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Abstract

In many real-world sequential decision-making tasks, espe-
cially in continuous control like robotic control, it is rare that
the observations are perfect, that is, the sensory data could
be incomplete, noisy or even dynamically polluted due to the
unexpected malfunctions or intrinsic low quality of the sen-
sors. Previous methods handle these issues in the framework
of POMDPs and are either deterministic by feature memo-
rization or stochastic by belief inference. In this paper, we
present a new method that lies somewhere in the middle of
the spectrum of research methodology identified above and
combines the strength of both approaches. In particular, the
proposed method, named Deep Recurrent Belief Propagation
Network (DRBPN), takes a hybrid style belief updating pro-
cedure − an RNN-type feature extraction step followed by an
analytical belief inference, significantly reducing the compu-
tational cost while faithfully capturing the complex dynamics
and maintaining the necessary uncertainty for generalization.
The effectiveness of the proposed method is verified on a col-
lection of benchmark tasks, showing that our approach out-
performs several state-of-the-art methods under various chal-
lenging scenarios.

Introduction
Significant progress has been made in reinforcement learn-
ing (RL) to solve a large number of tasks, such as Atari
games, board games and robotic control (Mnih et al. 2015;
Silver et al. 2017; Schulman et al. 2016). These methods
usually assume the states of the environment are fully ob-
servable. However, in realistic control tasks, the observation
data could be incomplete and noisy. Especially, we refer in-
complete to that the the observation is dynamically missing,
which means that the missing components are changing over
timestep. This problem is very common in realistic contin-
uous control task. Take robotic control as an example. The
agent perceives information of environment through sensors,
e.g., position sensor and velocity sensor. The incompleteness
could result from any malfunction in the sensor, too much
time of preprocessing, or intrinsically, the sensors’ differ-
ent sampling frequency from each other (Randlv and Alstrm
1997). In addition, due to the low quality of sensors, the ob-
servation could also be contaminated with noise.
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The incomplete and noisy data may lack information
which is critical for an agent to make the right decision.
However, in practice, the agents often have to take actions
continuously even when their perception is not perfect. For
example, a running automatic driving car or robot cannot
suddenly stop itself and then move again simply due to that
one or two frames from its radar perception sensors are miss-
ing or partially occluded. In such cases, traditional methods
addressing this issue (e.g., simply ignore the imperfect state
information or set a default action when that happens) are
not appropriate and could even bring disaster to the system.
Consequently, there is a great need to tackle such problems.

Such incomplete and noisy observation problem in con-
tinuous control can be formalized as a case of partially ob-
servable Markov decision processes (POMDPs). The recent
most successful scheme for POMDPs is to aggregate the
history data over time. There are mainly two types of ap-
proaches to achieve this goal. The first type is to remember
the features of the past, e.g., by employing Recurrent Neu-
ral Networks (RNNs) (Hausknecht and Stone 2015; Zhu,
Li, and Poupart 2017; Karkus, Hsu, and Lee 2017). These
RNN-based methods are computational efficient and can be
trained end-to-end. However, these methods remember past
by deterministic feature computation and do not explicitly
incorporate the knowledge of the learned environment mod-
els. The second type are probabilistic methods which infer
the distribution of the latent state (called belief ) from history
of partially observable data. Compared to the first type, this
type of methods is able to characterize the uncertainty of the
knowledge about the current state. However, this is achieved
at the cost of requiring both the transition and observation
model, which are either assumed to be known (McAllester
and Singh 1999; Ross et al. 2008; Roijers, Whiteson, and
Oliehoek 2015) or learned. Previous methods usually make
strong assumption on the generative model to allow tractable
belief updating (Doshi-Velez et al. 2015; Katt, Oliehoek,
and Amato 2017; Azizzadenesheli, Lazaric, and Anandku-
mar 2016).

