reg-
ulate which genes. TFs are proteins that are created from
the mRNA expressed by their corresponding genes. Hence,
predicting target gene expression from the expression of the
genes coding for the TFs assumes a biologically reasonable
structure. The most common and basic approach is to anal-
yse the Pearson correlation (COR) matrix or, if feasible, par-
tial correlations (PARTIAL COR). Spearman correlations
usually lead to similar conclusions. Another popular ap-
proach is Weighted Gene Co-expression Network Analysis
(WGCNA) (Zhang and Horvath 2005; Langfelder and Hor-
vath 2008), in particular the TOM subroutine. It also starts
from a gene expression correlation matrix but down-weighs
connections if they are not consistent with neighborhood in-
formation. Other pruning heuristics take also different types
of node similarities resulting from graph embeddings into
account (Pio et al. 2020). Alternatives are based on mutual
information, where ARACNe (Lachmann et al. 2016) is one
of the most commonly used representatives. Among graphi-
cal models, mainly Gaussian graphical models are used be-
cause the learning algorithms have to scale to a large number
of genes. The GLASSO (Friedman, Hastie, and Tibshirani
2008) method is among the best performing candidates and
uses LASSO regularization to enforce sparsity. However, it
still does not scale to our setting (approximately 20, 000-
30, 000 genes for human tissue), so that we had to omit
it from the benchmarks in our experiments. Linear models
(Haury et al. 2012) and random forests (Huynh-Thu et al.
2010) have been used for a similar purpose, where TIGRESS
(Haury et al. 2012) and GENIE3 (Huynh-Thu et al. 2010)
were top scorers at the DREAM5 challenge (Marbach et al.
2012) (although the challenge was somewhat different from
the GRN modeling we study here). Both methods have high
computational requirements and are less suitable for the hu-
man genome. An alternative approach is to treat the binding
of TFs to the promoter region of a gene as supervised learn-
ing problem (Karimzadeh and Hoffman 2019; Yuan and Bar-
Joseph 2019). While such models can be quite accurate, they
are limited to the small number of TFs for which the rele-
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vant data is available, which is provided by ChIP-seq exper-
iments. Hence, supervised approaches cannot discover new
gene regulatory relationships. Transfer learning algorithms
can utilize more data from different domains, for instance,
GRNs related to mice (Mignone et al. 2019), but might also
inherit unrealistic biases. Note that, in contrast, the data re-
quired to define OTTER are widely available, related to the
relevant domain, and include a much larger set of known
TFs.

In addition, OTTER is related to established problems in
graph matching (Yan et al. 2016), which have strong the-
oretical foundations (Jiang et al. 2017; Barak et al. 2019).
The quadratic assignment problem (QAP) (Aflalo, Bron-
stein, and Kimmel 2015) and its variants (Maron and Lip-
man 2018) have a direct link to OTTER and can support a
similar biological theory. Graph matching has broad appli-
cations in computer science ranging from machine learning
(Cour, Srinivasan, and Shi 2007), pattern matching (Zhou
and De la Torre 2016), vision (Berg, Berg, and Malik 2005;
Zhou and De la Torre 2013), and protein network alignment
(Singh, Xu, and Berger 2008) to social network analysis
(Fan 2012). However, it has not been applied to gene regula-
tory network inference to the best of our knowledge. As we
show, simple relaxed graph matching techniques are com-
petitive with established GRN inference methods.

Contributions 1) We pose a novel optimization prob-
lem, OTTER, for the inference of bipartite networks in gen-
eral and gene regulatory networks (GRNs). Importantly, OT-
TER is analytically tractable. 2) We gain insights into a
state-of-the-art GRN inference method, PANDA (Glass et al.
2013), as OTTER gradient descent resembles the related
message passing equations. 3) We characterize OTTER’s so-
lution space and derive a spectral algorithm on its basis, for
which we give network recovery guarantees. 4) We solve
the gradient flow dynamics associated with gradient descent
for OTTER. 5) We draw a connection from OTTER to re-
laxed graph matching and open a new application area for
related algorithms. 6) We show that OTTER gradient de-
scent outperforms the current state of the art in GRN in-
ference on three challenging biological data sets related to
cancer. 7) We make the processed data publicly available to
ease the use for researchers without a computational biology
background and to foster further innovation in relaxed graph
matching and GRN inference.

