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Abstract

We present *-CFQ (“star-CFQ”): a suite of large-scale da-
tasets of varying scope based on the CFQ semantic parsing
benchmark, designed for principled investigation of the scal-
ability of machine learning systems in a realistic composi-
tional task setting. Using this suite, we conduct a series of ex-
periments investigating the ability of Transformers to benefit
from increased training size under conditions of fixed com-
putational cost. We show that compositional generalization
remains a challenge at all training sizes, and we show that
increasing the scope of natural language leads to consistently
higher error rates, which are only partially offset by increased
training data. We further show that while additional training
data from a related domain improves the accuracy in data-
starved situations, this improvement is limited and diminishes
as the distance from the related domain to the target domain
increases.

1 Introduction
Intuitively, if you see a lot of examples of natural language
questions about TV shows, it ought to also help under-
stand similar syntax in questions about movies, or in ques-
tions that refer to both movies and TV shows together. Ide-
ally, the training examples from the related domain should
strictly improve performance, not hurt it. If you can satisfy
that property, then you have at least a chance at eventually
achieving arbitrarily robust performance across a range of
domains, given sufficient training data in aggregate.

How and to what extent current machine learning (ML)
approaches can be made to robustly solve natural language
understanding (NLU) at the scale of arbitrary natural lan-
guage across domain – with or without access to large quan-
tities of training data – remains, however, an open question.

On one hand, research into the scaling behavior of deep
learning systems has found generalization loss to decrease
reliably with training size and model size in a power law
or related logarithmic relationship across a range of archi-
tectures and tasks, from image classification with convolu-
tional neural networks (Cho et al. 2015) to language model-
ing with Transformers (Rosenfeld et al. 2019; Kaplan et al.
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2020; Brown et al. 2020). Recent results in an i.i.d. setting
show this pattern to persist across many orders of magnitude,
with no established upper limit (Kaplan et al. 2020).

At the same time, it has been shown that current ML
systems continue to struggle to achieve robust performance
in classes of tasks that require compositional generalization
(Keysers et al. 2020) – an ability that has been argued to be
crucial to robust language understanding (Fodor, Pylyshyn
et al. 1988; Lake and Baroni 2018; Battaglia et al. 2018;
Hupkes et al. 2019).

In this paper, we combine these two lines of research by
investigating the effect of training size on error rates in the
context of a compositional task. Specifically, we derive a
suite of extended datasets based on the Compositional Free-
base Questions (CFQ) semantic parsing benchmark (Key-
sers et al. 2020). We then use the compositional structure of
each example to construct controlled experiments that mea-
sure the error rates when increasing training size in settings
requiring compositional generalization and in settings simu-
lating scaling to a broader scope of natural language. We ap-
ply these experiments to analysis of Transformers (Vaswani
et al. 2017) in a setting of fixed computational cost – that
is, of fixed model size and fixed training steps – and demon-
strate key limits to their scalability in this setting.

Our contributions are the following:

• We present *-CFQ (“star-CFQ”): a suite of large-scale
datasets and corresponding canonical splits, designed to
enable principled investigation of the scalability of ML
systems in a realistic compositional task setting. The data-
sets and splits follow the same setup as the original CFQ,
but span a range of data sizes, rule scopes, and compound
divergences with the largest consisting of 76% more rules,
41x as many examples, 14x as many question patterns,
53x as many SPARQL patterns, and covering a 32x larger
domain than CFQ (Section 3).

• We confirm that under conditions of fixed computational
cost, error rates for Transformers plateau at large training
sizes. Moreover, targeting larger scopes of natural lan-
guage leads to consistently higher error rates which are
only partially offset by increased training data (Section 4).

• We demonstrate that compositional generalization re-
mains a challenge at all training sizes, but that increases in
training size continue to reap benefits in situations requir-
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ing compositional generalization, even when error rates
would seem to have plateaued in the i.i.d. case (Section 5).

• We show that while access to additional training data from
a related domain improves accuracy in data-starved situ-
ations, this improvement is limited and diminishes as the
distance from the related domain to the target domain in-
creases (Section 6).