In this paper, we propose a new method for POMDPs
with incomplete and noisy observation, named Deep Recur-
rent Belief Propagation Network (DRBPN). The DRBPN
combines the strength of both previous two types of ap-
proaches, i.e., it is computationally efficient but preserves
the uncertainty for belief description as well. In particu-
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lar, to balance the subtle tradeoff between efficiently updat-
ing the belief and accurately characterizing the dynamics it-
self, we address the former by clamping the belief as some
parametrized form and focus on modelling the latter with a
highly nonlinear Deep Neural Network (DNN). This leads
to a hybrid type of belief updating − an RNN-type feature
extraction step followed by an analytical belief inference.
Compared to those methods that directly model the whole
belief distribution (Igl et al. 2018), our method significantly
reduces the computational cost (through analytical infer-
ence), while faithfully capturing the complex environment
dynamics and maintaining the necessary uncertainty for gen-
eralization. Last but not least, our computational framework
can be trained in an end-to-end learning scheme, thus can be
thought of as a new strategy for directly applying the policy
gradient in the POMDP setting. Extensive experiments on
high dimensional benchmark tasks show that our approach
outperforms several state-of-the-art methods under various
challenging POMDP scenarios.

Related Work
Most methods working on POMDPs do planning with
known transition model, generative model of observation
(McAllester and Singh 1999; Ross et al. 2008; Roijers,
Whiteson, and Oliehoek 2015). However, these models are
not known in realistic scenarios. Previous work also tried
to learn these models based on a Bayesian approach (Katt,
Oliehoek, and Amato 2017; Ross et al. 2011) or nonpara-
metric methods (Doshi-Velez et al. 2015). However, these
methods could hardly scale to large or continuous state and
observation spaces.

Our DRBPN has a similar recurrent structure as Recur-
rent Neural Network (RNN), which is employed by sev-
eral methods focusing on POMDPs (Hausknecht and Stone
2015; Zhu, Li, and Poupart 2017; Zhang et al. 2015). How-
ever, our DRBPN method explicitly employs the knowledge
of environment models, which could aid learning and infer-
ence. Besides, our algorithm can explicitly reason about the
transition and observation model.

Our work is most related to DVRL (Igl et al. 2018), which
also adopts the same fundamental idea of maintaining be-
lief and learning the models simultaneously as ours. Apart
from the approximated environment models, DVRL needs
to train an additional inference model to approximate the
belief inference procedure. Whereas in our method, the be-
lief inference is solved analytically. By avoiding co-training
an additional inference model with the learned environment
models, our method could reduce the difficulty of training.
In addition, to approximate the intractable computation of
the belief, DVRL relies on a particle filter method, which
could increase computation cost.

There are several works which also clamp the state dis-
tribution to be a parametrized Gaussian to enable effi-
cient inference. PILCO employs the Gaussian Process (GP)
to learn the transition model (Deisenroth and Rasmussen
2011). McAllister and Rasmussen (2017) extended PILCO
with Bayesian filtering to enable learning under observation
noise. However, these methods could only work with com-
plete observation to our knowledge. Besides, the relying on

the GPs prohibits their applicability to problems that require
a large number of sample data. While our DRBPN benefits
from the the Gaussian parametrized by DNNs which scales
linearly with the number of data.

Guo et al. and Gregor et al. uses predictive learning to
learn a belief representation (Guo et al. 2018; Gregor et al.
2019). Several works focus on deep filtering (Karl et al.
2016; Lim, Zohren, and Roberts 2019; Becker et al. 2019;
Willi et al. 2019). Many of them rely on complicated approx-
imate inference techniques which may hurt the efficiency
and scalability (Karl et al. 2016; Lim, Zohren, and Roberts
2019). While we primarily aim to use efficient and accurate
inference with imperfect perception for robust control.

Preliminaries
Reinforcement Learning
Partially Observable Markov Decision Processes
(POMDP). A POMDP is described as a tuple
(S,A,O, T ,P, r, γ). S , A and O represent the state
space, action space and observation space respectively;
T : S × A × S → R is the transition probability;
P(xt|st, at−1) is the observation probability distribution
where xt ∈ O, st ∈ S and at−1 ∈ A; r : S ×A→ R is the
reward function and γ ∈ (0, 1) is the discount factor.