OTTER
Biological Motivation
Our objective is to infer a gene regulatory network (GRN)
represented by a matrix W . Entries wij with larger values
indicate a higher probability that TF i regulates gene j. OT-
TER and PANDA refine an initial guess W0 of a GRN by
increasing its consistency with protein-protein interactions
P and observed gene expression with correlation matrix C.
In our experiments, a TF–gene edge exists in W0 if the se-
quence motif for that TF is present in the promoter region
of the target gene. This information depends only on the hu-
man reference genome and provides a reasonable estimate
of where TFs bind. Yet, it is context agnostic. TF binding

changes between different tissues, allowing cells to assume
their specific functions, and can become disrupted by dis-
eases like cancer.

To estimate condition specific GRNs, we solve the OT-
TER objective. In doing so, we assume that P and C
agree partially with the projections of the actual gene reg-
ulatory network W . We do not require perfect equality of
WWT = P and WTW = C but improve W0 accord-
ing to the following three central elements of gene regu-
lation: (1) TFs that can bind to the promoter region of a
gene are more likely to regulate that gene (W ≈ W0)
(Spitz and Furlong 2012; Lambert et al. 2018; Ouyang,
Zhou, and Wong 2009), (2) genes that are correlated in their
expression are more likely to be co-regulated by similar
TFs (WTW ≈ C) (Lambert et al. 2018; Shi, Fornes, and
Wasserman 2018; Hobert 2008), and (3) TFs that interact
(for example, by forming complexes) are more likely to tar-
get the same genes (WWT ≈ P ). TF cooperation is of-
ten mediated through protein-protein interactions (Spitz and
Furlong 2012; Morgunova and Taipale 2017; Deplancke,
Alpern, and Gardeux 2016). For example, the TFs Msn2 and
Msn4 bind together to form a complex before binding to the
DNA of their target genes (Chapal et al. 2019).

This reasoning motivates our general study of bipartite
network inference based on observed noisy projections (P
and C). As we will show, a considerable amount of infor-
mation is lost by projecting. This explains partially why
GRN inference is challenging. Central to our success is
a good initialization W0 and the choice of algorithm that
picks a solution among the many different options. Specif-
ically, we study two approaches: (a) a spectral algorithm
and (b) a gradient descent variant optimizing the OTTER
objective, which we introduce formally in the next section.
As we show, the spectral approach has excellent recovery
guarantees in low noise settings, while gradient descent is
more reliable in high noise applications, which is common
in high throughput sequencing data in biology. Gradient de-
scent also has the advantage that it allows us to stay closer to
the initial W0 with early stopping. For this reason, it enables
us to outperform the state of the art in GRN inference.

Theoretical Framework
In this section, we analyse the general problem of learning
a bipartite and weighted network with matrix representation
W ∈ Rnp×nc from its symmetric projections P ∈ Rnp×np

and C ∈ Rnc×nc . By analogy with our motivation of GRN
inference, we call the nodes of one type transcription fac-
tors (TFs) and of the other type genes. We have np TFs
and nc genes, where the number of genes is usually much
larger (np � nc). Minimizing the following OTTER objec-
tive f(W ) =

(1− λ)

4
‖WWT −P‖2 +

λ

4
‖WTW −C‖2 +

γ

2
‖W‖2 (1)

with respect to W seeks agreement between the projections
of W and P and C. λ ∈ [0, 1] denotes a tuning parame-
ter that moderates the influence of P versus C, and γ corre-
sponds to a potential regularization. As we will see later, this
choice of regularization compensates for a bias that noise in
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Figure 2: The unknown bipartite network W is inferred from its observed projections P and C.

P and C introduces. In principle, we could choose any ma-
trix norm but limit our following discussion to the Frobenius
norm ‖A‖2 :=

∑n
i=1

∑m
j=1 a

2
ij = tr(ATA) for a matrix

A = (aij). For this choice, gradient descent resembles most
closely the related message passing equations of PANDA
and we can derive the solutions of the minimization prob-
lem.