2 CFQ Benchmark
Keysers et al. (2020) introduced the Compositional Freebase
Questions (CFQ), which is a simple but realistic and large
natural language dataset that is specifically designed to mea-
sure compositional generalization. The task of interest is se-
mantic parsing from a natural language question (such as
’Which art director of [Stepping Sisters 1932] was a parent
of [Imre Sándorházi]?’) to a SPARQL query, which can then
be executed against the Freebase knowledge base. Named
entities are anonymized, which is standard practice and en-
sures that the models do not have to learn all the entities.

CFQ was constructed using the Distribution-Based Com-
positionality Assessment (DBCA) method. This means that
the dataset is automatically generated from a set of rules in a
way that precisely tracks which rules (atoms) and rule com-
binations (compounds) were used to generate each exam-
ple. Using this information, the authors generate “maximum
compound divergence” (MCD) splits, which maximize the
compound divergence while guaranteeing a small atom di-
vergence between train and test sets. MCD splits are well
suited for assessing compositionality because they are both
fair (because the distribution of individual rules is similar)
and compositionally challenging (because the distribution of
compounds is as different as possible).

The authors release a number of MCD splits for CFQ,
and show that there is a strong negative correlation between
the accuracy of three standard sequence-to-sequence archi-
tectures and the compound divergence. They investigate this
for LSTM+attention (an LSTM (Hochreiter and Schmidhu-
ber 1997) with attention mechanism (Bahdanau, Cho, and
Bengio 2015)), for Transformer (Vaswani et al. 2017), and
for Universal Transformer (Dehghani et al. 2018).

In a follow-up publication, Furrer et al. (2020) show
that this negative correlation also applies to architectures
that specifically target compositional generalization (such as
CGPS (Li et al. 2019) and Neural Shuffle-Exchange Net-
works (Freivalds, Ozolin, š, and Šostaks 2019)) and cannot be
overcome by masked language model pre-training using the
Text-to-Text Transfer Transformer (T5) (Raffel et al. 2019).

3 *-CFQ
We present here *-CFQ1, a suite of datasets building on
the same overall structure and base rule set as CFQ, but with
two key differences intended to facilitate investigation of the
scalability of solutions to the semantic parsing task:

• Increased data size: The datasets span a range of data
sizes, with the largest 41x the size of CFQ.

1Available at https://github.com/google-research/google-
research/tree/master/star_cfq

Dataset Statistics CFQ U-CFQ X-CFQ
Unique questions 239,357 9,925,221 9,879,894
Question patterns 49,320 319,407 713,137
Unique queries 228,149 6,551,678 7,249,705
Query patterns 34,921 762,680 1,847,555
Open questions 108,786 4,658,177 3,879,020
Closed questions 130,571 5,267,044 6,000,814

Table 1: Statistics of the largest of the *-CFQ datasets,
in comparison with the original CFQ. “Question pattern”
here corresponds to “Question patterns (mod entities, verbs,
etc.)” from Keysers et al. (2020), while “Query pattern” cor-
responds to “Query patterns (mod entities and properties)”.

• Expanded rule set: The datasets span a range of rules
scopes, based on grammar extensions to support addi-
tional Freebase types and properties (via new leaf rules)
and additional syntactic constructs (via non-leaf rules).

All datasets in the suite include detailed instrumentation
of the compositional structure of each example, in a similar
format to that used in CFQ.

3.1 Increased Data Size
The *-CFQ datasets are generated following the algorithm
described in Keysers et al. (2020) using rule sets closely re-
lated to the CFQ rules, but with sampling run at a larger scale
in order to generate significantly larger datasets. As in Key-
sers et al. (2020), after the initial sampling phase, we apply
sub-sampling and then semantic and structural filtering to in-
crease the diversity of rule combinations while maintaining
a balance of complexity levels and reducing the number of
unnatural-sounding questions. The one difference from Key-
sers et al. (2020) is that in order to avoid an observed perfor-
mance bottleneck, we omit the step of grounding the ques-
tion in Freebase, which means that the generated questions
contain only entity placeholders, without the guarantee that
an actual set of entities can be found in Freebase that would
lead to a non-empty answer to the question. In Appendix B,
we show that while omitting the grounding step leads to a
higher incidence of semantically implausible questions, the
behavior of the baseline ML systems are highly consistent
between the grounded and ungrounded datasets, which mo-
tivates our choice to use ungrounded datasets as proxies for
grounded ones when exploring the behavior of ML systems
at larger scales of training data.

