The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Empowering Adaptive Early-Exit Inference with Latency Awareness

Xinrui Tan,' Hongjia Li,'* Liming Wang,' Xueqing Huang,” Zhen Xu!
'Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

ZNew York Institute of Technology, New York, USA
{tanxinrui, lihongjia, wangliming, xuzhen} @iie.ac.cn, xhuang25@nyit.edu

Abstract

With the capability of trading accuracy for latency on-the-fly,
the technique of adaptive early-exit inference has emerged as
a promising line of research to accelerate the deep learning in-
ference. However, studies in this line of research commonly
use a group of thresholds to control the accuracy-latency
trade-off, where a thorough and general methodology on how
to determine these thresholds has not been conducted yet, es-
pecially with regard to the common requirements of average
inference latency. To address this issue and enable latency-
aware adaptive early-exit inference, in the present paper, we
approximately formulate the threshold determination prob-
lem of finding the accuracy-maximum threshold setting that
meets a given average latency requirement, and then propose
a threshold determination method to tackle our formulated
non-convex problem. Theoretically, we prove that, for certain
parameter settings, our method finds an approximate station-
ary point of the formulated problem. Empirically, on top of
various models across multiple datasets (CIFAR-10, CIFAR-
100, ImageNet and two time-series datasets), we show that
our method can well handle the average latency requirements,
and consistently finds good threshold settings in negligible
time.

Introduction

Over the past decade, deep neural networks have reached
or even surpassed human accuracy in many machine learn-
ing applications. However, this performance superiority is
strongly connected to the over-parameterized deep learn-
ing models. With a highly complex model, it is gener-
ally too computationally intensive to perform the subse-
quent inference task on smartphones or other resource-
constrained Internet-of-Things (IoT) devices. To address the
rising challenges of enabling efficient inference with deep
neural networks, various techniques have emerged to guar-
antee the Quality-of-Service (QoS) of latency-sensitive ap-
plications, such as quantization (Courbariaux, Bengio, and
David 2015), pruning (Han et al. 2015), knowledge distilla-
tion (Hinton, Vinyals, and Dean 2015), and lightweight net-
work architectures (Howard et al. 2017; Cai, Zhu, and Han
2018a).

*Hongjia Li is the corresponding author.
Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9825

Another relatively new, yet promising approach to over-
come the resource limitation is the adaptive early-exit infer-
ence technique (Panda, Sengupta, and Roy 2016; Teerapit-
tayanon, McDanel, and Kung 2016; Stamoulis et al. 2018;
Wu et al. 2020; Huang, Lai, and Chen 2017; Goetschalckx
et al. 2018; Cheng et al. 2019; Yokoo, lizuka, and Fukui
2019; Huang et al. 2017; Zhang et al. 2019; Aketi, Panda,
and Roy 2020; Leroux et al. 2015), which is capable of ad-
justing the computational effort based on each input sam-
ple’s inference difficulty (Venkataramani et al. 2015). This
technique builds upon the idea of distributing computing re-
sources unevenly across easy and hard input samples. In par-
ticular, for easy input samples whose patterns can be recog-
nized using the shallow portions of the deep learning model,
an early exit is allowed to avoid the subsequent unneces-
sary computational expense. While for hard input samples
that constitute only a small fraction of real-world datasets
(Panda, Sengupta, and Roy 2016), the inference task will
execute the computation of the full deep learning model.
As a result, the adaptive early-exit inference technique can
considerably reduce the inference latency for the easy input
samples without sacrificing the overall inference accuracy.

To facilitate the implementation of the adaptive early-
exit inference technique, existing studies (Panda, Sen-
gupta, and Roy 2016; Teerapittayanon, McDanel, and Kung
2016; Stamoulis et al. 2018; Teerapittayanon, McDanel, and
Kung 2017; Wu et al. 2020; Huang, Lai, and Chen 2017;
Goetschalckx et al. 2018; Cheng et al. 2019; Yokoo, lizuka,
and Fukui 2019; Huang et al. 2017; Zhang et al. 2019;
Aketi, Panda, and Roy 2020; Leroux et al. 2015; Yuan
et al. 2019) have concentrated heavily on designing archi-
tectures of early-exit models with early exit points; most of
these studies have employed a threshold-based mechanism
to control the adaptive inference processes. Broadly speak-
ing, this mechanism requires a predetermined threshold for
each early-exit point, and these thresholds are in turn used
in an inference process to determine after which exit point
the inference process should stop. Despite the simplicity of
the threshold-based mechanism, different threshold settings
explicitly lead to different trade-offs between overall infer-
ence accuracy and latency. Since the average inference la-
tency is a common requirement for the long-term running
models, an on-demand method for appropriately determin-
ing the thresholds is needed. However, throughout the lit-



