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Abstract

Estimating causal effects from observational data is not al-
ways possible due to confounding. Identifying a set of ap-
propriate covariates (adjustment set) and adjusting for their
influence can remove confounding bias; however, such a set
is often not identifiable from observational data alone. Ex-
perimental data allow unbiased causal effect estimation, but
are typically limited in sample size and can therefore yield
estimates of high variance. Moreover, experiments are often
performed on a different (specialized) population than the
population of interest. In this work, we introduce a method
that combines large observational and limited experimental
data to identify adjustment sets and improve the estimation
of causal effects for a target population. The method scores
an adjustment set by calculating the marginal likelihood for
the experimental data given an observationally-derived causal
effect estimate, using a putative adjustment set. The method
can make inferences that are not possible using constraint-
based methods. We show that the method can improve causal
effect estimation, and can make additional inferences when
compared to state-of-the-art methods.

Introduction
Covariate adjustment is the main method for estimating
causal effects from observational data. There has been a lot
of work on identifying the correct sets for covariate adjust-
ment in the fields of potential outcomes and causal graphs.
For the latter, sound and complete graphical criteria have
been proven (van der Zander, Liskiewicz, and Textor 2014;
Shpitser, VanderWeele, and Robins 2012). When the causal
graph is known, we can use these criteria to identify all the
variable sets that lead to unbiased estimates of interventional
probabilities through covariate adjustment. Unfortunately,
the true causal graph is often unknown.

Causal discovery methods try to identify the causal graph
for a set of variables based on the causal Markov and faith-
fulness assumptions (Spirtes et al. 2000). Often, multiple
graphs fit the data equally well and are called Markov equiv-
alent (ME). Thus, the correct sets for covariate adjustment
are often not uniquely identifiable from observational data
alone. In contrast, experimental data are the gold standard
for estimating unbiased causal effects, but are often limited

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

D

C

AE D

C

AE D

C

AE

(a) G1 (b) G2 (c) G3

Figure 1: Markov equivalent graphs imply different post-intervention distributions In G1 C is
an adjustment set for D,AE and P (AE|do(D=d)) =

∑
c P (AE|d, c) for d =0, 1. In G2, ∅ is an

adjustment set for X,Y and P (AE|do(D=d)) = P (AE|d) for all d. Notice that even though the
two graphs are indistinguishable based on the conditional (in) dependencies in observational data
over {D,AE,C} and experimental data over {D,AE}, they entail a different distribution for AE
under do(D).

researcher suspects that this causal relationship is also confounded by another condition (C), not37

included in the RCT, that is highly correlated with both D and AE in the observational data. She38

wants to know if C is an adjustment set for AE and D, and if so, use C to improve the estimate of39

P (AE|do(D)) through covariate adjustment.40

Figure 1 shows two different graphs that are both consistent with this scenario. The graphs cannot41

be distinguished based on the conditional dependencies and independencies in the observational42

and experimental data. However, the two graphs imply a different Interventional Distribution (ID)43

P (AE|do(D)). These two distributions can be computed from the observational data based on the44

appropriate covariate adjustment, which differs for the two graphs.45

In this work, we present a method for using predictions of these ID estimates (from observational data)46

as priors in deriving the marginal likelihood of the experimental data in order to score adjustment sets47

and find the most probable one. By using the observational and experimental data in this way, our48

method can make inferences that are not possible based on conditional (in) dependence constraints49

alone, like identifying that C is an adjustment set for D,AE in Fig. 1, even though C is not measured50

in the experimental data. To our knowledge, this method is the first one described in the literature51

that can make this inference.52

2 Preliminaries53

We use the framework of Semi-Markov Causal Models (SMCMs). We assume the reader is familiar54

with of causal graphical models and related terminology. We use the terms node and variable55

interchangeably. We use bold to denote variable sets, uppercase letters to denote single variables,56

and lowercase letters to denote variable values. If we know the causal SMCM G, a hard intervention57

of where a treatment X is set to x can be represented with the do-operator, do(X=x). The post58

intervention distribution of an outcome Y given do(X=x) is denoted P (Y |do(X=x) or PX(Y ). In59

the corresponding SMCM, this is equivalent to removing all incoming edges into X , while keeping60

all other mechanisms intact.61

To estimate P (Y |do(X)) from observational data, we need to control for confounding bias and62

make sure we do not introduce additional bias (e.g., m-bias [4]). This process is called covariate63

adjustment, which involves selecting a proper set of variables Z and “adjusting" for their effect to64

obtain the post-intervention distribution:65

P (y|do(X=x)) =
∑

z

P (y|x, z)P (z) ∀x (1)

Eq. 1 is called the adjustment formula, and set Z is an adjustment set for X and Y . Pearl [13]66

showed that sets of variables that satisfy a graphical criterion known as the backdoor criterion are67

valid adjustment sets. The criterion is sound, but not complete. Subsequent research proved that all68

valid adjustment sets satisfy a graphical criterion known as the adjustment criterion [15]:69

Definition 1. Z satisfies the adjustment criterion relative to (X,Y ) in G if (a) No node in Z is a70

descendant in G of any node that lies on a causal1 and (b) All non-causal paths in G from X to Y are71

blocked by Z.72

1In [15],the authors use the term a proper causal path to allow for sets of exposures and outcomes. For
singletons X and Y this is identical to a causal path X 99K Y .