Proximal Policy Optimization (PPO). PPO is a promi-
nent policy optimization algorithm for Markov Decision
Process (which is a special case of POMDP that O = S and
xt = st ) (Schulman et al. 2017). PPO learns the parame-
ter ζ of the policy πζ by optimizing a clipped “surrogate”
objective

(1)
Lp(ζ) = Est,at

[
min

(
πζ(at|st)
πζold(at|st)

Ât,

clip

(
πζ(at|st)
πζold(at|st)

, 1− δ, 1 + δ

)
Ât

)]
,

where δ is the clipping parameter; Ât =∑∞
k=0 (γλ)

k
[
rt + γV̂φ(st+k+1)− V̂φ(st+k)

]
is the Gen-

eralized Advantage Estimator with a trade-off coefficient λ
(Schulman et al. 2016); and V̂φ is the approximated value

function, which is trained by Lv(ξ) = Est
∥∥∥V̂ξ(st)− V̂t∥∥∥2

,

where V̂t =
∑∞
k=0 γ

krt+k is the discounted accumulated
reward from timestep t onwards. PPO has achieved great
success across a wide range of challenging MDP tasks.
However, for POMDPs case, the agent needs to aggregate
all history data to produce enough information which is
critical for policy πζ to output correct action.

Generative Model of Observations
The traditional POMDPs work on the case where the ob-
servation xt ∈ RD is noisy but complete. Whereas we de-
vote to a more challenging case that the observation xt ∈
(R ∪ {∗})D is also incomplete, where “∗” means the data
on that component is missing. Following Little and Ru-
bin (2019), the generative process of the observation model
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P(xt|st, at−1) can be described below,

xcomplete
t ∼ Pθ(xcomplete

t |st, at−1),

mt ∼ Pη(mt|xcomplete
t , at−1),

xt = xcomplete
t �mt

(2)

where mt ∈ {0, 1}D is the missing indicator vector (1
for observed, 0 for missing), the operator � is defined as

(x�m)(i) ,

{
x(i) m(i) = 1
∗ m(i) = 0

, θ and η denote the unknown

parameters of the corresponding distributions. We now illus-
trate the specific models used in this paper.

We adopt the commonly used linear Gaussian for obser-
vation modelling (Karl et al. 2016; Becker et al. 2019). For-
mally, the generation of the complete observation is mod-
elled as xcomplete

t = θsst + θaat−1 + θb + εt, where
θs ∈ RD×dim(S), θa ∈ RD×dim(A), θb ∈ RD are parame-
ters to be learned and εt ∼ N (0,Σε) is an additive noise. Let
θ , (θs, θa, θb,Σ

ε) denote all the parameters to be learned,
we have

Pθ(x
complete
t |st, at−1)

=N (xcomplete
t |θsst + θaat−1 + θb,Σ

ε)
(3)

Note that although the observation is modelled to be lin-
early w.r.t. the latent state, a non-linear DNN is employed
to learn the latent state and the models are trained end-to-
end. With these highly non-linear models, it is sufficient to
learn a compact feature of the latent state which satisfies the
linear assumption. We illustrate the detail in Sec .

As with Little and Rubin (2019), the missing mechanism
Pη(mt|xcomplete

t , at−1) is characterized in terms of inde-
pendence relations between the missing indicator mt and
the data xcomplete

t = (xot , x
m
t ), where xot and xmt are the ob-

served and the missing elements of xcomplete
t respectively.

The relations can be roughly divided into two groups:
1) The missingness depends on the unobserved compo-

nents of data, including
• Not missing at random (NMAR): mt depends on both xot

and xmt (and also at−1).
2) The missingness does not depend on the values of the

unobserved components of data, including
• Missing completely at random (MCAR):
Pη(mt|xcomplete

t , at−1) = Pη(mt|at−1)1,

• Missing at random (MAR): Pη(mt|xcomplete
t , at−1) =

Pη(mt|xot , at−1),
Especially, cases like malfunction or different sample fre-
quencies of sensors can be categorized into such setting, in
the sense that the missingness depends on factors like the
quality of sensor or time. Such setting is used in most of
the missing data work (Little and Rubin 2019; Lizotte et al.
2008) and also adopted in this paper, since with these as-
sumptions we have
P(xt|st, at−1) =P (xot ,mt|st, at−1)

=Pθ(x
o
t |st, at−1)Pη(mt|xot , at−1)

(4)

1In our case, the action at−1 is also taken into account.