erature, the thresholds are regarded as hardly-learnable hy-
perparameters, and the ways they impact inference accuracy
and latency have been typically treated as black boxes —
in a word, there is a lack of mathematical models for deter-
mining the thresholds, so that studies have been dedicated to
heuristics (Lo et al. 2017; Park et al. 2015; Berestizshevsky
and Even 2019; Sun and Pang 2018; Huang et al. 2017) or
metaheuristics (Zhang et al. 2019; Jayakodi et al. 2018) for
threshold determination.

In general, the methods proposed by these studies suffer
from three major limitations. First, almost all of them cannot
provide any performance guarantee and thus not applicable
to applications with latency or accuracy requirements. Sec-
ond, they may only work for the specific early exit models
that they designed for, and so far, no general-purpose method
has been developed. Third, they cannot work well for the re-
current neural networks, which can have a large number of
exit points.

To address these limitations, in this paper, we inves-
tigate the latency-aware threshold optimization problem,
where the goal is to maximize the overall inference ac-
curacy while meeting the average latency requirement; we
show that, given an average latency requirement and a well-
trained early-exit model, it is feasible for the thresholds to
be “trained”, i.e., optimized in a data-driven manner and via
first-order methods. More specifically, we consider our tar-
get problem in a general form to cover a wide range of early-
exit models, and approximately formulate it as a constrained
non-convex program. Despite the intractability inherent in
the non-convex constraint, we develop a threshold determi-
nation method based on the inexact proximal-point penalty
(iPPP) method of Lin et al. (Lin, Ma, and Xu 2019). We
further prove that with appropriate parameter settings, our
method can output a near-stationary point of the formulated
program within a polynomial time.

We empirically evaluate our threshold determination
method not only using three benchmark early-exit models on
the two CIFAR (Krizhevsky 2009) and ILSVRC-2012 Ima-
geNet (Deng et al. 2009) datasets but also using two recur-
rent network models on two time-series datasets. For each
model, an extensive evaluation over a wide range of average
latency requirements is conducted, and it is demonstrated
that: (i) our method can effectively handle the average la-
tency requirements; (ii) our method generally outperforms
the baseline heuristic of Huang et al. (Huang et al. 2017)
while performing the same average latency guarantee; (iii)
our method induces a computational overhead that is negli-
gible compared with the model training time.

Related Work

Adaptive Early-Exit Inference. Prior studies investigat-
ing the adaptive early-exit inference technique have mainly
focused on the architecture design (Panda, Sengupta, and
Roy 2016; Teerapittayanon, McDanel, and Kung 2016;
Stamoulis et al. 2018; Teerapittayanon, McDanel, and
Kung 2017; Wu et al. 2020; Huang, Lai, and Chen 2017;
Goetschalckx et al. 2018; Cheng et al. 2019; Yokoo, lizuka,
and Fukui 2019; Huang et al. 2017; Zhang et al. 2019; Aketi,
Panda, and Roy 2020; Leroux et al. 2015; Yuan et al. 2019)

9826

and training (Phuong and Lampert 2019; Li et al. 2019b; Hu
et al. 2020) of the early-exit models. In particular, for stud-
ies of architecture design, most pioneers (Leroux et al. 2015;
Panda, Sengupta, and Roy 2016; Teerapittayanon, McDanel,
and Kung 2016) design their architectures by moderately
modifying the backbone architectures that have a single
exit point. For instance, BranchyNet (Teerapittayanon, Mc-
Danel, and Kung 2016) introduces additional branch clas-
sifiers at certain intermediate layers of a backbone archi-
tecture, thereby obtaining an architecture with multiple exit
points. More recently, some more advanced designs have
been proposed (Huang et al. 2017; Zhang et al. 2019; Yokoo,
lizuka, and Fukui 2019), where the computation reuse is
maximized and during training, the interference between
exit-points is reduced. For examples, Huang et al. (Huang
et al. 2017) designed a two-dimensional multi-scale network
architecture that improves the accuracy of early-exit classi-
fiers by maintaining coarse level features throughout the net-
works; Zhang et al. (Zhang et al. 2019) proposed a scalable
neural network framework that utilizes attention modules
and knowledge distillation to learn good early-exit classi-
fiers. Also, recent studies have leveraged neural architecture
search (NAS) to explore the best-performing early-exit ar-
chitecture (Zhang, Ren, and Urtasun 2018; Ghiasi, Lin, and
Le 2019; Yuan et al. 2019). We remark that the intention
of this paper is not to present yet another architecture, but to
provide a general method that can help the early-exit models
to determine the thresholds in a latency-aware fashion.