These solutions depend on the spectral decomposition of
P = UpDpU

T
p and C = VcDcV

T
c , which exist with re-

spect to orthogonal Up and Vc, as P and C are symmetric.
Otherwise, the same results hold for the spectral decompo-
sition of (P + PT )/2 and (C + CT )/2. Dp and Dc are
diagonal matrices containing the eigenvalues of the respec-
tive matrix. In a slight abuse of notation, we denote with
Dp a matrix Dp ∈ Rnp×np and, if convenient, a matrix
Dp ∈ Rnc×nc , which is padded with zeros accordingly. Fur-
thermore, let M [np] = (mij)i≤np,j≤np

denote a submatrix
of a larger matrix M with dimension np × np. Without loss
of generality, we assume that the eigenvalues dp,ii of P are
indexed in descending order; dp,ii ≥ dp,jj for i < j. For C
however, we require a good matching with P . We therefore
assume implicitly that the distance ofDc toDp is minimized
with respect to permutations of the eigenvalues of C, that is
‖Dc − Dp‖2 = minπ∈P ‖Dc,π − Dp‖2, where P denotes
the set of permutations of {1, · · · , nc} and Dc,π the corre-
sponding ordering of eigenvalues on the diagonal. If Dp and
Dc show little discrepancy, this will result in the eigenvalues
of C being in descending order as well. Now, everything is
in place to characterize the solution space S .
Theorem 1. For given P ∈ Rnp×np with P = PT and
C ∈ Rnc×nc with C = CT , for any spectral decomposition
P = UpDpU

T
p and C = VcDcV

T
c , λ ∈ [0, 1], the minimiza-

tion problem (1) has solutions W ∗ ∈ S with singular value
decomposition W ∗ = UpDwV

T
c , where

dw,ii =
√

max ((1− λ)dp,ii + λdc,ii − γ, 0) (2)

for i ≤ np. For dw,ii = 0, the corresponding columns of
Uw and Vw are not restricted to the eigenvectors of P and
C. The eigenvalues of C are ordered such that Dc = Dc,π ,
where the permutation solves the minimization problem

π =argminπ′∈P

(
λ(1− λ)

2
‖Dp −D

[np]
c,π′‖2

− λ

2
‖D[np]

c,π′‖2 + (1− λ)γ tr
(
D

[np]
c,π′

))
.

(3)

For ∆ := D
[np]
c −Dp, we further assume that

1

λ2

(
‖P‖2 +

1

np
tr (P )

2

)
+

1

np
(tr(∆))

2
> ‖∆‖2. (4)

Condition (4) is usually met and it is a minor technicality
to exclude alternative global minima of Objective (1) that
defy our intuition. The nature of these alternatives is dis-
cussed in detail in the proof of Thm. 1 in the supplement.

According to Thm. 1, OTTER (Eq. (1)) has at least 2np

different solutions. Each column u:i of Up has two op-
tional signs that do not alter the spectral decomposition of
P but can lead to a different solution W ∗. The same ap-
plies to columns v:i of Vc. Only the product of correspond-
ing columns (u:i and v:,i) determines the respective solu-
tion W ∗, as we have w∗ij =

∑
k dw,kkuikvjk. This leaves

us with 2np alternatives. If the (non-zero) spectra are not
simple, such that some eigenspaces have multiple choices of
basis functions, we have additional degrees of freedom in
constructing the solutions.

As a consequence, we face a model selection problem and
require additional information to make an informed deci-
sion. In the following, we propose two natural algorithmic
choices to identify a solution: (a) a spectral approach based
on Thm. 1 and (b) gradient descent minimizing OTTER.

Both rely on additional input W0 ∈ Rnp×nc , an initial
guess of a gene regulatory matrix. The choice of W0 is cru-
cial for the performance of both algorithms. To understand
some of their advantages and limitations, we provide theo-
retical recovery results when W0 is a random perturbation
of the correct W and compare both algorithms on synthetic
data with increasing levels of noise.