2

Figure 1: Markov equivalent graphs imply different IDs.
In G1, C is an adjustment set for D,AE and PD(AE) =∑
c P (AE|D, c)P (c). In G2, ∅ is an adjustment set forX,Y

and PD(AE)=P (AE|D). In G3, PD(AE) is not identifi-
able from observational data. The graphs are indistinguish-
able based on the conditional (in) dependencies in obser-
vational data over {D,AE,C} and experimental data over
{D,AE}, but entail different expressions for PD(AE).

in terms of sample size, leading to estimates with high vari-
ance. Moreover, experiments are often performed on a spe-
cialized population (e.g., a particular age distribution) and
the effect estimated from the experimental data does not ap-
ply directly to the observational population.

We introduce a method for combining observational and
limited experimental data (that can be extracted from a pub-
lication) to find an adjustment set, if one exists, or identify
that none exists. The method is motivated by the following
common scenario: Assume that a researcher is interested in
quantifying an adverse effect (AE) of a drug (D) on a popu-
lation and has access to a large collection of electronic health
records (EHR) of patients who take the drug or not, along
with some covariates. The researcher also has available the
published results of a randomized controlled trial (RCT) that
reports the estimated causal effect P̂ (AE|do(D)), which we
will write as P̂D(AE), and deems it significant; thus, D
causesAE. The researcher suspects that this causal relation-
ship is confounded by another condition (C), not included in
the RCT, that is highly correlated with bothD andAE in the
observational data. She wants to know if C is an adjustment
set for AE and D. While the RCT already provides an es-
timate for PD(AE), using the more plentiful observational
data with covariate adjustment can improve this estimate.
Moreover, ifC is an adjustment set, it can be used to provide
a more personalized prediction PD(AE|C). This prediction
cannot be estimated from the RCT alone, because the RCT
does not include C.

Alternatively, the researcher may also believe that the dis-
tribution ofC in the RCT is different than the one in their ob-
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servational population, based on some reported marginals in
the RCT paper (RCT publications typically report marginal
distributions of some baseline covariates). In this case, the
RCT estimate P̂D(AE) may not be accurate for the obser-
vational population. The researcher wants to know if she can
estimate it by adjusting for C in the observational data.

Fig. 1 shows possible graphs for the first scenario. All
graphs are consistent with the (in) dependence constraints
in the EHR and RCT data (C is not measured in the RCT).
However, they imply different ways for computing the In-
terventional Distribution (ID) PD(AE) from observational
data. For two of these graphs (G1 and G2), the ID can be com-
puted from the observational data based on the appropriate
covariate adjustment, which differs for the two graphs.

This work presents a Bayesian method that combines ob-
servational data and limited experimental data to identify if
an adjustment set exists. The method looks in the observa-
tional covariates for a set that we can adjust for to obtain
an unbiased ID estimate. To score a candidate adjustment
set, we estimate the corresponding ID using covariate ad-
justment and then calculate the marginal likelihood for the
experimental data using this estimate as a prior. We show
that if the method finds an adjustment set, it can be used
to reduce the variance of the ID estimate. Moreover, when
the observational and experimental data come from different
populations, we can use it to obtain an unbiased ID estimate
for the observational population. Compared to other meth-
ods that combine experimental and observational data, the
method we introduce can make additional inferences that do
not stem from conditional independence constraints. For ex-
ample, the method can identify that C is an adjustment set
for D,AE in Fig. 1(a). In addition, the method can identify
when there is no adjustment set in the observational data. To
our knowledge, this method is the first one described in the
literature that can make this inference.

Preliminaries

We use the framework of Semi-Markov Causal Models (SM-
CMs, Tian and Pearl 2003). We assume the reader is famil-
iar with causal graphical models and related terminology.
We use the terms node and variable interchangeably. We use
bold to denote variable sets, uppercase letters to denote sin-
gle variables, and lowercase letters to denote variable val-
ues. If we know the causal SMCM G, a hard intervention
of where a treatment X is set to x can be represented with
the do-operator, do(X=x). The ID of an outcome Y given
do(X=x) is denoted P (Y |do(X=x)) or Px(Y ). In the cor-
responding SMCM, this is equivalent to removing all incom-
ing edges intoX , while keeping all other mechanisms intact.
We use x ∈ X to denote a value of the discrete variable X .