Threshold Optimization. In adaptive early-exit infer-
ence studies employing the threshold-based mechanism, the
thresholds play a key role in trading off the inference ac-
curacy and latency. However, most existing heuristics and
metaheuristics perform the threshold optimization by simply
finding a threshold setting that may yield a good accuracy-
latency trade-off (Lo et al. 2017; Park et al. 2015; Berestiz-
shevsky and Even 2019; Sun and Pang 2018; Zhang et al.
2019; Jayakodi et al. 2018; Baccarelli et al. 2020). On one
hand, these heuristics either are restricted to simple models
with only one early-exit point (Park et al. 2015; Lo et al.
2017), or ignore the impact of shallow exit points on deep
exit points (Berestizshevsky and Even 2019; Sun and Pang
2018). On the other hand, Zhang et al. (Zhang et al. 2019)
and Jayakodi et al. (Jayakodi et al. 2018) optimized the
thresholds, respectively, based on genetic and Bayesian op-
timization algorithms, but their derivative-free optimization-
based methods, like the aforementioned heuristics, are still
unable to handle inference latency requirements. To the best
of our knowledge, the only exception that deals with in-
ference latency requirements is the heuristic introduced by
Huang et al. (Huang et al. 2017) for their multi-scale dense
networks (MSDNet). This heuristic, which has been used in
other studies (Wu et al. 2020), assumes that the exit prob-
abilities are the same for all exit points. In contrast, our
method does not need such an unreasonable assumption.
Finally, for recurrent neural networks, the threshold-based
mechanism is known as a very intuitive approach to per-
form early-exit inference (Hartvigsen et al. 2019). However,
at present, there is neither a threshold determination method
with latency awareness, nor any other early-exit inference



mechanism that can explicitly deal with latency require-
ments. In the extreme case, a recurrent neural network can
have an exit point at each time-step, which results in a large
number of exit points, making the threshold determination
more difficult. For simplicity, a straightforward method in
the literature (Dennis et al. 2018) is to let all exit points share
a single threshold; we call this method the single-threshold
method for later reference.

Problem Formulation

Throughout the whole paper, we consider the case of multi-
class classification with data space X and finite label space
Y, where the cardinality of ) is C. Furthermore, we con-
sider that the inference is performed with a batch size of 1,
which is known to be customary for real-time inference (Han
et al. 2016). Given an early-exit model with N exit points,
it is conventional to index the exit points with successive in-
tegers starting at 1, such that a smaller index corresponds to
an exit point located closer to the model’s entry point; it is
in this sense that the /N-th exit point is referred to as the fi-
nal exit point. Once the early-exit model is trained, for each
n € {1,2,...,N}, we let f,: X — P denote the output
function of the n-th exit point, which computes categorical
distribution over ). Note that here, P is the probability sim-
plex over ), and for any p € P and y € ), we further
let p, represent the probability of y in the distribution p.
To perform adaptive inference on the early-exit model, after
receiving a sample x € &, the inference process starts eval-
uating f1(x), fa(x),. .., fn—1(x) in turn, reusing computa-
tion where possible. This continues until the confidence of
an exit point’s output is above the threshold corresponding
to the exit point, where the label with the maximum prob-
ability in the output is returned. If the inference process is
not terminated even after fy_; (x) is evaluated, the full com-
putation of the model will be accomplished, and the label
with the maximum probability in fy(x) will be returned.
Formally, the mapping from the outputs of the exit points
to the corresponding confidences is denoted by the function
H:P — S, where S C R is a compact set bounded by the
confidence limits. For concreteness, when using the (nega-
tive) entropy as the confidence measure, [ can be explicitly
defined as

VpeP, 1)
and we have S = [—logC,0]. Alternatively, other confi-
dence measures can also be used, including the more widely
employed raw softmax response (Cordella et al. 1995).
Moreover, we introduce t € SN-! whose n-th element
(n € {1,2,..., N —1}) represents the threshold specified
for the n-th exit point. To help understand how the adaptive
early-exit inference is performed, an illustrative example is
included in Appendix A.