A Spectral Method for Solving OTTER
Assuming that W0 provides good evidence, our first pro-
posal for a network inference algorithm selects the closest
solution (Ŵ ∈ S) to W0 in a spectral approach: Ŵ =
minW∈S ‖W − W0‖2. If P and C have simple spectra so
that the non-zero eigenvalues correspond to 1-dimensional
eigenspaces, the solution to this minimization problem can
be computed easily. Note that this assumption is satisfied in
our applications. From our previous derivation of the solu-
tion space, we know that the only ambiguity lies in the sign
of the eigenvectors or, equivalently, the singular eigenvalues.
Essentially, for fixed spectral decomposition P = UpDpU

T
p

and C = VcDcV
T
c , our candidate solutions are of the form

W = UpDwDsV
T
c , where Ds contains the unknown sign
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information. Ds is a diagonal matrix with entries ds,ii ∈
{−1, 1} on the diagonal. These are our only degrees of free-
dom. Hence, our problem turns into

min
W∈S

‖W−W0‖2 = min
ds,ii∈{−1,1}

‖DwDs−UTp W0Vc‖2 (5)

For simplicity, we write M0 = UTp W0Vc. The solution
Ŵ is unique and given by Ŵ = UpD̂wV

T
c with d̂w,ii =

dw,iisign(m0,ii), where dw,ii is defined as in Thm. 1 and
sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0.

An important question in many applications is how well
this approach performs under noise. First, we study a simpli-
fied scenario, in which onlyW0 is noise corrupted so that we
know the singular values Dw, as we can deduce them from
the correct P and C. Even in this simplified case, perfect
recovery of W is unlikely for large-scale problems, as the
next proposition states. Let Φ denote the cumulative distri-
bution function (cdf) of a standard normal and X ∼ Ber(p)
a Bernoulli random variable with success probability p.
Proposition 2. Assume that we observe P = W ∗TW ∗,
C = W ∗W ∗T , and W0 = W ∗ + E for a true under-
lying W ∗ ∈ Rnp×np and noise E ∈ Rnp×np with inde-
pendent identically normally distributed components eij ∼
N
(
0, σ2

)
. Further assume that P and C have a simple

spectrum {d1, . . . , dnp
}. Then, for the spectral approach

Ŵ = argminW∈S‖W −W0‖2 with γ = 0, the recovery
loss is distributed as ‖Ŵ −W ∗‖2 = 4

∑np

i=1 d
2
iRi, where

Ri ∼ Ber (Φ (−di/σ)) for di > 0 and Ri = 0 for di = 0
are independent. For any ε > 0, the following holds with the
usual Chernoff bound:

P
(
‖Ŵ −W ∗‖2 ≤ ε

)
≥ 1−exp

(
ε− µ− ε

4
δ log

(
ε

µ

))
,

where µ =
∑
i pi and δ = 1

maxi(d2w,ii)
for ε ≤ µ and

δ = 1

mini(d2w,ii)
otherwise.

The proof is given in the supplement. The insight that
Ri ∼ Ber (Φ (−di/σ)) allows us also to analyze the proba-
bility of perfect recovery (ε = 0). We have P

(
Ŵ = W ∗

)
=∏np

i=1 (1− Φ (−di/σ)). In our examples, np = 1636 and
dmin ≈ 0.0001. To achieve a probability of at least 0.5, we
could allow for a noise variance of σ ≈ 3 · 10−5. In many
applications, this would be a reasonable range, considering
that we have npnc ≈ 4.4 · 107 matrix entries.

Yet, biological data is known to be very noisy. In addition,
we also expect high noise in P and C. To compensate for
this additional noise, we need regularization.