We apply this procedure first to a nearly identical rule set
as CFQ to generate the large ungrounded dataset U-CFQ
(see Appendix D.1 for details). Datasets generated by the
same procedure applied to different rule sets are described
below in Section 3.3. Table 1 shows summary size statis-
tics of two datasets from *-CFQ compared with CFQ. The
size statistics for all the *-CFQ datasets can be found in Ap-
pendix C.

3.2 Extended Rule Set
In order to simulate coverage of a greater scope of natural
language, we enrich the CFQ grammar to include up to 92%
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In which TV program did M1 play
Did M0 direct M2 and marry M1
Who was a crime fiction film’s Indian writer
What was M1’s Anglican art director’s ethnicity
Was the daughter of the brother of M0 M2

Table 2: Examples of newly supported questions.

more leaf rules, which provide support for additional Free-
base types and properties or add new surface forms, and up
to 37% more non-leaf rules, which provide support for ad-
ditional syntactic constructs. Examples of newly supported
questions are presented in Table 2. More details on the new
language features can be found in Appendix D.3.

3.3 Rule Set Lattice
As we are interested in exploring the effect of both the num-
ber of new rules added and their type (leaf vs. non-leaf),
we prepare a suite of rule sets with varying number of leaf
and non-leaf rules, which together form a rule set lattice. We
then generate a separate large-scale dataset corresponding to
each rule set in the lattice. For convenience, we will use the
same name (e.g., B-CFQ, X-CFQ, etc.) to refer to both the
rule set and the largest dataset generated from that rule set.

At the bottom of the lattice is a base rule set which we
name B-CFQ, containing the rules shared by all other rule
sets in the lattice. This rule set is designed to be as close as
possible to U-CFQ, but with some minimal adjustments to
enable separate evaluation of the addition of leaf- vs. non-
leaf rules (see Appendix D for details).

L-CFQ is a rule set containing the rules of B-CFQ plus
all additional leaf rules. N-CFQ consists of the rules of B-
CFQ plus all additional non-leaf rules. X-CFQ contains the
union of rules from L-CFQ and N-CFQ.

In order to test the effect of adding varying numbers
of rules of a similar type, we also provide rule sets half-
L-CFQ, half-N-CFQ, and half-X-CFQ, which have only
half of the additional rules of the relevant types added.

The main characteristics of the rule sets from the lattice
are shown in Table 3, with more details in Appendix D.3.

4 Experiments on Effect of Rule Scope
Increased rule scope yields consistently higher error rates,
which are only partially offset by increased training size.

Figure 1 plots error rates vs. training size for a Transformer
evaluated on random splits of datasets of increasing rule set
scope. In each experiment, the model size and number of
training steps (and hence, computational cost) are held con-
stant, with hyperparameters as described in Appendix E.

Previous research has shown a power law relationship be-
tween data size and error rates or loss across a variety of
deep learning architectures and tasks when model size and
data size are increased in tandem (Kaplan et al. 2020; Brown
et al. 2020; Rosenfeld et al. 2019; Hestness et al. 2017).

The results shown in Figure 1 are compatible with this
previous research in that for all rule scopes, error rates ini-
tially vary in a rough power law relationship with training

Figure 1: Effect of rule scope on scalability curve. Error
rate vs train set size, all datasets from the lattice, double log
scale. Every point here (and in all other graphs with random
splits) averages values from 5 replicas, error bars represent
error margins for confidence level 0.95.

size, while flattening out at higher training sizes. We suspect
that the flattening-out is due primarily to the fixed compu-
tational cost setting, and that with sufficiently large model
sizes the power law relationship would persist longer.

What is most notable in Figure 1 is that as the rule
scope increases, the asymptotic value of the error rate in-
creases consistently, such that X-CFQ plateaus at an error
rate roughly 3 times that of B-CFQ. This suggests a notable
scalability implication for the Transformer architecture, in
that, despite the fact that every dataset in the *-CFQ suite
is fully described by a small set of rules, the moderately-
sized Transformer fails to fully capture the rules regardless
of the number of training examples provided, and training
data alone is insufficient to fully offset the increased error
rates that result from even modest increases to the rule scope.