One way to estimate PX(Y ) from observational data is
with covariate adjustment. The goal of this process is
to control for confounding bias, without introducing addi-
tional bias (e.g., m-bias (Greenland 2003)). Thus, adjust-
ment amounts to selecting a proper set of variables Z and

Algorithm 1: FindAdjustmentSet (FAS)
input : X,Y,Dobs, Dexp = {Dx}x∈X , niters
output: Adjustment set Z?, estimate P̄X(Y )

1 B = 〈GB, f(θi|pai |GB, Dobs)〉 ← LearnBN(Dobs);
2 ZXY ← Variables associated with X and Y ;
3 foreach Z ∈ {PowerSet(ZXY )∪ 6 ∃} do
4 P (Hz |Dobs)← EstProbObs(Z, Dobs);
5 {P (Dexp|Dobs,Hz ), pZ} ←∏

x ScoreExp(X,x, Y,Z, Dobs, Dx,B, niters)
6 Z? ← argmaxzP (Dexp|Dobs,Hz )P (Hz |Dobs);
7 P̄X(Y )← pZ?;

“adjusting” for their effect to obtain the ID:

PY (x) = P (Y |do(X=x)) =
∑

z

P (Y |x, z)P (z) ∀x, y

(1)
Eq. 1 is called the adjustment formula, and set Z is an ad-
justment set for X and Y . If we know the causal SMCM G,
we can identify all valid adjustment sets using a sound and
complete graphical criterion, called the adjustment crite-
rion (Shpitser, VanderWeele, and Robins 2012).

Scoring Adjustment Sets
The adjustment criterion allows us to identify all adjustment
sets for X and Y (if any) in an SMCM G. We can then use
an adjustment set to estimate the ID PX(Y ) from the pre-
intervention distribution P (V). Since we often do not know
the graph G, we are interested in reverse engineering the ad-
justment sets for (X , Y ) using the empirical observational
joint probability P̂ (V), when an empirical P̂X(Y ) is also
available.

We assume the following setting: There exists a SMCM G
over a set of variables V and a joint probability distribution
P over the same variables such that G and P are faithful to
each other. The variables include a treatment X and an out-
come Y caused by X . We present our results for discrete
variables and a multinomial distribution, but the results can
be extended to other distributions for which marginal likeli-
hoods can be computed in closed form or approximated. We
assume we have:
• Observational data Dobs measuring V, over N samples.
• Experimental data Dexp = {Dx}, x ∈ X . Each Dx con-

sists of an estimate of P̂X=x(Y ), and the corresponding
sample size Nx.

In biology and medicine, information described in Dexp is
typically included in the publication that presents an RCT.
Such a publication usually also reports the marginal distri-
butions for a set of additional covariates Vexp. These dis-
tributions can be used to adjust for situations where Dexp

is collected in a population different than Dobs. We discuss
this in the section “Dealing with selection in the experimen-
tal data.”

We now present a method for combining Dobs and Dexp

to score possible adjustment sets, under the assumption that
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Algorithm 2: ScoreExp
input : X,x, Y,Z, Dobs, Dx,B, niters
output: P (Dx|Dobs,Hz ), P̄x(Y )

1 if Z 6= @ then
2 foreach iter = 1, . . . , niters do
3 Sample θ̃i|pai ∼ f(θi|pai |GB, Dobs);
4 θ̃Y |x,z, θ̃z ← BayesInf(GB, θ̃i|pai);
5 θ̃Yx

(iter)←∑
z θ̃Y |x,zθ̃z;

6 p̃Z(iter)←∏
y θ̃yx(iter)N

y
x ;

7 P (Dx|Dobs,Hz )← p̃Z, P̄x(Y )← θ̃Yx ;
8 else
9 P (Dx|Dobs,H 6∃)← Γ(|Y |)

∏
y Γ(Ny

x+1)

Γ(Nx+|Y |) ;

they come from the same population. Intuitively, our method
is based on the following observation: Different causal
graphs, consistent with the conditional (in)dependence con-
straints in the data, may entail different adjustment sets for
(X,Y ), which in turn may lead to different predicted IDs
P̄X(Y ). In addition, there may be situations where no ad-
justment set exists among the set of observed variables, and
therefore the observational data cannot be used to identify
the ID through covariate adjustment. By (implicitly) com-
paring P̄X(Y ) and the estimate P̂X(Y ) from the experimen-
tal data, we can identify sets that are more probable to be
adjustment sets for (X,Y ), and use them to improve the es-
timate for PX(Y ). We use a binary variable Hz to denote
that Z is an adjustment set for (X,Y ) (thus, Hz is true if Z
is an adjustment set for X,Y ). As mentioned, it is also pos-
sible that no adjustment set exists among V. We denote this
hypothesis asH 6∃. Note that this hypothesis is different than
H∅, which states that the empty set is an adjustment set.

We are interested in identifying the most likely adjustment
set forX , Y . Unless otherwise mentioned, when we say that
Z is an adjustment set, we mean it is so for X , Y . We want
to find the set that maximizes the the posterior probability:

P (Hz |Dexp, Dobs) ∝ P (Dexp|Dobs,Hz )P (Hz |Dobs)
(2)

The score decomposes into (a) the probability of the experi-
mental data given the observational data and given that Z is
an adjustment set (orHz is true), (b) the probability that Z is
an adjustment set (Hz is true) given the observational data.

Estimating P (Dexp|Dobs,Hz)

Dexp includes data Dx for each independent atomic in-
tervention PX=x(Y ), and therefore P (Dexp|Dobs,Hz) de-
composes as

∏
x P (Dx|Dobs,Hz). For each x, we can de-

rive P (Dx|Dobs,Hz) on the basis of the adjustment for-
mula: Under Hz , the adjustment formula connects the in-
terventional to the observational distribution. Let θYx

=
{θyx} be the set of parameters representing the prob-
abilities P (Y =y|do(X=x)). Then, P (Dx|θyx , Dobs,Hz)

=P (Dx|θyx). Integrating over θYx , we have that

P (Dx|Dobs,Hz ) =

∫

θYx

P (Dx|θYx)f(θYx |Dobs,Hz)dθYx .

