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Abstract

This paper presents a new family of backpropagation-free
neural architectures, Gated Linear Networks (GLNs). What
distinguishes GLNs from contemporary neural networks is
the distributed and local nature of their credit assignment
mechanism; each neuron directly predicts the target, forgoing
the ability to learn feature representations in favor of rapid
online learning. Individual neurons are able to model non-
linear functions via the use of data-dependent gating in con-
junction with online convex optimization. We show that this
architecture gives rise to universal learning capabilities in the
limit, with effective model capacity increasing as a function
of network size in a manner comparable with deep ReLU net-
works. Furthermore, we demonstrate that the GLN learning
mechanism possesses extraordinary resilience to catastrophic
forgetting, performing almost on par to an MLP with dropout
and Elastic Weight Consolidation on standard benchmarks.

Introduction

Backpropagation has long been the de-facto credit assign-
ment technique underlying the successful training of popu-
lar neural network architectures such as convolutional neu-
ral networks and multilayer perceptions (MLPs). It is well
known that backpropagation enables these networks to learn
highly-relevant task-specific features. However, this method
is not without its limitations. Contemporary neural networks
trained via backpropagation require many epochs of train-
ing over massive datasets, limiting their effectiveness for
data-efficient online learning. This has motivated many re-
cent studies on alternate credit assignment mechanisms such
as layer-wise training and/or single pass learning (Zhang,
Liang, and Wainwright 2017; Belilovsky, Eickenberg, and
Oyallon 2019, 2020; Jaderberg et al. 2017; Lowe, O’Connor,
and Veeling 2019; Ngkland and Eidnes 2019).
Interpretibility limitations can also prevent their appli-
cation in domains where a human understandable solution
is a mandatory requirement. Their effectiveness is further
limited in the continual learning setting by their tendency
to catastrophically forget previously learnt tasks. Although
various meta-learning (Ortega et al. 2019) algorithms such
as Elastic Weight Consolidation (Kirkpatrick et al. 2017,
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EWC) have been effective in compensating for these limita-
tions, it is interesting to explore whether alternative methods
of credit assignment can give rise to complementary neural
models with different strengths and weaknesses.

This paper introduces one such family of neural mod-
els, Gated Linear Networks (GLNSs), and studies their con-
trasting empirical properties. The distinguishing feature of
a GLN is its distributed and local credit assignment mecha-
nism. This technique is a generalization of the PAQ family
(Mahoney 2000, 2005, 2013) of online neural network mod-
els, which are well-known in the data compression commu-
nity for their excellent sample efficiency (Mahoney 2013).
By interpreting these systems within an online convex pro-
gramming (Zinkevich 2003) framework as a sequence of
data dependent linear networks coupled with a choice of
gating function, we are able to provide a new algorithm and
gating mechanism that opens up their usage to the wider ma-
chine learning community.

GLNs have a number of desirable properties. Their lo-
cal credit assignment mechanism is derived by associat-
ing a separate convex loss function to each neuron, which
greatly simplifies parameter initialization and optimization,
and provides significant sample efficiency benefits when
learning online. Importantly, we show that these benefits do
not come at the expense of capacity in practice, which adds
further weight to previously obtained asymptotic universal-
ity results (Veness et al. 2017). GLNs possess excellent on-
line learning capabilities, which we demonstrate by showing
performance competitive with batch-trained MLPs on a va-
riety of standard classification, regression and density mod-
eling tasks, using only a single online pass through the data.
In terms of interpretibility, we show how the data-dependent
linearity of the predictions can be exploited to trivialise the
process of constructing meaningful saliency maps, which
can be of great reassurance to practitioners that the model
is predicting well for the right reasons. Perhaps most inter-
estingly, we demonstrate that our credit assignment mech-
anism is extraordinarily resilient to catastrophic forgetting,
achieving performance competitive with EWC on a standard
continual learning benchmark with no knowledge of the task
boundaries.
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Figure 1: A graphical depiction of a Gated Linear Network.

Each neuron receives inputs from the previous layer as well

as the broadcasted side information z. The side information
is passed through all the gating functions, whose outputs
si; = ¢i;(z) determine the active (blue) weight vectors.

Background

In this section we review some necessary background on ge-
ometric mixing, a parametrised way of combining probabil-
itstic forecasts, and show how to adapt its parameters us-
ing online convex programming. Later we will combine this
method with a gating mechanism to define a single neuron
within a GLN.