It is also notable that adding non-leaf rules impacts error
rate more than adding leaf rules, as evidenced by the error
rates for N-CFQ being considerably higher than L-CFQ –
in fact, nearly matching the error rates of the combined rule
set X-CFQ. As shown in Appendix F, this is despite the fact
that the L-CFQ rule set describes a much larger space of
possible questions than that described by N-CFQ. This sug-
gests that Transformers struggle more with generalizing to
new complex rule combinations than with generalizing to
“primitive substitutions” (Li et al. 2019; Russin et al. 2019;
Gordon et al. 2020), in which one leaf element is replaced
by another within a question pattern observed in training.

5 Experiments on Effect of Compound
Divergence

Compound divergence dramatically affects error rates at all
training sizes. Large increases in training data yield greater
benefit, however, at high compound divergence than at low.
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Rule set Description # Grammar rules # All rules
(Non-leaf) (Leaf) (Total)

CFQ Original CFQ rule set from Keysers et al. (2020) 54 157 211 443
U-CFQ Rule set for ungrounded version of CFQ 54 158 212 444
B-CFQ Base CFQ 55 137 192 412
N-CFQ Base CFQ + additional non-leaf rules 70 139 209 455
half-N-CFQ Base CFQ + half the additional non-leaf rules 62 139 201 447
L-CFQ Base CFQ + additional leaf rules 59 324 383 738
half-L-CFQ Base CFQ + half the additional leaf rules 59 236 295 597
X-CFQ Base CFQ + both types of additional rules 74 331 405 799
half-X-CFQ Base CFQ + half of both types of additional rules 66 238 304 602

Table 3: A list of the new CFQ-based rule sets with characteristics.

Keysers et al. (2020) observe that as the compound diver-
gence between a train set and test set increases – that is, as
the need for compositional generalization increases – the ac-
curacy of a Transformer on the CFQ task decreases dramat-
ically from over 98% at compound divergence 0 (a random
split) to less than 20% at compound divergence 0.7 when
training size is around 100k examples. In their Appendix H
they also present preliminary results of the effect of train-
ing size on this performance gap – specifically, that the per-
formance gap is even wider at smaller training sizes (e.g.,
around 10k examples) and shrinks as training size increases.
This leaves open the question as to whether further increas-
ing the training size beyond 100k could at some point narrow
the performance gap sufficiently that the systems can be said
to have effectively learned to compositionally generalize.

We investigate this question by reproducing the experi-
ments of Keysers et al. (2020) across a wider range of train-
ing sizes, from around 10k up to nearly 900k examples. As
seen in the results in Figure 2, compositional generaliza-
tion remains a challenge, with even a moderate compound
divergence of 0.2 yielding error rates an order of magni-
tude higher than those at compound divergence 0 even at the
largest training sizes. Similarly to results on random splits,
error rates vary in a rough power law relationship with train-
ing size in ranges of moderately large training data, while
presumably plateauing at very large training sizes. However,
a noticeable warm-up period can be observed, in which error
rates decrease at a much slower rate, with the warm-up pe-
riod persisting longer, the greater the compound divergence.
Also, while in Figure 1 error rates on random splits consis-
tently began to flatten out starting at around 100-300k train-
ing examples (with the plateau even more pronounced in
Figure 2 for the compound divergence 0 split), at the higher
compound divergence levels, the plateau is yet to be seen for
training sizes up to 1M. This suggests that greater benefit can
be reaped from very large training sizes in scenarios requir-
ing compositional generalization than in i.i.d. settings. Fur-
ther experiments at larger training sizes would be required
to verify how much compound divergence affects the final
asymptotic error level.

A more detailed comparison of our investigation with that
of Keysers et al. (2020) is covered in Appendix G.

Figure 2: Effect of compound divergence on scalability
curve. Error rate vs train set size for compound divergence
splits for U-CFQ. Every point averages 5 replicas of up to
36 splits, generated using different random seeds; error bars
represent error margins for confidence level 0.95.

6 Experiments on Effect of Data from
Related Domain

While the experiment results from Section 4 show a clear
trend of increasing error rate as rule scope increases, this
trend can be seen as the combined effect of multiple simul-
taneously changing factors, which we may group roughly
into test set effects and train set effects.