With such decoupling, the missingness information can be
ignored when learn the parameters of the generative model.

To derive the form of Pθ(xot |st, at−1) in eq. (4), let us
introduce a sub-permutation matrix Mt ∈ Rdim(xo

t )×D,
which is designed to obtain xot = Mtxt. For example, given
xt = (1, ∗, 2)>, the corresponding sub-permutation matrix

is Mt =

(
1 0 0
0 0 1

)
. Mt is constructed by M j,I

(j)
t

t = 1

where It = {i|x(i)
t 6= ∗} denote the observed indexes and

j = 1, 2, . . . , |It| (while other entries are 0). By eq. (3),

Pθ(x
o
t |st, at−1)

=N (Mtxt|Mt(θsst + θaat−1 + θb),MtΣ
εM>t )

(5)

Deep Recurrent Belief Propagation Network
In this section, we present our method, Deep Recurrent Be-
lief Propagation Network (DRBPN). Similar to prior meth-
ods for POMDPs (Igl et al. 2018; McAllister and Rasmussen
2017), DRBPN adopts the scheme of maintaining a belief
of the state based on past trajectory data and propagating
the belief recurrently during the execution phase. The be-
lief computation relies on approximated models of the envi-
ronment, which are trained end-to-end by the log-likelihood
loss. Fig. 1 summarises the architecture of DRBPN.

Belief Propagation
A belief is a posterior distribution over possible original
state space based on the historical trajectory data, denoted

Transition 
Model 

tb tb

1ta  tx

tx
Loss of 

Observation 
Likelihood 

··· 

Generative 
Model of 

Observation 
Loss Module 

Belief Propagation Module 

··· 

1tb 

Imputation and 
Filtering Operation 

Figure 1: Overview of DRBPN. The intermediate belief b̃t
is obtained through the transition model T (st|st−1, at−1)
with the last belief bt−1 and the action at−1; the belief bt
is obtained by an imputation and filtering operation with the
observation xt, the learned generative model of observation,
and b̃t.The models are trained end-to-end by backpropaga-
tion of the log likelihood of observations x1:T .
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as bt. Given a belief bt−1 at timestep t− 1, an action at−1 is
taken based on this belief. Following that, a new observation
xt, which is incomplete and noisy, is received. Then, an “in-
termediate” belief b̃t at timestep t can be directly obtained
through a learned transition model T̂ (st|st−1, at−1). Next,
an imputation and filtering operation on the new observation
xt is applied based on b̃t. As a result, the new belief bt is ob-
tained. The entire propagation process starts with an initial
intermediate belief b̃1(s1) and an initial observation x1. Our
DRBPN embeds this procedure into the architecture of the
network, as Fig. 1 (the green box) depicts.

According to the definition, we have bt(st) ,
P (st|x1:t, a1:t−1). By applying Bayes rule, the updating of
belief bt(st) has the form

bt(st) =
P(xt|st, at−1)b̃t(st)∫
P(xt|s′t, at−1)b̃t(s′t)ds

′
t

, for t = 1, 2, . . .

(6)
where b̃t(st) , P (st|x1:t−1, a1:t−1) is called an “interme-
diate” belief,

b̃t(st) =

∫
bt−1(st−1)T (st|st−1, at−1)dst−1, for t = 2, 3, . . .

(7)
where T is the transition probability function in original
state space. The initial intermediate belief b̃1(s1) is an ap-
proximated prior belief of initial state. In what follows
we will describe in detail the belief propagation procedure
adopted in this work and the corresponding approximation
which is made to perform an analytical propagation.