Now suppose that there is an underlying data distribution
D over pairs of samples x € X and corresponding labels
y € Y. Referring to the aforementioned adaptive inference
processes, we can derive the following necessary and suffi-
cient conditions for an arbitrary input sample x to exit at the
n-th exit point, n € {1,2,... , N—1}:

H(p) =3, cypylogpy,

9827

e all the confidences of previous n— 1 exit points’ outputs
are respectively no more than their associated thresholds,
Le,Vie{1,2,...,n—1}, H(f;(x)) < t;;

e the confidence of f,,(x) is more than the threshold t,,, i.e.,
H(fn(x)) > to.

Accordingly, for each n € {1,2,..., N —1}, we have the

following function g,, that approximately indicates whether

the inference result of a given sample x € X is provided by

the n-th exit point or not:

gﬂx@=d@Uﬂ@%¢ﬂﬁdh—Hm&m7Q)

where o: R — (0, 1) is the Verhulst logistic function used
to approximate the Heaviside step function to avoid the zero-
derivative problem. Formally, o is defined by

O
o(x) =

1+ exp(—kx)
where £ controls the steepness of the curve, and it is known
that o tends to the Heaviside step function as £ — oc. Thus,
it follows that, for a given t and any n € {1,2,..., N—1},
if x exits at the n-th exit point, g, (x,t) — 1 as k — oo;
otherwise, g,,(x,t) — 0 as k — oo. Likewise, for the final
exit point, we have the following function

gn(x,t) = [Ny 0 (b — H(fa(x))). )

where it can be seen that gy (x,t) — 1 as k — oo iff x
exits at the final exit point, i.e., H(f,(x)) < t,, forall n €
{1,2,...,N—1}.

Due to the fact that the correctness of a sample x’s infer-
ence only depends on the output of the exit point at which x
exits, if the corresponding label y is known, we can use the
following function to measure the inference correctness:

a(x,y,t) = XN ga(x,t) [1 = 1(fu(x),0)], (5

where [: P x ) — {0,1} is the 0-1 loss function, i.e., for
any categorical distribution p over ) and any label y € Y, if
y has the maximum probability in p, {(p, y) = 0; otherwise,
l(p,y) = 1. With a sufficiently large k, it is obvious that
a(x,y,t) tends to 1 for a correct inference result of x; while
for an incorrect result, a(x, y, t) is close to 0. Similarly, we
can also approximately predict the inference latency, with
respect to x and t, by

b(x,t) = 2N dugn(x,t), (6)

where foreachn € {1,2,..., N}, d,, denotes the measured
or predicted mean latency of the adaptive inference termi-
nated at the n-th exit point on the target hardware. Alterna-
tively, dy,da, . ..,dyN can also be approximately measured
using hardware-agnostic metrics, such as floating-point op-
eration (FLOP) counts. Note that there are various methods
in the literature to perform latency prediction, e.g., the ana-
Iytical performance model, named PALEO (Qi, Sparks, and
Talwalkar 2017), and the regression-based methods (Li et al.
2019a; Cai, Zhu, and Han 2018b).

Recall that our goal is to optimize the inference accuracy,
and meanwhile ensure the requirement of average inference

, VzeR, 3)



latency is met. To this end, the threshold optimization prob-
lem can be approximately formulated as

Pis min Epyen [-alxy.t). %
S.t. ]E(x,y)ND [b(X,t)] <T, (8)

where I' is the predefined average latency requirement. In
problem P, the objective function (7) is to maximize the
classification accuracy, and (8) constrains the expected in-
ference latency to be at most I'. Note that, instead of the av-
erage inference latency, the tail inference latency may be of
practical concern; in Appendix C, we discuss how the prob-
lem can be reformulated to handle a tail latency requirement.
In practice, the distribution D is unknown, and instead we
need to rely on a finite number of empirical training samples

(x1,y1)s (X2,92), - .., (Xar, yar ). Therefore, the stochastic
P, is further approximated by
) - 1M
Py: o min o(t) = g 0 10(%m, Ym, t), ©)
st e(t) = 25 b(xpm,t) —T <0. (10)

Notice that neither the objective function o(t) nor the con-
straint ¢(t) is convex, implying that finding the global op-
timum of P, is intractable (Sahni 1974). In fact, the non-
convex constraint in P, makes it even more difficult, while
recent work on constrained non-convex optimization is still
primarily for the convex functional constrained case (Kong,
Melo, and Monteiro 2019; Hong 2016; Grapiglia and Yuan
2019). Hence, we will content ourselves with efficiently
finding a good approximate stationary point of Ps.