While increasing rule scope affects the test set on one
hand in the obvious way of increasing its breadth, there may
be more subtle effects that could lead to either an increase or
decrease in inherently “easy” or “hard” examples in the test
set, depending on which existing rules the newly added rules
tend to compose most easily with. From the perspective of
investigating the scalability of ML systems, these test set ef-
fects are of limited interest, as they largely represent artifacts
of the specific data generation and sampling algorithm.

Of greater interest are the train set effects. On one hand,
we expect increasing the rule scope to dilute the train set, in
that, from the perspective of any given test example, the pro-
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portion of train examples directly relevant to it (e.g., which
use a large fraction of the rules or combinations of rules that
appear in it) will decrease as the rule scope covered by the
train set increases. At the same time, however, increasing the
rule scope may increase the diversity of contexts in which
each rule is seen, which may improve generalization (Hill
et al. 2019). A key question governing how well ML sys-
tems can scale to larger scopes of natural language is indeed
how much benefit the system can derive from these training
examples that are only partially or indirectly relevant to any
given subset of test examples.

To better answer this question while minimizing interfer-
ence from test set effects, we shift our focus to the following
experiment setup. We choose as point of reference a fixed
test set WTEST , which is randomly sampled from some
limited-scope target domain W – specifically, here we will
use the B-CFQ dataset. We then suppose we have access to
a limited set WTRAIN of nin training examples drawn from
the identical distribution as WTEST , plus a potentially larger
supplementary set VTRAIN of nsup training examples sam-
pled from a related domain V that is related to W through
some overlap in the rule sets used to generate them. V might
consist, for example, of other movie-related questions that
use some different syntactic constructs (i.e., different non-
leaf rules) that are not present in W , or of questions that fol-
low a similar syntax but include words referring to different
Freebase properties and types (i.e. different leaf rules). We
investigate, for various choices of supplementary domain V
and values of nin and nsup, the degree to which blending the
supplementary data set VTRAIN into the train set improves
or harms performance on the original test set WTEST .

In each case, we use as supplementary domain V one of
the datasets from the *-CFQ rule set lattice – specifically
one of half-L-CFQ, L-CFQ, half-X-CFQ or X-CFQ – with
examples generatable by the B-CFQ rule set filtered out. We
omit experiments involving half-N-CFQ or N-CFQ, which
do not lend themselves well to this experiment setup, due to
the high overlap between their domains and B-CFQ. (See
Appendix J for details.)

For all the experiments we use an approach similar to the
one in Keysers et al. (2020):

• We use a Transformer architecture with hyperparameters
described in Appendix E.

• For each split we train 5 replicas and average the results.

Details of how the train sets WTRAIN and VTRAIN are
blended are described in Appendix H.

In all experiments we used a fixed test set of 95,742 ex-
amples sampled randomly from B-CFQ.

6.1 Equal Weighting of Examples from Target
and Related Domains

Transformers are sensitive to the training distribution,
not just the information contained in the training data.
When highly data-starved, adding training examples from a
related domain can improve performance. As training size
increases, however, the skew in train vs. test distribution
resulting from expansion of the train set quickly outweighs

any benefits from the additional training examples.

In this experiment, we weight examples from WTRAIN

and VTRAIN equally, so that as the number of examples in
VTRAIN increases, we can observe the same dynamics we
would see when scaling to increasing scopes of language,
where expanding the scope of the train set simultaneously
increases the amount of total information in the train set
while also diluting the fraction of the train set that is directly
relevant to any given slice of test examples.

Figure 3(a) summarizes the results when nin is fixed at
10k examples and nsup varies between 10k and 8M.

As in Figure 1, error rate varies with training size in a
clear power law relation for training sizes up to around 100k-
300k (depending on the dataset), after which performance
plateaus. However, the more distant the related domain is
from the target domain in terms of number of leaf or non-
leaf rules added, the more slowly the error rates drop, and the
higher the asymptotic value at which they plateau. This rein-
forces that the increased error rates observed in Section 4 for
increased rule scope are indeed driven largely by the chang-
ing composition of the train set, rather than purely by test set
effects.