First, the intermediate belief b̃t(st) is obtained by ap-
plying Eq. (7) through an approximated transition model.
Generally, Eq. (7) can be approximated by replacing the
nonlinear T with first-order (linear) approximation w.r.t.
st−1 at Est−1∼bt−1 [st−1], which reduces to b̃t(st)

.
=

T (st|Est−1∼bt−1 [st−1], at−1). In addition, the transition
distribution function T (st|st−1, at−1) is approximated as
a conditional multivariate Gaussian T̂ (st|st−1, at−1) =

N
(
st|fµφ (st−1, at−1), fΣ

φ (st−1, at−1)
)

, in which fµφ and

fΣ
φ are DNNs parameterized by φ. Nevertheless, the highly

non-linear DNNs are sufficient to capture the complex dy-
namics of the environment. Therefore, the intermediate state
b̃t(st) is computed by

(8)
b̃t(st)

.
= N

(
st|µ̃t = fµφ

(
Est−1∼bt−1 [st−1], at−1

)
,

Σ̃t = fΣ
φ

(
Est−1∼bt−1

[st−1], at−1

))
The initial intermediate belief b̃1(s1) is also approximated
by N (s1|µ̃1, Σ̃1). It is worth mentioning that in practice
the Gaussian belief model may not be as restrictive as one
may think in representing uncertainty provided that it is built
on good feature representations, which for example can be
learnt through layers of non-linear transformations. Indeed,
to the best of our knowledge, most of the existing works de
facto adopt this assumption, either explicitly or implicitly
— even for those who may claim otherwise, the Gaussian

appears in their implementation in different forms, through
the reparameterization trick, variational approximation, and
so on (Igl et al. 2018; Karl et al. 2016; Lim, Zohren, and
Roberts 2019; Willi et al. 2019).

Then, a data imputation and filtering operation on the new
observation xt is applied using Eq. (6). According to Eq. (4),

bt(st) =
Pθ(x

o
t |st, at−1)b̃t(st)∫

Pθ(xot |s′t, at−1)b̃t(s′t)ds
′
t

(9)

Since the likelihood Pθ(x
o
t |st, at−1) is a linear Gaussian

(see Eq. (5)) and b̃t(st) is also a Gaussian, the belief bt(st)
can be obtained analytically:

bt(st)

=N
(
st|µt = µ̃t − Ft (θsµ̃t + θaat−1 + θb − xt) ,

Σt = Σ̃t − FtθsΣ̃t
)
,

(10)

where Ft = Σ̃tθ
>
s M

>
t

[
Mt

(
Σε + θsΣ̃tθ

>
s

)
M>t

]−1

Mt.
Let us see how the equation above take effect in data im-
putation and filtering. For data imputation, µ̃t gives the ex-
pectation of st; and the covariance matrix θsΣ̃tθ>s provides
the correlation between the observed and missing compo-
nents, which makes it possible to infer missing components
from the observed ones. For data filtering, the difference
term θsµ̃t + θaat−1 + θb − xt is the difference between the
internal belief of the observation and the observed one; and
Ft can be regarded as the extent that the difference term is
used to update the belief. By the form of Ft, we can know
that larger noise covariance Σε leads to smaller Ft, which
reduces the impact of current observation xt on the expecta-
tion µt and enlarges the uncertainty Σt.

Finally, the belief bt is employed by the policy π to decide
an action, where we can use the exception µt of belief for
decision directly, π(bt) , π(µt), or as well incorporate the
uncertainty term Σt,

π(bt) , π(µt,Σt), (11)

End-to-end Learning of the Models

The analytical belief propagation makes it tractable to im-
plement end-to-end learning of the models. For simplifica-
tion, let ψ , (φ, θ, µ̃1, Σ̃1) denote all the parameters to be
learned for the belief computation. The objective function is
the log likelihood of the observations x1:T+1:

Lm(ψ)

= log [P (x1:T+1|a1:T ;ψ)]

= logP (x1;ψ)
T+1∏
t=2

P (xt|x1:t−1, a1:t−1;ψ)
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= log

∫
b̃1(s1; µ̃1, Σ̃1)Pθ(x1|s1)ds1+

T+1∑
t=2

[
log

∫
b̃t(st;ψ)Pθ(xt|st, at−1)dst

]
= logN

(
M1x1|M1(θsµ̃1 + θb),M1

(
θsΣ̃1θ

>
s + Σε

)
M>1

)
+
T+1∑
t=2

[
logN

(
Mtxt|Mt(θsµ̃t + θaat−1 + θb),

Mt

(
θsΣ̃tθ

>
s + Σε

)
M>t

)]
(12)