Geometric Mixing. Geometric Mixing is a simple and
well studied ensemble technique for combining probabilistic
forecasts. It has seen extensive application in statistical data
compression (Mattern 2012, 2013). Given p1, ps, . . ., pq in-
put probabilities predicting the occurrence of a single bi-
nary event, geometric mixing predicts o(w "o~ (p)), where
o(x) :=1/(1+e~%) denotes the sigmoid function, o ~! de-
fines the logit function, p := (p1, ..., pq) and w € RY is the
weight vector which controls the relative importance of the
input forecasts. One can easily show the following identity:

d )
[[io, p”
d ; d i
Hi=1 p;U + Hi=1(1 — ) Wi

which makes it clear that that geometric mixing implements
a type of product of experts (Hinton 2002) operation. This
leads to the following interesting properties: setting w;
1/d is equivalent to taking the geometric mean of the d in-
put probabilities; if the jth component of w; is O then the
contribution of p; is ignored, and if w = 0 then the geo-
metric mixture predicts 1/2; and finally, due to the product
formulation, every forecaster has “the right of veto”, in the
sense that a single p; close to 0 coupled with a w; > 0 drives
the geometric mixture prediction close to zero.

o (wTU_l(p)) =
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Online Convex Programming Formulation. We now de-
scribe how to adapt the geometric mixing parameters using
online convex programming (Zinkevich 2003; Hazan 2016).
Let B := {0,1}. As we are interested in probabilistic pre-
diction, we assume a standard online learning framework for
the logarithmic loss, where at each round ¢t € N a predictor
outputs a binary distribution ¢; : B — [0, 1], with the en-
vironment responding with an observation z; € B, causing
the predictor to suffer a loss ¢;(q;, z;) = — log ¢ (x+) before
moving onto round ¢ + 1.

In the case of geometric mixing, we first define our pa-
rameter space to be a non-empty convex set WW C R?. As
the prediction depends on both the d dimensional input pre-
dictions p; and the parameter vector w € WV, we abbreviate
the loss at time ¢, given target x;, using parameters w by

" (w)

log (GEO (15 pt)) (D
.

with GEO, (1;p;) := o(w o7 (p)) and GEO,,(0; py) :
1 — GEOy(1; pt). One can show that £§°(w) is a convex
function of w (Mattern 2013) and that the gradient of the
loss with respect to w is given by

VTP (w) = (GEO (15 pr) — x4) logit(p).
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Furthermore we can bound the 2-norm of the gradient of
the loss with ||V£SE0(w)]l, < Vdlog (1) provided that

pi € [e,1—¢]? for some ¢ € (0, 1/2) for every time t. These
properties of the sequence of loss functions make it possible
to apply one of the many different online convex program-
ming techniques to adapt w at the end of each round. In this
paper we restrict our attention to Online Gradient Descent
(Zinkevich 2003), with W equal to some choice of hyper-
cube, for reasons of computational efficiency. This gives a
O(V/T) regret bound with respect to the best w* € W cho-
sen in hindsight provided an appropriate schedule of decay-
ing learning rates is used.

Gated Geometric Mixing

We define the GLN neuron as a gated geometric mixer,
which we obtain by adding a contextual gating procedure to
geometric mixing. Here, contextual gating has the intuitive
meaning of mapping particular input examples to particular
sets of weights. The key change compared with normal geo-
metric mixing is that now our neuron will also take in an ad-
ditional type of input, side information, which will be used
by the contextual gating procedure to determine an active
subset of the neurons weights to use for a given example. In
typical applications the side information will simply be the
input features associated with a given example.

More formally, associated with each neuron is a context
function ¢ : Z — C, where Z is the set of possible side
information and C = {0, ...,k — 1} for some k € N is the
context space. Given a convex set YW C R<, each neuron is

parametrized by a matrix W = [wy. .. wk_l]T with each
row vector w; € W for 0 < i < k. The context function ¢
is responsible for mapping a given piece of side information
2t € Z to a particular row w,.,) of W, which we then use
with standard geometric mixing.



In other words, a Gated Geometric Mixer can be defined
in terms of geometric mixing as
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with the associated loss function — log (GEO§y, (x4 ; py, 2t))
inheriting all the properties needed to apply Online Convex
Programming directly from Equation 1. The key intuition
behind gating is that it allows each neuron to be able to spe-
cialize its weighting of input predictions based on some par-
ticular property of the side information.