Regularization To motivate the need for regularization
(γ > 0), we show that, depending on the source of the
noise, the spectrum of P and C becomes biased. Typical
noise matrices Ep and Ec have iid entries with zero mean,
variance σ2

p/c, and a symmetric distribution. They could dis-
tort the true projections W ∗W ∗T and W ∗TW ∗ as P =
(W ∗ +Ep)(W

∗ +Ep)
T and C = (W ∗ +Ec)

T (W ∗ +Ec)

or P = W ∗W ∗
T

+ EpE
T
p and C = W ∗TW ∗ + ETc Ec,

respectively. In both cases, P and C become biased as
E (P ) = W ∗W ∗T + σ2

pI and E (C) = W ∗TW ∗ + σ2
cI ,

where I denotes the respective identity matrix. The choice
γ = λσ2

c + (1 − λ)σ2
p in Eq. (1) can compensate for this

spectral shift.
It should be noted that, Thm. 1 states that such a l2-

regularization alters the solutions to Problem (1) in two
ways. Not only are the singular values of W ∗ shifted by −γ
to compensate for the biases introduced by the noise, also
the matching of the eigenvalues of P and C is influenced by
the additional penalty γ(1−λ) tr

(
D

[np]
c,π

)
in Eq. (3). Conse-

quently, it may be optimal to pair the eigenvalues of P with
smaller eigenvalues of C rather than larger ones if γ is large.

The spectral method can be powerful in a setting in which
noise is well controlled such that our assumptions are met
approximately. Our second solution proposal, gradient de-
scent, however, gives us more tuning options, including the
step size and early stopping, that will allow us to stay closer
to the initial guess W0.

Gradient Descent for Solving OTTER
The message passing equations of PANDA resemble a gra-
dient descent procedure minimizing Objective (1). We ex-
plain this relationship in detail in the supplement. In our
experiments, we used the ADAM method (Kingma and Ba
2014) for gradient descent, but alternatives are equally appli-
cable. To better understand the approach from a theoretical
perspective and reason about its response to noisy data, we
take the continuous time approximation (corresponding to
infinitesimally small step size) and study the corresponding
gradient flow:

τ
dW

dt
= −∇f(W )

= −WWTW + (1− λ)PW + λWC − γW,
(6)

where we set the time unit τ = 1 in the following for sim-
plicity. If the initial W0 has a similar singular value decom-
position as a solution, the differential equation decouples
and we can solve the resulting one-dimensional ordinary dif-
ferential equations for the diagonal elements explicitly.
Proposition 3. For initial W0 = UpD0V

T
c with UpDpU

T
p

and VcDcV
T
c , the solution of the gradient flow (6) is given

by W (t) = UpDtV
T
c with

dt,ii =sign(d0,ii)dw,ii

×
√

1

2
h
(
d2w,iit+ h−1

(
2d20,ii/d

2
w,ii − 1

))
+ 1,

where h(x) = tanh(x) if d20,ii < d2w,ii and h(x) = coth(x)
otherwise.

The proof is provided in the supplement. Note that the
square root factor converges to 1 for t → ∞ in both cases.
Hence, the final solution inherits the signs sign(d0,kk) of
the initialization, which is similar to our spectral approach.
Thus, if we start from a reasonable guess W0 that diagonal-
izes with respect to the same U and V as the global minima,

10267



gradient descent will converge to the closest global mini-
mum (for small enough learning rate). For generalW0, how-
ever, it is important to keep in mind that gradient descent
can converge to different solutions, since it optimizes a non-
convex objective (Kingma and Ba 2014; Burkholz and Du-
batovka 2019). It does not necessarily stay close to our ini-
tialization and can even get stuck in local minima. But it also
provides us with additional tuning options and early stop-
ping, which will enable us to outperform the state of the art
in GRN inference.

Relation to Inexact Graph Matching
As we show in this section, OTTER can also be interpreted
as relaxed graph matching. If W solves the OTTER objec-
tive for γ = 0 perfectly (f(W ) = 0), P andC are its projec-
tions, i.e., P = WWT and C = WTW . It follows that P ,
C, and W also fulfill the relation PW = WWTW = WC.
Hence, it would also be reasonable infer a bipartite network
from its projections by minimizing the objective

g1(W ) =
1

2
‖PW −WC‖2 +

γ

2
‖W‖2 (7)

(with additional l2-regularization). This is the well known
quadratic assignments problem (QAP), a standard objective
in graph matching (Aflalo, Bronstein, and Kimmel 2015).
In this setting, P and C are usually assumed to have the
same dimension (nP = nC). The dimensions can differ for
inexact graph matching, but the smaller network is then sup-
posed to be similar to a subgraph of the bigger one. Thus,
the minimization is performed under the constraint that W
is a permutation matrix. In contrast, we are not interested in a
permutation matrix, but in a weighted networkW ∈ Rnp×nc

that solves the relaxed QAP. As OTTER, QAP has different
solutions and thus solution techniques. Gradient descent and
spectral approaches are common choices.