(3)
f(θYx

|Dobs,Hz ) represents the posterior density for θYx

given the observational data, if Z is an adjustment set. We
use θz denote the parameter for P (Z = z), and θy|x,z
denote the parameter for P (Y =y|X=x,Z=z). Under Hz ,
θyx=

∑
z θy|x,zθz for all y ∈ Y . LetNy

x be the counts where
Y =y in Dx. We can now recast Eq. 3 to include only obser-
vational parameters, as follows:

P (Dx|Dobs,Hz ) =

∫

θy|x,z

∫

θz

∏

y

[(
∑

z

θy|x,zθz)N
y
x

∏

z

f(θy|x,z, θz|Dobs,Hz )]dθy|x,zdθz,
(4)

where we use the notation
∫
θi

()dθi to denote multiple in-
tegration

∫
θ1
. . .

∫
θI

()dθ1 . . . dθI . Eq. 4 captures the prox-
imity of P̂Y (x) in Dx to estimate of PY (x) that corre-
sponds to adjusting for Z in Dobs. f(θY |x,z|Dobs,Hz ) =
f(θY |x,z|Dobs) is the posterior density for the parameters
θY |x,z given the observational data Dobs.

Eq. 4 has no closed form solution, but we can approxi-
mate it using a sampling procedure described in Alg. 2: The
algorithm takes as input a posterior Bayesian Network (BN)
B, learnt from the observational data. B consists of a DAG
graph GB and the posterior distributions for its parameters
f(θi|pai |GB, Dobs). This BN will be used to do Bayesian
inference for the observational parameters. Thus, graph B
need not (and in general cannot, since latent confounders are
possible) represent the true causal relationships among V; it
just needs to accurately represent the observational distribu-
tion P . We then sample from this set of posteriors (line 3) to
obtain an instantiation θ̃i|pai of the BN, and use Bayesian in-
ference (function BayesInf, Alg. 2, line 4) to estimate the
parameters θy|x,z, θz that are required for adjustment. We
then use these parameters to compute the corresponding ex-
perimental parameters θ̃Yx (line 5), and score the experimen-
tal data (line 6). We repeat the process over niters samples,
and take the average over all samples.

There is also a possibility that no adjustment set exists
(H 6∃). Under H 6∃, we can not use the adjustment formula to
connectDobs to the ID. We then scoreH 6∃ using the indepen-
dence given by f(θYx

|Dobs) = f(θYx
) 1 Then the following

equation holds:

P (Dx|Dobs,H 6∃) =

∫

θYx

P (Dx|θYx
)f(θYx

)dθYx
. (5)

For multinomial distributions, we can compute Eq. 5
in closed form using a uniform prior (Alg. 2, line 9)
which is relatively non-informative. If P (Dx|Dobs,H 6∃) >

1We note that this independence only reflects that we cannot
use covariate adjustment to obtain an unbiased estimate of θYx ,
and may not hold: For example, in some cases we may be able to
compute bounds for θYx .
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P (Dx|Dobs,HZ), then Z does not give an estimate closer to
the experimental data than using a uniform prior. Thus, H 6∃
complements the space of hypotheses with respect to the ad-
justment criterion.

Estimating P (Hz |Dobs)
To estimate Eq. 2 we also need to estimate P (Hz |Dobs),
which is the probability that Hz is true, based on the ob-
servational data (function EstProbObs in Alg. 1). One
way to proceed is to considerHz based on the causal graphs
that are plausible given Dobs. This requires an additional
assumption that is a analogous to faithfulness for the ad-
justment criterion. Specifically, we need to assume that the
adjustment sets for (X , Y ) are exactly those for which the
adjustment criterion holds. We call this assumption adjust-
ment faithfulness:
Definition 1. Let G be a causal SMCM and P a distribution
faithful to G over a set of variables V, and X,Y ∈ V. Then
Z ⊂ V \ {X,Y } is an adjustment set for (X , Y ) in P only
if Z satisfies the adjustment criterion for (X , Y ) in G.

Let G ` Hz denote that Z satisfies the adjustment crite-
rion for (X,Y ) in G. If adjustment faithfulness holds, Z is
an adjustment set for X,Y (i.e, Hz is true) if and only if
G ` Hz . Under adjustment faithfulness, we can consider
P (Hz |Dobs) within the space of possible SMCMs:

P (Hz |Dobs) =

∑
G`Hz

P (Dobs|G)P (G)∑
G P (Dobs|G)P (G)

(6)

Eq. 6 requires exhaustive enumeration of all possible graphs,
and a method for obtaining the posterior probability of an
SMCM given the data, both of which are complicated. For
large sample sizes, the true Markov equivalence class [G]
will dominate this score. Assuming our observational sam-
ple size is large enough that we can obtain [G] using a sound
and complete algorithm like FCI, we can use Eq. 6 with
P (G) = 1 if G ∈ [G], and P (G) = 0 otherwise. This still
requires enumeration of all the possible members of [G],
which can be done with a logic-based method for learning
causal structure (e.g., Triantafillou and Tsamardinos 2015).
We have developed a method that encodes the invariant fea-
tures of [G] and the adjustment criterion in Answer Set Pro-
gramming (ASP, Gebser et al. 2011). We can then query the
logic program for all sets whereHz holds, and use the num-
ber of models to compute Eq. 6. We call the method the
Graphical Approach (GA). Details and proof of its sound-
ness can be found in the Supplement.