GEOYy (Tt pt, 2t) = GEOw, ., (Tt Pt),

Universal context functions. We now introduce a half-
space gating mechanism that is tailored towards machine
learning applications whose input features lie in R?. Al-
though not the focus of this work, its worth noting that this
choice gives rise to universal approximation capabilities for
sufficiently large GLNs (Veness et al. 2017). Once we are in
a position to describe the learning dynamics of multiple in-
teracting neurons, the rationale for this class of context func-
tions will become more clear. Exploring alternative gating
mechanisms is an exciting area for future work.

Halfspace gating. Given a normal v € R? and offset b €
R, consider the associated affine hyperplane {z € R? : z -
v = b}. This divides R in two, giving rise to two half-
spaces, one of which we denote

Hyp={zcR%:2z-v>b}.

The associated half-space context function is then given by
1m,,(2), where 15(s) := 1if s € S and 0 otherwise.

Context composition. Richer notions of context can be
created by composition. In particular, any finite set of m
context functions {¢; : £ — C;}, with associated con-
text spaces Cy, . . . ,C,, can be composed into a single higher
order context function ¢ : Z — C, where C = C1 X...x(Cq =
{0, ...,|C| — 1} by defining ¢(z) = (¢1(2), ..., ca(2)).

For example, we could combine m = 4 different halfs-
pace context functions into a single context function with a
context space containing |C| = 16 elements. From here on-
wards, whenever this technique is used, we will refer to the
choice of m as the context dimension.

Gated Linear Networks

We now introduce Gated Linear Networks, which are feed-
forward networks composed of many layers of gated geo-
metric mixing neurons as shown in Figure 1. Each neuron
in a given layer outputs a gated geometric mixture of the
predictions from the previous layer, with the final layer con-
sisting of just a single neuron. In a supervised learning set-
ting, a GLN is trained on (side information, base predictions,
label) triplets (z¢, pt, ¥¢)t=1,2,3,... derived from input-label
pairs (z¢,x¢). There are two types of input to neurons in
the network: the first is the side information z;, which can
be thought of as the input features; the second is the input
to the neuron, which will be the predictions output by the
previous layer, or in the case of layer 0, some (optionally)
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provided base predictions p; that typically will be a function
of z;. Each neuron will also take in a constant bias predic-
tion, which helps empirically and is essential for universality
guarantees (Veness et al. 2017).

GLN architecture. A GLN is a network of gated geo-
metric mixers organized in L + 1 layers indexed by ¢ €
{0,..., L}, with K; models in each layer. Neurons are in-
dexed by their position in the network when laid out on a
grid; for example, neuron (i, k) will refer to the kth neu-
ron of the ¢ layer and p;; will refer to the output of neu-
ron (i, k). The output of layer ¢ will be denoted by p;. The
zeroth layer of the network is called the base layer, whose
output py will typically be instantiated via scaling or squash-
ing each component of the current side information 2 to lie
within [e, 1 — €]. The nonzero layers are composed of gated
geometric mixing neurons. Associated to each of these will
be a fixed context function ¢;, : Z — C that determines the
behavior of the gating at neuron (4, k). In addition to the con-
text function, for each context ¢ € C and each neuron (i, k)
there is an associated weight vector w;x. € REi-1 which is
used to geometrically mix the inputs whenever active. The
bias outputs p;o for 0 < ¢ < L can be set to be any con-
stant 8 € [e,1 — €] \ {0.5}. Given a z € Z, a weight vector
for each neuron is determined by evaluating its associated
context function. For layers ¢ > 1, the kth node in the ith
layer receives as input the vector p;_1 of dimension K;_; of
predictions of the preceding layer.

GLNs are data dependent linear networks. Without loss
of generality, here we assume that the network is estimating
the probability of the target being positive. The output of
a single neuron is the geometric mixture of the inputs with
respect to a set of weights that depend on its context, namely

pik(2) = 0 (Wiken(2) 0" (Pim1(2))) .

The output of layer ¢ can be written in matrix form as
pi(2) = o(Wi(z) o~ (pi-1(2))), )

where W;(z) € RE:*Ki-1 ig the matrix with kth row equal
t0 Wik (2) = Wike,), (). Iterating Equation 4 gives

pi(2) = o (Wi A)Wisa () . Wa(2) o (po(2)) ) (5)

which shows the network behaves like a linear network
(Baldi and Hornik 1989; Saxe, McClelland, and Ganguli
2013), but with weight matrices that are data-dependent.
Without the data dependent gating, the product of matrices
would collapse to a single linear mapping and provide no ad-
ditional modeling power over a single neuron (Minsky and
Papert 1969).