In particular, GRAMPA (Fan et al. 2020, 2019) is a vari-
ant of QAP with strong recovery guarantees. It adds the term
−δ1TW1 to the QAP objective (7), where 1 denotes a vec-
tor with all entries equal to one:

g2(W ) =
1

2
‖PW −WC‖2 +

γ

2
‖W‖2 − δ1TW1 (8)

As a consequence, the GRAMPA minimization problem has
a unique solution and becomes explicitly solvable by a spec-
tral approach.

As for OTTER, the spectral approach performs worse in
estimating GRNs than the optimization by gradient descent.
We therefore only report the latter in our experiments, where
we explore the utility of graph matching techniques for GRN
inference in comparison with OTTER. The precise gradient
descent algorithms minimizing QAP or GRAMPA are de-
tailed in the supplement.

Graph matching can also be studied within the optimal
transport framework (Peyré, Cuturi, and Solomon 2016;
Titouan et al. 2019). We could formulate the OTTER objec-
tive with respect to a nonstandard metric and regularization
term. Since we are not searching for stochastic matrices W ,
this does not serve our purpose and we leave the transfer
of related methods to gene regulatory network inference to
future explorations.

Figure 3: OTTER recovery error using (top) gradient descent
and (bottom) spectral decomposition for artificial networks
of size np = 100, nc = 200 and Gaussian noise with vari-
ance σ2

p/c for P andC and σ2
0 forW0. Shaded regions corre-

spond to the 0.95 confidence interval and lines to the average
over 10 repetitions. The legend applies to both figures.

Experiments
Experiments on Synthetic Data
To showcase the performance of OTTER for cases in which
our assumptions are met and to study the influence of noise,
we create synthetic data based on a ground truthW ∗ that we
try to recover from noise corrupted inputs W0 = W ∗ + E0,
P = (W ∗+Ep)(W

∗+Ep)
T , and C = (W ∗+Ec)

T (W ∗+
Ec). All noise entries are Gaussian and independently dis-
tributed with e0,ii ∼ N

(
0, σ2

0

)
, ep,ii ∼ N

(
0, σ2

p

)
, and

ec,ii ∼ N
(
0, σ2

c

)
. To obtain a realistic ground truth for

which we can repeat each experiment 10 times conveniently,
we sub-sample (in each repetition) the ChIP-Seq network for
the liver tissue to np = 100 and nc = 200. (See the next
section for more details.) As this is unweighted, we draw
the weights iid from N (10−5, 1). For each network, we use
the spectral and the gradient descent version of OTTER and
report the obtained recovery error ‖|W −W ∗‖2.

We align the eigenvalues of P andC by arranging them in
descending order in the spectral approach. ADAM gradient
descent for the OTTER objective is run for 104 steps with the
default ADAM parameters, as detailed in the supplement.
For both the gradient decent and the spectral approach, we
use parameters γ = σ2

p/c = σ2
p = σ2

c and λ = 0.5.
The results are shown in Fig. 3. For small levels of noise in
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AUC-ROC (AUC)
METHOD BREAST CERVIX LIVER

COR 0.5900 0.5758 0.5637
PARTIAL COR† 0.5366 0.5209 0.5175
ARACNE 0.6150 0.5234 0.5636
GENIE3 0.4818† 0.4832 0.4846
TIGRESS† 0.4945 0.4808 0.5018
OTTER SPECTRAL 0.5787 0.5420 0.5345
GRAMPA GRAD 0.6301 0.6328 0.6072
QAP GRAD 0.6373 0.6287 0.6081
WGCNA TOM 0.6146 0.5842 0.5946
W0 0.6282 0.6261 0.5982
PANDA 0.6739 0.6642 0.6211
OTTER GRAD 0.6936 0.6833 0.6600