The architecture of the loss module is demonstrated in
Fig. 1. The belief propagation network is integrated into the
policy search scheme. Especially, we employ PPO method
as the policy search algorithm. The input to the policy and
value network of PPO is modified to be the belief bt (see
Eq. (11)). All the three networks, the policy network, the
value network, and the transition network can share parame-
ters with each other and be trained jointly. This architecture
could aid policy learning by the auxiliary learning tasks of
the environment models. The overall loss function is

LDRBPN(ζ, ξ, ψ) =− Lp(ζ) + λvL
v(ξ)− λmLm(ψ)

(13)
where λv and λm are the coefficients to trade-off the losses.
We adopt the normalized advantage values and rewards to
train policy and value network, therefore all the three terms
have relatively similar magnitude across different tasks. Our
DRBPN algorithm is presented in Algorithm 1.

Algorithm 1 DRBPN

Input: Hyperparameters of loss function λv and λm.
Hyperparameters of training TIMESTEPS MAX, T ,
Epoches Max.
for i = 1 to TIMESTEPS MAX/T do

// Execution Phase
Receive an observation x1 from the environment
Start with b̃1 = N (µ̃1, Σ̃1)
for t = 1 to T do

Update the belief bt = N (µt,Σt) by (10)
Execute at = π(bt) by (11)
Receive a reward rt and a new observation xt+1

Update the next intermediate belief b̃t+1 by (8)
end for
// Training Phase
for k = 1 to Epoches Max do

Compute Ât and V̂t for t = 1, . . . , T
Train the networks by (13) with
({xt, at, Ât, V̂t}Tt=1, x

T+1)
end for

end for
Output: (ζ, ξ, ψ), which are the parameters of policy,

value, and belief networks respectively.

Experiments
We designed experiments to answer the following questions:

1. Could DRBPN be robust in POMDPs with incom-
plete and noisy observations? And to what extent could
DRBPN be robust?

2. Is DRBPN more computational efficient compared to
other POMDPs methods?

3. Is the new architecture able to learn better policy or im-
prove sample efficiency?

To answer 1 and 2, we evaluate DRBPN under a POMDP
case with different settings of incompleteness and noise,
discussed in the first section. Concerning 3, we compare
DRBPN with several prior policy optimization algorithms
under a fully observable case, discussed in the second sec-
tion.

We implement our DRBPN algorithm by extending PPO.
DRBPN adopts the same hyperparameters of the policy
search components of PPO given in (Dhariwal et al. 2017),
except that an additional transition network in DRBPN is set
up. The covariance of the transition are state-independent
and is a parameter of matrix, denoted as Σ̃ (thus we have
Σ̃t = Σ̃ for all t). We use ReLU as the activation func-
tion. We empirically set the penalty coefficient in Eq. (13)
to be λv = 1.0, λm = 1.0. We evaluated the methods on
8 benchmarks simulated locomotion tasks, which is imple-
mented in OpenAI Gym (Brockman et al. 2016) using the
MuJoCo physics engine (Todorov, Erez, and Tassa 2012).

We compare our method against the following algorithms:
1) Deep Variational RL (DVRL) (Igl et al. 2018), which
performs belief inference relying on a particle filter and
learns the environment models simultaneously. 2) Deep Re-
current Q-network (DRQN) (Hausknecht and Stone 2015),
which employ a recurrent architecture of the neural network.
3) Action-specific DRQN (ADRQN) (Zhu, Li, and Poupart
2017), which differs from DRQN by extra inputting the ac-
tion to the RNNs. 4) Fill Adjacent (FA), a baseline method
which fill the missing components with adjacent earlier val-
ues of observation. We implement all the methods by ex-
tending PPO; thus the latter three methods are called DR-
PPO, ADR-PPO and FA-PPO respectively. Especially, for
both DR-PPO and ADR-PPO, we add an additional auxil-
iary learning task with log likelihood loss of the next obser-
vation. The incomplete observation xt (with zero-padding
for the missing elements) and the missing indicator vector
mt are input to the network. Each algorithm was run with 3
random seeds on each task. We report the episode rewards
of the trained polices and the precision of the inferred state.