GA has very limited scalability. A more graph-agnostic
method is to consider variables that are correlated with both
X and Y as possible members of an adjustment set. Specif-
ically, let ZXY be the set of variables that are statistically
dependent with bothX and Y . Then, we consider all subsets
of ZXY equally probable adjustment sets given Dobs. In ex-
periments in random networks with 5 observed and 5 latent
variables, we found that the choice of these two methods for
computing EstProbObs does not affect the behavior of
the algorithms. This result is expected, since the impact of
P (Hz |Dobs) shrinks with increasing experimental samples.
We therefore use the more efficient, non-graphical approach
in the rest of this work.

Finding Optimal Adjustment Sets
To select the most probable adjustment set, we use
Alg. 2 to score different adjustment sets Z, and select
Z?=argmaxzP (Dexp|Dobs,Hz )P (Hz |Dobs). Notice that
the adjustment hypotheses are not necessarily mutually ex-
clusive; multiple sets can be adjustment sets for (X,Y ), and
explain the observational data equally well; thus, we may
have multiple optimal solutions Z?, but they all lead to the
same ID.

Alg. 1 (FAS) describes the process of selecting an opti-
mal adjustment set: The algorithm takes as input a set of
observational data Dobs over variables V and a collection
of experimental data Dexp = {Dx} that measure the Y
under different manipulations do(X=x). The algorithm ini-
tially learns a BN from the observational data, and forms
the set of possible adjustment variables ZXY , by keeping all
variables associated with both X and Y . This set is a super-
set of at least one true adjustment set, if one exists (Proof in
the Supplement), so FAS will asymptotically score at least
one true adjustment set. Subsequently, the algorithm obtains
P (Dexp|Dobs,Hz )P (Hz |Dobs) for all subsets of ZXY , as
well asH@, and returns the best-scoring set (or @).

The method also returns an estimate PX(Y ) based on the
optimal adjustment set, computed as the average estimate
over all sampling iterations. If @ is selected, the method re-
turns the experimental estimate, as it has found no adjust-
ment set that can improve it.

In the worst case, the complexity of the algorithm is ex-
ponential in the number of variables, since LearnBN and
BayesInf are NP-hard problems, and the number of possi-
ble subsets increases exponentially with the number of vari-
ables. However, we can restrict LearnBN and BayesInf
only to the variables in ZXY . The main factor in the scala-
bility of the method is the number of variables we need to
consider for adjustment.

Dealing with Selection in the Experimental Data
So far, we have assumed that the observational and exper-
imental data are sampled at random from the same popu-
lation. When the experimental data come from a different
population, then the method is not applicable. In this section,
we present an extension for settings where the experimental
data are sampled under selection.

This extension is heavily motivated by the situation in
medical reseach. In most such settings, the experimen-
tal population is different than the observational popula-
tion due to experimental inclusion/exclusion criteria or to
background differences in the populations (e.g., different
age distributions due to geographical location). The inclu-
sion/exclusion criteria are always reported in an RCT study.
In addition, the marginal distributions of some covariates are
reported (usually in “Table 2” of the publication).

When the RCT trial is performed on a population that
differs systematically from the observational one, the cor-
responding ID cannot be computed using adjustment from
Dobs, since both P (y|x, z) and P (z) may be different in this
population. This also means that the effect in the RCT may
not be valid for our observational population. We present a
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Figure 2: Modeling selection in the experimental popula-
tion. G is the true graph for the observational population, and
GS=1 corresponds to a selection mechanism in Dexp (before
randomization), based on variables VS = V1, V2, V3. Each
variable in VS is selected through a mechanism P (Si =
1|Vi). The mechanisms are mutually independent. S is a
binary variable that denotes inclusion in the experimental
population, and is true when all Si are true. This model can
describe individual selection criteria, as well as differences
in background distributions of individual covariates between
the observational and the experimental data.

version of Algorithm 2 that allows us to use FAS in these set-
tings. The method models the differences in the RCT popu-
lation as selection of the RCT population, using the informa-
tion on the marginal distribution of the covariates in Dexp.
FAS can then be applied to identify an adjustment set that
can be used to provide an unbiased estimate of PX(Y ) from
the observational population.

We assume that there is no selection bias in our obser-
vational data Dobs. We also assume that the randomization
is performed on a selected population: Specifically, we as-
sume a subset of pre-treatment variables VS ⊂ V \ {X,Y }
have been selected upon. In this work, we assume that
all the selected variables are included in the experimen-
tal study: VS ⊆ Vexp ⊆ V \ {X,Y }. We also assume
that the marginal distribution of each selected variable is in-
cluded in the RCT publication. This is always true for inclu-
sion/exclusion criteria, and often for other covariates, such
as demographic variables. Finally, we assume that each vari-
able in VS is independently selected through some mecha-
nism P (Si = 1|Vi). For example, if Vi = v is an exclusion
criterion, P (Si = 1|v) = 0. Inclusion in the experimental
population is then denoted with a binary variable S =

∧
i Si.