AUC-PR (AUPR)

COR 0.2772 0.2247 0.3057
PARTIAL COR† 0.2361 0.1952 0.2525
ARACNE 0.2858 0.2027 0.2986
GENIE3 0.2064† 0.1836 0.2437
TIGRESS† 0.2088 0.1845 0.2523
OTTER SPECTRAL 0.2555 0.2024 0.2614
GRAMPA GRAD 0.3162 0.2763 0.3223
QAP GRAD 0.3215 0.2637 0.3425
WGCNA TOM 0.2834 0.2229 0.3140
W0 0.2865 0.2523 0.3045
PANDA 0.3481 0.2960 0.3503
OTTER GRAD 0.3752 0.3179 0.3746

Table 1: TF binding prediction for different cancer tissues.
The symbol † indicates that binding predictions were made
only for TFs with ChIP-seq data due to high computational
demands. The highest score for each data set is shown in
bold.

P and C, the spectral approach performs reliably and better
than gradient descent. However, for high σ2

p/c gradient de-
scent outperforms the spectral method. Since biological data
is inherently noisy, gradient descent seems to be the method
of choice. Furthermore, it provides us with additional tuning
options that we can leverage to outperform state-of-the-art
methods.

Experiments on Cancer Data
The most abundant data source for studying gene regulation
is gene expression data. These data are often measured using
bulk RNA-sequencing (RNA-seq) with samples correspond-
ing to different individuals.

Datasets and experimental set-up We obtained bulk
RNA-seq data from the Cancer Genome Atlas (TCGA)
(Tomczak, Czerwińska, and Wiznerowicz 2015). The data
is downloaded from recount2 (Collado-Torres et al. 2017)
for liver, cervical, and breast cancer tumors and normal-
ized and filtered as described in the supplement. The cor-
responding Pearson correlation matrix defines the gene-gene
co-expression matrixC consisting of nc = 31, 247 genes for

breast cancer, nc = 30, 181 for cervix cancer and 27, 081 for
liver cancer. The protein-protein interaction matrix P is de-
rived using laboratory experiments and represents possible
interactions; we use the version of (Sonawane et al. 2017)
and fill unavailable information with zeros. P consists of
np = 1, 636 potential TFs. Our initial guess of a gene reg-
ulatory network, W0, is derived from the human reference
genome. It is almost identical across tissues. It only varies
slightly according to the number of genes (nc) included af-
ter filtering and normalization. W0 is a binary matrix with
w0,ij ∈ {0, 1} where “1” indicates a TF sequence motif in
the promoter of the target gene. Sequence motif mapping
was performed using the FIMO software (Grant, Bailey, and
Noble 2011) from the MEME suite (Bailey et al. 2009) and
the GenomicRanges R package (Lawrence et al. 2013). Note
that neither W0 or P carry sign information about edge
weights so that we cannot infer whether TFs inhibit or ac-
tivate the expression of a gene. We therefore focus on the
prediction of link existence with the understanding that the
type of interaction can be estimated post hoc.

Validation of gene regulatory networks is a major chal-
lenge. Data from chromatin immunoprecipitation followed
by sequencing (ChIP-seq) experiments, which measure the
binding of TFs to DNA in the genome, provide a valida-
tion standard against which to benchmark our results. Each
ChIP-seq experiment assays only one TF. Because of the as-
say’s relatively high cost, there are only few data sets that
have ChIP-seq data for many TFs from the same cells. We
used ChIP-seq data from the HeLa cell line (cervical cancer,
48 TFs), HepG2 cell line (liver cancer, 77 TFs) and MCF7
cell line (breast cancer, 62 TFs) available in the ReMap2018
database (Chèneby et al. 2018), a database collection of pub-
licly available ChIP-seq datasets from available studies. This
database contains identified ChIP-seq peaks, representing
our target TF binding sites. Further details are given in the
supplementary material. Based on this data, we measure the
performance of link classification on the subnetwork in each
tissue that is constrained to the available TFs and report the
AUC-ROC (area under the receiver operating characteristic
curve) and AUPR (or AUC-PR) (area under the precision
recall curve).