Threshold Determination Method

To deal with P5, we introduce the following two constants:

A = max{1, ‘/?}, (11)
B = max{T,dy — T, VN1 (12)
so that we have, Vt € SV,
A > max{[o(t)], [Vo(t)[}, (13)
B > max{|c(t)|, |[Ve(t)]}- (14)

Moreover, we shall use the following lemma, which is
proved in Appendix C. Note that in Appendix B, we give the
preliminary definitions necessary for describing our method.

Lemma 1. Let p dyk?*(N — 1)N(N+4\/§Z;)+8\/§_6.
Then, o is a d’j\] -weakly convex and d’jv -smooth function.

Also, c is a p-weakly convex and p-smooth function.

We next apply the inexact proximal-point penalty (iPPP)
method proposed by Lin et al. (Lin, Ma, and Xu 2019) to
P>. At a high level, the iPPP is a first-order method con-
sisting of inner-outer iterations, where in each outer itera-
tion a strongly convex subproblem is quickly solved up to a
required accuracy with the Nesterov’s accelerated proximal
gradient (APG) method (Nesterov 2018). More specifically,
for our problem, the iPPP method iteratively performs the
update:

t¢+1) (15)

A argmin gy @4 (t),

9828

Algorithm 1 iPPP method for threshold determination

Input: initial point t(9), outer iteration number 7", proximal
parameter ~y, penalty parameter 3, inner iteration num-
ber J, strongly convexity parameter p and smoothness
parameter 7)

1: fort=0,1,...,7T —1do

2:  Take t( to set ¢; by (16)

3 v 50, w® L §0

4. forj=0,1,...,J —1do ‘

5 vt o p(wl) — %qut(w(ﬂ)))

6 W(JJ"I) < V(j+1) + %(V(J“"l) — V(J))
7:  end for

g D) v

9: end for

10: R < argmin g, 7 Hf(t‘*‘l) —t® H
Output: t(%)

where, by respectively denoting with 5 > 0 and v > 0 the
penalty and proximal parameters, ¢, is given by

i (t) = o(t) + Z||t — € ||* + £ (max{0,c(t)})*. (16)

From the weakly convexity of o and ¢ proved by Lemma 1, it
follows that g(max{(), c(t)})? is BBp-weakly convex and
BB(B + p)-smooth. Therefore, each ¢ is -smooth with

n=T-+y+BB(B+p). a7)
N
Indeed, we can choose a large enough ~ such that each ¢,

becomes p-strongly convex, i.e., satisfying

u=7—di—ﬁBp>0-
N

Then, the Nesterov’s APG method can converge to the
global optimum of the minimization problem in (15) at a
linear rate. We formally describe the iPPP method for P in
Algorithm 1, where P: RNV — S™~! denotes the orthogo-
nal projection onto S™~1. Suppose that the target functional
accuracy € > 0, we also present the following theorem to
show that Algorithm 1 with proper parameters results in a
weak e-stationary point defined by Lin ef al. (Lin, Ma, and
Xu 2019), where the complementary slackness conditions
are not required to hold approximately when inequality con-
straints are violated. For the convenience of readers, we for-
mally define the weak e-stationary points of P in Appendix
B.

Theorem 1. Given € > 0, in Algorithm 1, let f = 323,
~v = max{1, j—fv’ +28Bp}, T = [129862’4] u be set by (18),

1 be set by (17), and J be chosen such that

(18)

(1- \/g)J[ZA + BB+ (N-1)D?] <4, (19)

2
Then, if the initial point t\©) is feasible, Algorithm I returns
a weak e-stationary point of Py within O(e=*) proximal

gradient steps.