Let P ? be the distribution of the experimental population
before randomization, i.e, P ?(V) = P (V|S=1). Figure 2
shows an example of the assumed selection process, which
we denote GS=1 (described below).

Definition 2. [Selection SMCM]. Let G be a SMCM over
V, and Vexp ⊆ V. Then we define the selection SMCM GS
for G,Vexp to be a SMCM such that every edge in G is an
(identical) edge in GS , and GS has the following additional
variables and edges:

• For every Vi ∈ Vexp, there is a variable Si and an edge
Vi → Si in GS .

• There is variable S in G, and an edge Si → S for every
variable Si.

Notice that, since we do not know which variables have been
selected upon, we include a selection mechanism for every
variable in Dexp. If a variable has not been selected upon,
this will be reflected in the parameters of the selection edges.

In graph GS=1, variable S is set to 1. GS=1 describes the
distribution of the experimental population before random-
ization. Notice that the selection process described by GS=1

may open some backdoor paths between X and Y . There-
fore, an adjustment set in G is not necessarily an adjustment
set in GS=1. However, if a set Z is an adjustment set in GS=1,
then Z is an adjustment set in G. (Proof in the Supplement).
If Z is an adjustment set in GS=1, the ID in Dexp is

P ?x (Y )=Px(Y |S=1)=
∑

z

P (Y |x, z, S=1)P (z|S=1) (7)

Alg. 3 describes a strategy for estimating P (Y |x, z, S=1),
P (z|S=1) fromDobs and the marginal distributions inDexp.
The method constructs a BN BS=1 that captures the distribu-
tion P (V|S=1) induced by the true selection SMCM GS . It
starts with learning a BN that captures the observational dis-
tribution P (V)2 and then adds the selection variables and
estimates parameters for these variables. For every variable
Vi in Dexp, we add a new binary variable Si and an edge
Vi → Si. Finally, we add a new variable S, with an edge
Si → S for each Si. We call this DAG the selection DAG.
The parameters are constrained to preserve the marginal dis-
tributions in Dexp (line 5). The resulting constraint satisfac-
tion problem can be solved with any number of numerical
methods. It has infinite solutions, but they all lead to the
same distribution P (V|S=1). The output of the method is a
selection BN 〈BS , θBS

〉 that can capture the pre-intervention
distribution P (V|S=1) of the experimental population. The
process is asymptotically correct, in the sense that if the true
selection SMCM is GS=1 as described above, 〈BS , θBS

〉 can
be used to estimate P (V|S = 1) (Proof in the supplemen-
tary). We can estimate the quantities in Eq. 7 using inference
on BS . Notice that we can estimate these quantities for any
set Z in Dobs, even if it includes variables that are not in
Vexp.

The selection BN can be used in Alg. 2 instead of B with
minimal modifications. Detailed pseudocode for the modi-
fied Alg. 2 for selection bias can be found in the Supple-
mentary. One important difference is that for H@, the re-
turned estimate for Px(Y ) is N/A (not applicable) instead
of the empirical estimate P̂Y (x), since this estimate is only
valid for the experimental population. Moreover, the pro-
posed method only identifies adjustments sets that are also
valid in GS=1. Thus, in this case, H@ should be interpreted
as “no adjustment set exists among measured variables that
can be used to estimate the ID in the RCT.” When our as-
sumptions are violated and the selected variables in GS=1

are not included in Vexp, (for example, consider Gs if V3 is
not reported in Dexp) we cannot estimate P (V|S=1) using
Alg. 3. We expect that our method will then fail to identify a
high-scoring adjustment set (other than by chance) and will

2This graph can asymptotically be learnt with a Bayesian
marginal likelihood score (Bouckaert 1995; Heckerman, Geiger,
and Chickering 1995).
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Algorithm 3: SelectionBN
input : Dexp, BN 〈B, θB〉 over {V, X, Y }
output: Selection BN 〈BS , θBS

〉
1 〈BS , θ̂BS

〉 ← 〈B, θB〉;
2 C ← ∅; // initialize list of constraints
3 foreach Vi ∈ Vexp do
4 Add Vi → Si → S to BS ;
5 Add the marginal-preserving constraints to C:

∑
Vexp\Vi

P (Vexp)
∏

j θSj=1|Vj

P (S=1) = P ?(Vi);

6 Find θ̂Si|Vi
that satisfy C;

7 θ̂S=1|∪i(Si=1) = 1, θS=1|∪iSi
= 0 otherwise;

8 θBS
← {θ̂BS

, θ̂Si|Vi
, θ̂S|∪iSi

}

return H@. In our experiments, under violations of this as-
sumption, the behavior of the algorithm is consistent with
this expectation.