Local learning in GLNs. We now describe how the
weights are learnt in a Gated Linear Network using Online
Gradient Descent (OGD) (Zinkevich 2003) locally at each
neuron. They key observation is that as each neuron (i, k) in
layers 7 > 0 is itself a gated geometric mixture, all of these



Algorithm 1 GLN(O, z, p, z, ), update).
Perform a forward pass and optionally update weights. Each

layer performs clipped geometric mixing over the outputs of
the previous layer, where the mixing weights are side-info-
dependent via the gating function (Line 10).

Lines 12-13 apply (optionally) the weight update, which is
obtained from Equation 2.

1: Input: GLN weights © = {w;j.}

2: Input: side info z, base predictions p € [g;1 — g]Fo~1
3: Input: binary target x, learning rate 7 € (0, 1)

4: Input: boolean update (controls if we learn or not)
5: Output: estimate of Plx = 1| z, p]

6: p0<_<57p17p27"'7pK071)

7: forie {1,...,L} do

8: pio < B

9: forje{1,...,K;}do
10 pij < CLIPLE [0 (wije,, () - 0 (piz1))]
11: if update then
12: Ajj = (pij —x) o~ (pi1)
13: Wije,;(z) < CLIPY  [wije,. () + Ayl
14: end if
15: end for

16: end for return p,

neurons can be thought of as individually predicting the tar-
get. Thus given side information z and from Equations 1
and 3, each neuron (i, k) suffers a loss convex in its active
weights u := Wi, (z) Of

b(u) == —log (GEOy (@5 pi-1)) -

Algorithmically, a single step of OGD consists of two parts:
a gradient step, and then a projection back into some convex
weight space W. The gradient step can be trivially obtained
from Equation 2. It is well known that the projection step can
be implemented via clipping if the convex set W is a scaled
hypercube. In our case this can be achieved if we force ev-
ery component of each weight vector, for each neuron, to lie
within [—b, b] for some constant b > 1.

Weight initialisation. One benefit of a convex loss is that
weight initialization is less important in determining overall
model performance, and one can safely recommend deter-
ministic initialization schemes that favor reproducibility of
results. While other choices are possible, we found the ini-
tialization w;. = 1/K;_; for all i, k, c to be a good choice
empirically, which causes geometric mixing to initially com-
pute a geometric average of its input.

Algorithm. A single prediction step, as well as a sin-
gle step of learning using Online Gradient Descent can be
implemented via a single forward pass of the network as
shown in Algorithm 1. Here we make use of a subrou-
tine CLIP.~¢[z] := min {max(z,¢),1 — €}. Generating a
prediction requires computing the active contexts from the
given side information for each neuron, and then performing
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L matrix-vector products. Under the assumption that multi-
plying a m x n by n x 1 pair of matrices takes O(mn) work,
the total time complexity to generate a single prediction is
O(Zle K,;K,_4) for the matrix-vector products, which in
typical cases will dominate the overall runtime. Note too that
updating the weights does not affect this complexity.

Random halfspace sampling. Here we describe how we
generate a diverse set of halfspace context functions in prac-
tice. As we are interested in higher dimensional applications,
it is necessary to sample hyperplanes in a manner that ad-
dresses the curse of dimensionality. Consider a halfspace
context function: ¢(z;v,b) 1if z - v > b; or O other-
wise. To sample v, we first generate an i.i.d. random vector
x = (x1,...,x4) of dimension d, with each component of
distributed according to the unit normal A/ (0,1), and then
divide by its 2-norm, giving us a vector v = z/||z||2. This
scheme uniformly samples points from the surface of a unit
sphere. The scalar b is sampled directly from a standard nor-
mal distribution.

The motivation for this approach is two-fold. First, With
large d, it is well known that the hyperplanes defining each
half-space are orthogonal with high probability; in other
words, this choice should help to chop the data up in com-
plementary ways given a limited number of gates. Sec-
ond, suppose we have a set of m different gating functions
¢i(z;vi,b;) for 1 to m. Now consider the binary vector:
g = (c1(z;v1,b1), oy € (2; Uy, b)) This signature vector
g of input z has the property (Charikar 2002) that different
z’s which are close in terms of cosine similarity will map to
similar signatures. For a GLN, this gives rise to the desir-
able property that inputs close in cosine distance will map
to similar products of data dependent matrices, i.e. they will
predict similarly.