For easier comparison with Figure 1, we mark on each
curve the point at which the relative size of nsup vs. nin

matches the ratio that would be expected based on the rel-
ative sizes of the domains of V vs. W , if the train set were
sampled from V as a whole, while the test set were simply
fixed to observe the performance on the subset of V genera-
ted by the narrower rule set W . It can be seen that the error
rates at the marked points in Figure 3 are slightly higher than
at similar training sizes in Figure 1, suggesting that a small
degree of test set effect is also at play.

Figure 3(b) summarizes the results when nin is fixed at
the larger value of 100k examples, while nsup varies as be-
fore between 10k and 8M. Here, unlike in the data-starved
scenario of Figure 3(a), the benefit from the additional train-
ing data is more limited, with error rates actually increasing
when nsup is significantly larger than nin. This suggests that
as training size increases, the skew in train vs. test distribu-
tion resulting from expansion of the train set quickly out-
weighs any benefits from the additional training examples.
Notably, by the time that nsup approaches 100x the value of
nin, error rates have already increased to levels comparable
to those at which they are seen to plateau in Figure 3(a) for
the same choice of V , despite the order of magnitude differ-
ence in the amount of in-domain training data.

Results for other choices of nin ranging from 10k up
through 500k examples are presented in Appendix I.

6.2 Over-weighting of Examples from Target
Domain

If sample weighting is controlled, then additional data from
a related domain can be made to yield a strictly positive ef-
fect. However, the performance benefits achievable through
this method are limited.

If we had the luxury of being able to train a separate
model for each domain, we could consider mitigating the

9953



(a) (b)

Figure 3: Error rate vs train set size, log-log scale, equal weighting of examples from target and related domains: 10k examples
(a) and 100k examples (b), B-CFQ test set, B-CFQ + others train set.

harm caused by the skew in train-test distribution seen in
Section 6.1 by giving special treatment to the in-domain
train examples. Here we evaluate the effect of one form of
such special treatment by increasing the sampling weight of
examples from WTRAIN relative to those from VTRAIN to
ensure that at least half of all training observations corre-
spond to in-domain examples. The target ratio of one-half
matches the optimal ratio observed by Wang et al. (2017)
for a similar instance weighting technique.

Specifically, if, for example, nin is 10k and nsup is 100k,
we would duplicate each example of WTRAIN 10 times
(prior to shuffling), so that when randomly sampling from
the adjusted train set, exactly half of the samples are from
WTRAIN and half are from VTRAIN . If nsup is less than
nin, then no adjustment is made.

Figures 4(a) and (b) again show the results when nin is
fixed at 10k and 100k examples, respectively.

As the figures show, if sample weighting is controlled,
then additional data from a related domain can be made in
most cases to yield a strictly positive effect.

However, again, the more distant the related domain is
from the target domain, the more slowly the error rates drop
– and most significantly, the higher the asymptotic value at
which they plateau. While we expect that error rates could
be further improved by optimizing the exact sampling ratio
between WTRAIN and VTRAIN , the results so far suggest
that there are limits to the performance benefits achievable
through this method.

7 Related Work
The relationship between training size and error rates or gen-
eralization loss has been studied in a variety of settings.
Early research observed that accuracy varies roughly with
the log of the training size, both in shallow ML approaches
on a natural language disambiguation task (Banko and Brill
2001) and in convolutional neural networks on an object de-

tection task (Sun et al. 2017). Others, noting the connection
with learning curves observed during training on a large train
set, have tried fitting a power law learning curve to the rela-
tionship between training size and error rate (Figueroa et al.
2012). More recent research has observed consistent power
law relationships between training size and cross-entropy
error across a range of deep learning architectures, includ-
ing LSTMs on language modeling and machine translation
tasks (Hestness et al. 2017) and LSTMs or Transformers
on language modeling tasks (Rosenfeld et al. 2019; Kaplan
et al. 2020; Brown et al. 2020), provided that training size
and model size are increased in tandem. In particular Kaplan
et al. (2020) observe that a highly consistent power law re-
lationship between cross-entropy loss and either of training
size or model size persists across many orders of magnitude
when not bottlenecked by the other of the two. Our approach
differs from this previous research by specifically investigat-
ing the effect of the compositional structure of a task on the
training size to error rate relationship.