Related Work
Identifying causal effects is an important problem for which
a rich literature exists. One line of work tries to select an ad-
justment set from observational data. VanderWeele and Sh-
pitser (2011, henceforth VWS) propose to control on a set of
covariates that satisfy the “disjunctive set criterion”, i.e., ad-
justing for causes of both the treatment X and the outcome
Y . The method is guaranteed to adjust for a valid adjustment
set, if one exists. However, it requires that we know which
variables cause X and Y , while we make no such assump-
tion. Henckel, Perković, and Maathuis (2019, henceforth
HPM) provide methods for selecting an optimal adjustment
set for linear Gaussian data with no hidden confounders,
when we know all valid adjustment sets. They also pro-
vide a pruning method that takes as input a valid adjustment
set, and returns a smaller valid adjustment set with lower
asymptotic variance, if one exists3. Rotnitzky and Smucler
(2020) show that the results hold for broader types of dis-
tributions. Smucler, Sapienza, and Rotnitzky (2020) extend
some of these results to DAGs with latent variables (though
they show that a globally optimal adjustment set may not
exist). These methods require that the ground truth graph is
known, or that the effect is uniquely identifiable from obser-
vational data through covariate adjustment. Thus, in contrast
to our FAS algorithm, this line of works assumes there is no
uncertainty on whether a set Z is an adjustment set. Another
line of work focuses on identifiability of causal effects based
on ME classes of SMCMs: Perkovic et al. (2017) present al-
gorithms for identifying adjustment sets in a PAG [G], when
PX(Y ) is uniquely identified through adjustment in all the
graphs of the corresponding ME class. The method other-
wise returns that [G] is not “amenable” relative to the desired
effect. Malinsky and Spirtes (2017, algorithm LV-IDA) com-
pute bounds on causal effects for linear Gaussian models by
estimating all the IDs identifiable through adjustment by at

3A similar, but less general, pruning criterion is presented in
VanderWeele and Shpitser (2011).

least one graph in the ME class of graphs. These sets will
include N/A if the effect is not identifiable in at least one
graph in the ME class. Jaber, Zhang, and Bareinboim (2019)
and Hyttinen, Eberhardt, and Järvisalo (2015, henceforth
HEJ) present complete algorithms for identifying causal ef-
fects in a PAG [G] using the do-calculus. These methods
can also identify some effects not identifiable through ad-
justment (e.g., the front-door criterion). If an effect is not
uniquely identifiable in [G], HEJ can output a list of all
possible causal effects (including N/A if the effect is non-
identifiable in some G ∈ [G]). All these approaches are com-
plete for their respective goals for PAGs derived from obser-
vational data. In our case, where the causal effect PX(Y ) is
also available and assumed to be non-zero, this restricts the
ME class [G] to graphs that satisfy all the conditional (in)
dependence constraints in Dobs and Dexp (there is one con-
straint in Dexp: the pairwise dependence of X and Y ). We
do not know if the methods are complete in this setting.

The main difference between FAS and these methods
is that they will output a single estimate for PX(Y ) only
if all the graphs that are consistent with the constraints
in Dobs and Dexp imply the same estimate. For exam-
ple, graphs in Fig. 1 are consistent with the CIs (m-
connections/separations) in Dexp and Dobs, but imply dif-
ferent estimates for PD(AE) from Dobs. These methods
would return N/A, with the exception of HEJ and LV-
IDA that would return all possible quantities: PD(AE) ∈
{P (AE|D),

∑
c P (AE|D, c)P (c), N/A}. In contrast, our

method generates a higher score for the estimate that is
closer to the sample estimate P̂D(AE), and uses this score
to select the most likely adjustment set out of the three.

Some methods also combine experimental and observa-
tional data sets in different settings than ours. For continuous
data and linear relationships,Dobs and limitedDexp data can
be combined to learn linear cyclic models (Eberhardt et al.
2010). Kallus, Puli, and Shalit (2018) propose a method im-
proving conditional interventional estimates, but the method
requires some overlap of covariates between Dobs and Dexp

data, a binary treatment and continuous covariates and out-
come. Rosenman, Baiocchi, and Owen (2018) propose com-
bining RCT and observational data to improve causal ef-
fect estimates, based on some similar assumptions to ours.
However, the method requires the complete RCT data (not
just the published effect and marginals), and assumes no
hidden confounders. Wang et al. (2020) combine observa-
tional and limited experimental data, but focus on identifia-
bility of causal effects and assume no hidden confounders.
There is also a lot of work on combining observational and
experimental data on the basis of independence constraints
(e.g., Triantafillou and Tsamardinos 2015; Mooij, Maglia-
cane, and Claassen 2019). However, these methods require
larger experimental data sets to make meaningful inferences.

For the task of generalizing causal effects across differ-
ent populations with selection bias, Bareinboim and Pearl
(2013) and Correa, Tian, and Bareinboim (2018) present
general identifiablity results when the true graph is known.
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(a) no selection (b) observed selection (c) latent selection

Figure 3: Boxplots for the distribution of |∆θ| over 50 iterations in random SMCMs (top row) and when all variables are
pre-treatment (bottom row). FAS is shown in dark blue. The red dotted line corresponds to the FAS median.