On convergence properties and rates for GLNs. Vari-
ous asymptotic convergence results for GLNs on i.i.d. data
have been proven in (Veness et al. 2017). Theorem 1 roughly
says, that on-average within each context cell, the prediction
converges to the true expected output/probability. Theorem
14 roughly says, that a sufficiently large GLN can repre-
sent the true target probabilities arbitrarily well. Of course
while asymptotic convergence is a useful sanity check for
any model, it tells us little about practical finite-time per-
formance. Below we will outline how (good) convergence
rates may be obtained for fixed finite sized GLNs to the best
locally learnable approximation. Precisely obtaining such
bounds is outside the scope of this paper.

For a single gated neuron, one can show (Veness et al.
2017, Section 3.2) that Online Gradient Descent (OGD)
(Zinkevich 2003) with a learning rate proportional to 1/v/¢
has total regret of O(v/T) with respect to the best w* € W
chosen in hindsight. The loss function /¢; is exp-concave,
so Online Newton Step (Hazan, Agarwal, and Kale 2007)
can improve the regret to O(logT'), but is computationally
more expensive. If the expected loss £(w) := E[¢;(w)] were
strongly convex, then Stochastic Gradient Descent (SGD)
with i.i.d. sampling and a learning rate proportional to 1/¢
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would also achieve a regret of O(logT'), Unfortunately ¢;
is flat in all directions orthogonal to logit(p;), hence not
strongly convex. But since ¢; is exp-concave (strongly con-
vex in gradient direction), this makes ¢(w) strongly con-
vex in the linear subspace of YW C R? spanned by S :=
Span(logit(py), ..., logit(py,)). For sample size n larger than
d it is plausible that S = R?. Even if not, all £; are exactly
constant in directions orthogonal to S, hence the gradient
lies in S. Since £ is strongly convex in &, SGD will still
achieve a regret of O(logT').

The above implies that the time-averaged weights wr
have an instantaneous regret of O(logT /T), and even
O(1/T) can be achieved (Bubeck et al. 2015, Thm.6.2). In
general, OGD algorithms can be converted to achieve these
rates even for the current weight w; (Cutkosky 2019), and,
indeed, SGD achieves the former even unmodified (Shamir
and Zhang 2013). By strong convexity on S, this implies that
the (time-averaged) weights (or at least the outputs) con-
verge with a rate of O(t~/2). Hence after time O(1/e?)
the output of the first layer has converged within O(¢), af-
ter which the input to the next layer becomes approximately
ii.d. A similar analysis should then be possible for the sec-
ond layer, and so on. With an appropriately delayed learn-
ing rate decay, this should lead to an overall time bound of
O(L/£?) to achieve s-approximation. For these reasons we
use gradient descent with a learning rate proportional to 1/¢
in our later experiments.

Empirical Capacity of GLNs

Contemporary neural networks have the desirable capability
to approximate arbitrary continuous functions given almost
any reasonable activation function (Hornik 1991, and oth-
ers). GLNs share this property so long as the context ca-
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Figure 3: The effect of a single noisy XOR update (circled)
on the decision boundaries of a halfspace gated GLN. Sam-
pled hyperplanes for each gate are shown in white.

pacity is sufficiently expressive. Moreover, (Veness et al.
2017) prove that this capacity is effective in the sense that
gradient descent will eventually find the best feasible ap-
proximation. This property is not shared by neural networks
trained by backpropagation; it is possible to demonstrate the
existence of such weights, but not to guarantee that gradi-
ent descent (or any other practical algorithm) will find them.
Here we demonstrate the capacity of GLNs in practice by
measuring their ability to fit random labelled data.

We ran two sets of experiments: first, using the standard
MNIST dataset with shuffled labels; and second, replacing
the MNIST images with uniform noise of the same shape
and dataset length. These results are presented in Figure 2
compared to an MLP baseline in an equivalent one-vs-all
configuration. For GLNs, we select a fixed layer width of
128 and vary both the context dimension and number of lay-
ers. For the MLP, we select the number of neurons such that
the total number of weights in the network is equivalent to a
GLN with context dimension 4 (the largest considered). The
GLN was trained with learning rate 10~* and the MLP us-
ing the Adam optimizer (Kingma and Ba 2014) with learn-
ing rate 1075, both selected by conducting a sweep over
learning rates from 10~! to 1076, It is evident from Fig-
ure 2 that GLNs have comparable capacity to an equivalently
sized MLP in practice, with their ability to memorize train-
ing data scaling in both the number of neurons and context
dimension of each neuron.