The degree to which additional training data from a re-
lated domain can help or hurt performance has been inves-
tigated also in the context of multi-domain learning (Yang
and Hospedales 2014; Herzig and Berant 2017; Britz, Le,
and Pryzant 2017; Tars and Fishel 2018; Mghabbar and
Ratnamogan 2020; Wang et al. 2020) and domain adapta-
tion (Wang et al. 2017; Chu and Wang 2018; Zhang et al.
2019; Wilson and Cook 2020).

Our experiments in Section 6.1 resemble the scenario of
multi-domain learning (MDL) in that we aim to train a single
model that can apply to multiple domains, not just the sin-
gle domain from which our test set is drawn. Multi-domain
learning seeks, however, to improve performance on individ-
ual domains by explicitly distinguishing the domain of each
example at train and test time, which is not our focus here.
We expect that explicitly distinguishing domains would be
less beneficial in the *-CFQ tasks than in scenarios where
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(a) (b)

Figure 4: Error rate vs train set size, log-log scale, fixed ratio: 10k B-CFQ examples (a) and 100k B-CFQ examples (b), B-CFQ
test set, B-CFQ + others train set.

the expected output for a given input can differ depending
on the domain (something that does not occur in *-CFQ),
but we would welcome investigation into the effectiveness
of MDL techniques on *-CFQ as future work.

Our experiments in Section 6.2 can be considered a form
of domain adaptation (DA) in that a model targeting a sin-
gle domain is trained using a combination of in-domain
and out-of-domain data. Our approach corresponds most
closely to the instance weighting approach, particularly the
batch weighting variant, which Wang et al. (2017) found
to yield superior performance over other instance weight-
ing techniques. Another popular DA technique which we
have not evaluated in our experiments is that of pre-training
on a broader data set followed by fine-tuning on in-domain
data (Luong and Manning 2015), which may be augmented
with selections from the out-of-domain data ranked by sim-
ilarity to the in-domain distribution (Zhang et al. 2019).

In particular, much attention has been paid recently to the
significant improvements in performance achievable on a
variety of downstream natural language tasks through pre-
training of large scale language models (Devlin et al. 2018;
Raffel et al. 2019; Yang et al. 2019; Brown et al. 2020), in-
cluding in scenarios of domain adaptation and multi-domain
learning (Talmor and Berant 2019; Gururangan et al. 2020).
Talmor and Berant (2019) observe that the performance of
BERT-large (Devlin et al. 2018) can be improved on sev-
eral reading comprehension (RC) benchmarks by addition-
ally pre-training it on a selection of 75k supervised exam-
ples from each of 5 different large RC datasets, prior to fi-
nally fine-tuning it on the specific target dataset. In cases
where the target dataset is large, however, they find that
the additional pre-training from the other RC datasets im-
proves performance only about half the time. Gururangan
et al. (2020) show that applying additional pre-training on
unlabeled examples from the target domain improves per-
formance on a number of classification tasks compared to

use of RoBERTa (Liu et al. 2019) alone.
Our approach differs from this previous research again by

using knowledge of the compositional structure of the task to
characterize the relationship between the target domain and
related domains, and illustrating the effect of these factors
on the slope and limit value of the performance curves.

8 Conclusion and Outlook
In this paper we present *-CFQ, a suite of large-scale data-
sets designed for principled investigation into the scalability
of ML systems on a compositional NLU task. To the best of
our knowledge, *-CFQ is uniquely suited for this investiga-
tion, because it is the first dataset to achieve this scale while
providing full details on the compositional structure of each
example. We use this dataset to perform experiments illus-
trating that scalability is indeed a concern even at a scope
that is only a tiny fraction of full natural language.

The experiments presented in this paper, however, only
scratch the surface of the types of controlled investigations
of ML scaling behavior possible using *-CFQ. We hope that
this dataset suite will aid the deep learning and NLU com-
munities in the development of more robust and scalable so-
lutions to language understanding.

In particular, we hope to re-use *-CFQ to evaluate the
degree to which language model pre-training and increase
of model size affect the scalability curves in the composi-
tional setting. We are interested in exploring the combined
effects of compound divergence and rule scope. Further, we
are interested to estimate the necessary data sizes and com-
putational power that would be required by current ML ap-
proaches to achieve robust levels of language understanding
across arbitrary domains and syntax, based on the above re-
sults together with an estimate of the effective number of
language features in full natural language compared to X-
CFQ.
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