Performance under a POMDP case
We evaluate the algorithms under a POMDP case where the
observations are incomplete and noisy. We test the perfor-
mance for both the MAR mode and NMAR mode (see Ap-
pendix B.1 for the results of the NMAR mode). Recall that
our methods can theoretically work on MCAR and MAR
mode, while MAR is a relatively harder case as the missing-
ness also depend on the observed data. For the MAR mode,
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Figure 2: Episode rewards of the trained policies under dy-
namical missingness across different missing ratios. The el-
ements of the observations are dynamically missing over
timesteps. The horizontal axis shows different missing ra-
tios. The shaded area depicts the mean and 80% confidence
intervals averaged over 30 episodes.

the probability distribution of i-th missing indicator is de-
signed as

Pη(m
(i)
t |at−1, x

o
t ) , Bernoulli(m

(i)
t |f(at−1, x̂

o
t , η))

where f(at−1, x̂
o
t , η) = 1 −

min
(
g(β>1,iat−1 + β>2,ix̂

o
t + β0,i), η

)
; g is the sigmoid

function; β0,i, β1,i, β2,i are constants whose entries are
randomly sampled from N (0, 1); x̂ot are the part of the ob-
servation which are always to be observed; η is a parameter
to control the missing ratio. Recall that m(i)

t = 0 means
the i-th component is missing. The noise ε is sampled from
N (0,Σε), where Σε = (σ × 0.01 × I)2. The algorithms
are run for 1 × 106 timesteps. Then the trained models are
tested under cases of dynamical missingness and sensor
reduction with different ratios respectively.
Generalization Performance under Dynamical Missing-

ness: We evaluate the trained models under dynamical miss-
ingness cases with different missing ratios, which means that
the missing components is dynamically changing over time.
Fig. 2 plots the episode rewards of the policies, averaged
over 30 episodes (10 episodes for every 3 random seeds).
In general, DRBPN (blue line) outperforms the compared
methods on almost all tasks across different missing ratio ex-
pect Reacher. Compared to DVRL, DRBPN achieves about
20%, 75%, 100% higher performance than DVRL on Hop-
per, Walker2d, and HalfCheetah, under the missing ratio of
0.5. DRBPN also outperforms DR-PPO and ADR-PPO by a
large margin especially on high-dimensional tasks like Hop-
per, Walker2d, and Ant. FA-PPO does not work well as miss-
ing ratio increases on almost all tasks. It seems that the ad-
jacent earlier values of the observations are not sufficient for
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Figure 3: Episode rewards of the trained policies for sen-
sor reduction across different reduction ratios. The missing
elements of the observations are fixed over timesteps. The
horizontal axis shows different reduction ratios. The shaded
area depicts the mean and 80% confidence interval averaged
over 30 episodes.

outputting correct actions.
The qualitative differences between domains in Fig. 2 are

mainly due to the different difficulties across the tasks. For
example, all the methods fail on InvertedDoublePendulum
(left bottom of Fig. 2) once the missing ratio increases to
0.2 (while these methods do not perform such badly on other
tasks even the missing ratio increases to 0.4). The Inverted-
DoublePendulum task need to keep two jointed pendulums
to be upright, making it easily fail unless it is controlled in
the right way without any break. Thus any careless actions
could result in catastrophic failure on this task. Nevertheless,
DRBPN still performs more robust than the other methods.
In summary, DRBPN shows robustness against significant
missingness.
Generalization Performance for Sensor Reduction: By
“sensor reduction”, it means that part of the sensors are
removed and the corresponding components of the obser-
vations are always missing over timesteps. We choose the
components which could optimally reduce the uncertainty
of the belief according to the learned observation model of
DRBPN (see Appendix A.1 for more detail). Fig. 3 plots
the episode rewards for sensor reduction across different re-
duction ratio. In general, DRBPN (blue solid line) outper-
forms the compared methods on all the tasks. It performs
well at a reduction ratio of 0.4 on InvertedPendulum, Ant,
Swimmer, and HalfCheetah. We also test a version by ran-
domly removing sensors, denoted as DRBPN-random (blue
dashed line). As can be seen, DRBPN-random fails on most
of the tasks like Walker2d, Ant, InvertedDoublePendulum,
and HalfCheetah. These results show the effectiveness of the
sensor reduction technique by the learned model of DRBPN.
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(a) Top 10 averaged Rewards (b) Timesteps (×103) to hit threshold
DRBPN PPO(ours) PPO ACKTR Threshold DRBPN PPO(ours) PPO ACKTR