Interpretability of GLNs

A visual example of the change in decision boundaries re-
sulting from a single halfspace gated GLN update is shown
in Figure 3 for the noisy XOR problem. The magnitude of
the change is largest within the convex polytope containing
the training point, and decays with respect to the remaining
convex polytopes according to how many halfspaces they
share with the containing convex polytope. This makes in-
tuitive sense, as since the weight update is local, each row
of W;(z) is pushed in the direction to better explain the data
independently of each other. Thus one should think of a half-
space gated GLN as a kind of smoothing technique — input
points which cause similar gating activation patterns must
have similar outputs.

Aside from reasoning about the inductive bias, the above
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Figure 4: Saliency maps for constituent GLN binary classi-
fiers of one-vs-all MNIST classifier after a single training
epoch.

formulation provides a convenient mechanism for interpret-
ing the learnt weights of a trained GLN. Contemporary neu-
ral networks have been criticized by some as “black boxes”
that are notoriously difficult to interpret (Yosinski et al.
2015; Zhang and Zhu 2018). Despite their high discrimi-
nation power, this can prove problematic for learning and
debugging efficiently at the semantic level as well as for
deployment in safety-critical real-world applications. This
has led to the development of gradient-based methods for
post-hoc network analysis (Simonyan, Vedaldi, and Zisser-
man 2013). Such methods are not necessary for GLNs; for a
given input, the collapsed multilinear polynomial of degree
L is a weight vector of the same dimension (since W7, (z)
has 1 row and W7 (z) has Ky columns) as the inputs and
provides a natural formulation for intuitive saliency maps
without any further computational expense. An example of
the obtained saliency maps are provided in Figure 4 for a
one-versus-all GLN trained as an MNIST classifier. One can
clearly see that the characteristic shape of each hand-written
character is preserved.

Resilience to Catastrophic Forgetting

Humans are able to acquire new skills throughout life seem-
ingly without compromising their ability to solve previously
learnt tasks. Contemporary neural networks do not share this
ability; if a network is trained on a task A and these weights
used to initialize training for a new task B, the ability to
solve A rapidly degrades as training progresses on B. This
phenomenon of “catastrophic forgetting” has been well stud-
ied for decades (Carpenter and Grossberg 1988; McCloskey
and Cohen 1989; Robins 1995) but continues to limit the ap-
plicability of neural networks in continual or lifelong learn-
ing scenarios.

Similar to the problem of model interpretability, many al-
gorithms have been developed that augment standard train-
ing by backpropagation to address catastrophic forgetting.
These methods typically fall into two main categories. The
first approach involves replaying previously seen tasks dur-
ing training using one of many heuristics (Robins 1995;
Caruana 1997; Rebuffi et al. 2017). The other common
category involves explicitly maintaining additional sets of
model parameters related to previously learnt tasks. Exam-
ples include freezing a subset of weights (Donahue et al.
2013; Razavian et al. 2014), dynamically adjusting learning
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rates (Girshick et al. 2014) or augmenting the loss with regu-
larization terms with respect to past parameters (Kirkpatrick
et al. 2017; Zenke, Poole, and Ganguli 2017; Schwarz et al.
2018). A limitation of these approaches (aside from ad-
ditional algorithmic and computational complexity) is that
they require task boundaries to be provided or accurately in-
ferred.

Unlike contemporary neural networks, we demonstrate
that the halfspace-gated GLN architecture and learning rule
is naturally robust to catastrophic forgetting without any
modifications or knowledge of task boundaries. We focus on
the pixel-permuted MNIST continual learning benchmark of
(Goodfellow et al. 2013; Kirkpatrick et al. 2017), which in-
volves training on a sequence of different tasks where each
task is obtained from a different random permutation of the
input pixels. We compare the learning and retention char-
acteristics of a GLN against an MLP baseline (of equal
number of neurons, using dropout as per the original paper)
with and without elastic weight consolidation (EWC) (Kirk-
patrick et al. 2017), which is a highly-effective method ex-
plicitly designed to prevent catastrophic forgetting by stor-
ing parameters of previously seen tasks.