Experiments
Simulations setup. We examined the performance of our
method in three different settings: (a) no selection:Dobs and
Dexp are sampled from the same population, (b) observed
selection: Dexp is sampled from a selected population, and
the marginal distribution P (V |S = 1) of each selected vari-
ables is included in Dexp, and (c) latent selection: Dexp is
sampled from a selected population, but the selected vari-
ables are not reported in Dexp. We simulated Dobs with
10,000 samples from DAGs with mean in-degree 2. Each
DAG includes a pair X,Y where X causes Y , and 10 addi-
tional covariates: 6 observed and 4 latent. We used two types
of DAGs: (i) random DAGs and (ii) DAGs where all the
additional covariates are pre-treatment. Variables were dis-
crete with 2-3 categories each and random parameter values
P (X|Pa(X)). A random subset of the observed variables
were included in the experimental data (their marginal dis-
tributions are reported in the experimental data). Selection
bias was imposed by adding binary selection nodes Si and
random parameters P (Si=1|Vi). For LearnBN, we used
FGES, an optimized version of GES (Chickering 2002) with
the default parameters. We used niters=100. Evaluation
measures. We examined the performance of our algorithms
in terms of their ability to improve causal effect estimation
for the observational population: We estimated the absolute
distance of the predicted vs the true interventional distribu-
tion for the observational population, |∆θ|=|θ̂Yx

− θYx
| av-

eraged over all parameters θYx
. Comparison to other ap-

proaches. We are unaware of any other method designed
for these specific settings. We compare against the follow-

ing: (1) VWS, light blue in Fig 3: The “disjunctive criterion”
in VWS. The method requires that we know which variables
causeX and Y . We used the ground truth DAG to obtain that
information, and only kept observed variables. (2) HPM, We
used the pruning method in HPM to prune the VWS esti-
mate, as this is shown to remove ”overadjustment” variables
and improve estimates. (3)[BD], minimum and maximum of
this range in purple in Fig. 3: This range corresponds to the
set of all possible causal effects obtainable through with co-
variate adjustment, based on the ground truth ME class [G]
of SMCMs consistent with both Dobs and Dexp (obtained
using a CI oracle). If in some G in [G], H@ holds, then [BD]
includes N/A. Asymptotically, this set is properly included
in the set returned by HEJ, since we only include estimates
identifiable through the backdoor criterion. The set is also
asymptotically what LV-IDA would return. In our simula-
tions, N/A was included in the output (i.e., the “no adjust-
ment set hypothesis” could not be rejected based on the ME
class) in 92 out of 100 total simulation graphs. We report the
minimum and maximum of this range, regardless of whether
N/A is included in the output. BDmin corresponds to the
best possible estimate we could get for PX(Y ) by adjust-
ing for observed covariates in these simulations. (4) KL, in
yellow in Fig 3. Instead of computing a Bayesian score for
P (Hz |Dexp, Dobs) we identify the set Z that minimizes the
Kullback–Leibler divergence of the corresponding predicted
ID and the empirical ID. However, notice that KL cannot se-
lect H@. (5) Dexp, in orange in Fig 3: Empirical estimate
P̂X(Y ) in Dexp. Results: Fig 3 shows results for random
SMCMs (top row), and for SMCMs where the covariates
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are known to be pre-treatment. FAS improves the estimation
of PX(Y )(|∆θ| closer to zero, lower variance) compared to
Dexp, particularly in cases in where the experimental data
come from a selected population. Despite the fact that VWS
and HPM are constructed based on ground truth knowledge
that is typically not available, the methods perform worse
than FAS, since they do not utilize the experimental data,
and always select an adjustment set, even if none exists in
the ground truth structure. In addition, the pruning process
in HPM does not seem to improve VWS estimates, possibly
because the number of covariates is already low. FAS also
outperforms BDmin. This is because FAS can identify cases
where the PX(Y ) is not identifiable from Dobs (e.g., X and
Y share a latent confounder). It therefore avoids heavily bi-
ased estimates. In the latent selection setting, FAS returned
H@ in 22 out of 50 cases in random SMCMs (and in 15 of 50
in SMCMs with pretreatment only covariates). Thus, when
the effect of latent selection is significant, FAS often acts
conservatively and does not return an adjustment set. Aver-
age running time for one iteration of FAS was 7.95 ± 12.8
seconds. In the supplementary, we show results for different
Dexp andDobs sample sizes, different number of covariates,
and running times. Real data: We applied FAS to analyze
the causal relationship between statin use and its known ad-
verse effect, myalgia. We used EHR data for 100,000 pa-
tients from the University of Pittsburgh Medical Center. We
used RCT data from the STOMP trial (Parker et al. 2013),
which estimated the effect of statin use on myalgia. The
study included 203 treatment and 214 control patients, strati-
fied into age groups. We also included variables representing
age, sex, diabetes, thyroid disorders, and hyperlipidemia.
Diabetes and thyroid disorders were exclusion criteria in the
study4. FAS returned Z? = {Age} as the most likely adjust-
ment set. If we remove age from the covariates, the method
returns H@. It is clear that age is a confounder in this ex-
ample. However, FAS identified it without any prior clinical
knowledge of the causal relationships among the modeled
variables.

Discussion

We present a method for learning adjustment sets and im-
proving the estimation of causal effects by combining large
observational and limited experimental data (e.g., combin-
ing EHR and RCT data). Our results show that the method
can make additional inferences relative to existing meth-
ods. Directions for future work include improving scalabil-
ity, mixed types of data, and generalizations to broader types
of selection settings.
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