Hyperparameter tuning of OTTER was assisted by MAT-
LAB’s bayesopt function utilizing a Gaussian process prior
to maximize the joint AUC-PR for breast and cervix can-
cer, max AUPRbreast ·AUPRcervix. Breast and cervix data
serve therefore as training data while the liver cancer data
is an independent test set. The parameters of all compared
methods are reported in the supplementary information.

Results Table 1 compares the feasible GRN inference and
relaxed graph matching methods based on comparison with
experimental ChIP-seq binding data. Note that we also re-
port the performance of our initializationW0, which is based
on motif data. OTTER GRAD, PANDA, QAP GRAD, and
GRAMPA GRAD greatly improve this initial guess and
make it tissue specific. Overall, OTTER gradient descent
(OTTER GRAD) achieves the best performance on all tis-
sues, in particular, on the liver test set. An enrichment anal-
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ysis of Gene Ontology terms between networks for healthy
and cancerous liver tissue in the supplement provides addi-
tional evidence that OTTER GRAD is biologically meaning-
ful.

Interestingly, ADAM gradient descent solving alternative
graph matching problems, i.e., QAP GRAD and GRAMPA
GRAD, achieve better results than established GRN infer-
ence algorithms, even though they were not originally de-
signed for this purpose. They succeed based on similar hy-
perparameters as OTTER GRAD.

In general, we observe better performance for the meth-
ods that incorporate additional biological evidence such as
(transformed) protein-protein interactions and binding mo-
tifs, even though P and W0 are not tissue-specific. A reason
for this is that correlations in gene expression can be caused
by many factors. Many TFs are expressed at very low levels
but strongly activate their target genes, obscuring correla-
tions between TFs and their targets. Hence, graph matching
approaches are a promising alternative to models that make
predictions based on gene expression alone.

Discussion

We formulated the inference of a bipartite network from its
two projections as a non-convex but analytically tractable
optimization problem, OTTER. The projections alone do not
provide enough information for network inference, as OT-
TER has multiple solutions that we derived explicitly. We
proposed two natural inference algorithms for model selec-
tion, a spectral approach and gradient descent, and derived
sufficient conditions for network recovery. Both rely on an
additional initial guess of the bipartite network, W0, which
has to be close to the correct network to guarantee good net-
work recovery. We find the spectral approach to be more re-
liable in low noise settings, while gradient descent seems to
be more robust with respect to higher amounts of noise and
therefore more suitable for our application of interest: gene
regulatory network inference.

As we have shown, gradient descent also resembles in part
an established gene regulatory network inference method,
PANDA. OTTER can therefore be interpreted as a theoreti-
cally tractable simplification of PANDA that provides an in-
triguing connection to relaxed graph matching. OTTER also
outperforms state-of-the art gene regulatory network infer-
ence approaches on real world data sets corresponding to
three human cancer tissues. We make these data sets pub-
licly available to benchmark the use of general graph match-
ing algorithms for gene regulatory network inference (Gue-
bila et al. 2020). As highlighted, relaxed graph matching ap-
proaches apply to this setting and achieve competitive per-
formance. They have the advantage that they can integrate
additional information about a gene regulatory network in
the form of W0 and protein interactions P . We therefore
see great potential in transferring other graph matching tech-
niques to gene regulatory network inference in future inves-
tigations.

Data and Code Availability
OTTER is available in R, Python, and MATLAB
through the netZoo packages: netZooR v0.7 (https://github.
com/netZoo/netZooR), netZooPy v0.7 (https://github.com/
netZoo/netZooPy), and netZooM v0.5 (https://github.com/
netZoo/netZooM).
We provide a tutorial to walk the users through the usage of
OTTER in R (https://netzoo.github.io/netZooR/).
The raw and processed data are accessible through net-
Zoo (https://netzoo.github.io/zooanimals/otter/) and the net-
works can be downloaded from the GRAND database (https:
//grand.networkmedicine.org/cancers/).

Supplement
A supplementary file with proofs of theorems and
details about the presented algorithms is available at
https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/
Otter AAAI2021-12.pdf.
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