Our results are presented in Figure 5. As we train our
models on a growing number of sequential tasks (rows),
the performance on all previously learnt tasks (columns) is
evaluated. Note that the plotted task indices are not contigu-
ous. It is evident that the GLN outperforms EWC in terms
of both initial single-task learning (diagonal) and retention
when both are trained for a single pass. Only when EWC is
trained for multiple (ten) passes over the data does it exhibit
superior performance to a vanilla GLN. In all tests, GLNs
substantially outperform the standard MLP without EWC.

To gain some intuition as to why GLNs are resilient to
catastrophic interference, recall that the random halfspace
gating causes inputs close in terms of cosine similarity to
give rise to similar data dependent weight matrices. Since
each task-specific cluster of examples is far from each other
in signature space, the amount of interference between tasks
is significantly reduced, with the gating essentially acting as
an implicit weight hashing mechanism. If this were not the
case, one would expect catastrophic forgetting to occur.

Online Benchmarking

Our final series of results validate the impressive sample ef-
ficiency of GLNs across a variety of settings.

MNIST Classification. First we explore the use of GLNs
for online (single-pass) classification of the deskewed
MNIST dataset (Lecun et al. 1998). We use 10 GLNs to
construct a one-vs-all classifier, each consisting of 128 neu-
rons per layer with context dimension 4. The learning rate
at each step t was set to min{100/¢,0.01}. We find that the
GLN is capable of impressive online performance, achieving
98% accuracy in a single pass of the training data.

UCI Dataset Classification. We next compare GLNs to a
variety of general purpose batch learning techniques (SVMs,
Gradient Boosting for Classification, MLPs) in small data
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Figure 6: Online GLN classification accuracy on a selection
UCI datasets, compared to three contemporary batch meth-
ods (Support Vector Machine, Gradient Boosting for Classi-
fication, Multi-Layer Perceptron) trained for 100 epochs.

regimes on a selection of standard UCI datasets. A 1000-500
neuron GLN with context-dimension 8 was trained with a
single pass over 80% of instances and evaluated with frozen
weights on the remainder. The comparison MLP used ReLU
activations and the same number of weights, and was trained
for 100 epochs using the Adam optimizer (Kingma and Ba
2014) with learning rate 0.001 and batch size 32. The SVM
classifier used a radial basis function kernel K (z,z’)
exp{—~ ||z — 2’|} with v = 1/d, where d is the input di-
mension. The GBC classifier was an ensemble of 100 trees
of maximum depth 3 with a learning rate of 0.1. The mean
and stderr over 100 random train/test splits are shown in the
leftmost graph of Figure 6. Here we see that the single-pass
GLN is competitive with the best of the batch learning re-
sults on each domain.
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MNIST Density Modelling. Our final result is to use
GLNs and image specific gating to construct an online image
density model for the binarized MNIST dataset (Larochelle
and Murray 2011), a standard benchmark for image den-
sity modeling. By exploiting the chain rule P(X;.4)
Hle P(X; | X«;) of probability, we constructed an autore-
gressive density model over the 28 x 28 dimensional binary
space by using 784 GLNs to model the conditional distri-
bution for each pixel; a row-major ordering was used to
linearize the two dimensional pixel locations. Running our
method online (i.e. a single pass of the concatenated train-
ing, validation and test sets) gave an average loss of 79.0
nats per image across the test data, and 80.74 nats per im-
age if we held the parameters fixed upon reaching the test
set. These results are close to state of the art (Van Den Oord,
Kalchbrenner, and Kavukcuoglu 2016) of any batch trained
density model which outputs exact probabilities.

From an MDL or compression perspective, our density
modelling results are significantly stronger in the sense that
we could couple our model to an adaptive arithmetic decoder
and reproduce the original data from a file much smaller than
the original input. Contemporary batch trained density mod-
els do not have this property; to make a fair comparison, both
the model parameters and the data need to be encoded.

Conclusion

We have introduced a new family of general purpose neu-
ral architectures, Gated Linear Networks, and studied the
desirable characteristics that follow from their use of data-
dependent gating and local credit assignment. Their fast on-
line learning properties, easy interpretability, and excellent
robustness to catastrophic forgetting in continual learning
settings makes them an interesting and complementary al-
ternative to contemporary deep learning approaches.
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