HalfCheetah 4158 1643 1549 3233 2100 228 410 / 850
Hopper 3845 3551 3622 3309 2000 183 221 209 502

Ant 2994 1782 2448 3566 2500 1110 / / 825
InvertedDoublePendulum 9344 9339 9333 9342 9100 114 157 155 348

InvertedPendulum 1000 1000 1000 1000 950 17 25 18 110
Swimmer 116 106 118 47 90 490 877 550 /
Reacher -5 -3 -1 -3 -7 172 232 137 250

Walker2d 4356 4117 4285 2398 3000 468 431 252 /

Table 1: Results of top 10 averaged episode rewards and timesteps to hit a threshold within 2 million timesteps, averaged over
3 random seeds.

Learned Observation Model: Fig. 4 depicts the learned
covariance matrices of the observation components. The
plotting matrices are obtained by θsΣ̃θ>s + Σε, which could
reflect the correlation between each components of the ob-
servation. For example, in InvertedPendulum, the 3rd and
the 4th component means the horizontal and vertical veloc-
ity respectively, and the covariance between them are rela-
tively larger than others (see the left top of Fig. 4).

As can be seen, DRBPN requires much less training time
than DVRL; this is mainly due to that the inference of
DRBPN is made analytically while not requiring additional
training to approximate the inference procedure. Whereas
compared to DRPPO and ADRPPO, DRBPN incorporates
an additional imputation and filtering operation to perform
robust inference, thus requires more computation.

Evaluation under a Fully Observable Case
In this section, we investigate whether the auxiliary learn-
ing tasks of DRBPN could aid policy learning under a
fully observable case, where the observations are complete
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Figure 4: The learned covariances matrix between different
dimensions of the observation. The x and y axes are the ob-
servation dimensions.

and clean. We compared DRBPN against the original PPO
(Schulman et al. 2017) and ACKTR (Wu et al. 2017), which
are popular model-free RL methods. In addition, we test a
version of PPO (denoted as PPO(ours)) which has exactly
the same implementations and hyperparameters as DRBPN
except removing the auxiliary learning task. We implement
these algorithms based on the OpenAI baselines (Dhariwal
et al. 2017). Each algorithm was run for 2 million timesteps.

Episode Rewards: Table 1 (a) shows the top 10 averaged
episode rewards within 2 million timesteps. As can be seen,
DRBPN outperforms the original PPO and PPO(ours) on al-
most all tasks except Reacher. Especially on HalfCheetah
and Ant, DRBPN is 268% and 120% higher than the orig-
inal PPO. DRBPN also performs better than ACKTR by a
large margin on most of the tasks.

Sample Efficiency: Table 1 (b) shows the timesteps required
by algorithms to hit a prescribed threshold within 2 million
timesteps. As can be seen, DRBPN is more sample efficient
than PPO and ACKTR on most of the tasks.

Conclusions

In this paper, we present a new algorithm for POMDPs with
incomplete and noisy observations, named DRBPN. The
DRBPN combines the strength of both feature memoriza-
tion and belief inference approach by explicitly embedding
the belief updating procedure into the architecture of RNN.
We show that this hybrid type of recurrent structure incor-
porating an analytical belief inference can benefit on both
computational efficiency and inference accuracy. Besides,
the auxiliary learning task of the generative models can aid
policy learning in performance and sample efficiency.

Recent works for POMDPs still have limited ability gen-
eralizing to complex realistic domains. In this paper, we in-
vestigate a special case where the partial observation data is
also dynamically missing. However, more realistic circum-
stances need to be tackled down, e.g., some components
of observations suddenly produce different values. An ap-
proach handling this case based on this work may be to treat
such values as outliers and weigh down their impact on the
belief updating.
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