where § = min{lg%, 24}, D = max, zes|lr — |-



80.0 1.3 Proposed (validation)
Baseline (validation)
750 % 1.4 Single (validation)
: Proposed (testing)
70.0 2 1.6 Baseline (testing)
[ Single (testin
$£65.0 &1s g 9
=~ o 4
= 3
2 cl
© 60.0 L
5 s 2.1
3 <1
< 55.0 Proposed (validation) % 2.5
Baseline (validation) g
50.0 Single (validation) 3.0
Proposed (testing) E
45.0 Baseline (testing) 3.9
Single (testing)
40.0 5.5
5.0 3.6 2.9 24 2.0 1.7 1.5 1.4 1.2 5.0 3.6 2.9 2.4 2.0 1.7 1.5 1.4 1.2
Average latency requirement (in AR) Average latency requirement (in AR)
(a) Inference accuracy (b) Inference latency
Figure 1: Experimental results on LSTM over DSA-19.
80.0 Proposed (validation)
1.2 Baseline (validation)
70.0 % 1.3 Single (validation)
: 14 Proposed (testing)
i ' Baseline (testing)
_ 600 Proposed (validation) £1.5 Single (testing)
8 Baseline (validation) < 17
I 50.0 Single (validation) § ’
@ Y. . &
5 Proposed (testing) - 1.8
8 Baseline (testing) :é, 2.0
< 40.0 Single (testing) 87
% 2.2
30.0 325
z
2.9
20.0
3.3
2.5 2.2 2.0 1.8 1.7 1.5 1.4 1.3 1.2 2.5 2.2 2.0 1.8 1.7 1.5 1.4 1.3 1.2

Average latency requirement (in AR)

(a) Inference accuracy

Average latency requirement (in AR)

(b) Inference latency

Figure 2: Experimental results on LSTM over Google-30.

Proof. We have shown in Lemma 1 that o and ¢ are both
smooth and weakly convex. This, together with the com-
pactness of SV, implies that P satisfies all the assump-
tions made in Theorem 4 of Lin efr al. (Lin, Ma, and Xu
2019). Therefore, under the same setting as Theorem 4 of
Lin et al., Algorithm 1 possesses the theoretical property of
the iPPP method with weakly-convex constraints, apparently
yielding the desired results.

To enhance the practical efficiency and robustness of Al-
gorithm 1, we further propose a warm-start strategy for pro-
viding the initial guess t(?). Specifically, we lett € SV be
the point corresponding to the threshold setting where all the
thresholds are set to the lower confidence limit; for instance,
when using the softmax response as the confidence measure,
we have t = 0. Then, we set t(9) by

£ = ¢ 4 s*d, (20)

where d € Rgal is a pre-specified positive vector, and s* is

9829

the root of the following nonlinear equation with respect to
seR:

c(t 4 sd) = 0. (21)
The motivation of this warm-start strategy is to perform a
descent step from t in the descent direction d, where the step
size is chosen via exact line search. In Appendix C, we give
a more detailed explanation of this strategy. In practice, we

find that by setting d to be the all-ones vector, this strategy
often produce a good starting point for Algorithm 1.

Experiments

We evaluate the effectiveness and efficiency of our thresh-
old determination method using three representative object
recognition early-exit models, i.e., a B-AlexNet (Teerapit-
tayanon, McDanel, and Kung 2016) on CIFAR-10, an S-
ResNet-18 (Zhang et al. 2019) on CIFAR-100, and a MS-
DNet (Huang et al. 2017) on ImageNet. For comparison, the
heuristic of Huang et al. (Huang et al. 2017) is adopted as



74.0
17
73.5 )
@
—~
73.0 = 1.8
2
72.5 ®
9 % 1.9
T 72.0 Q
§ $2.0
£715 S
810 g2.1
71. Q
< &22
70.5 o
s 2.3 s
70.0 Proposed (validation) 8 Proposed (validation)
’ Baseline (validation) 15) 2.4 Baseline (validation)
69.5 Proposed (testing) 2.5 Proposed (testing)
69.0 Baseline (testing) 2.6 Baseline (testing)
2.6 25 24 23 22 21 2.0 1.9 1.8 1.7 1.6 2625242322 21 20 19 1.8 1.7 1.6
Average latency requirement (in AR) Average latency requirement (in AR)
(a) Inference accuracy (b) Inference latency
Figure 3: Experimental results on S-ResNet-18 over CIFAR-100.
74
73 1.0
72
71 0.9
70

©

Accuracy (%)
(<) B ) BN}
N

66
65

Proposed (validation)
64 Baseline (validation)
63 Proposed (testing)
62 Baseline (testing)

o
©

e
N

o
o

Proposed (validation)
Baseline (validation)
Proposed (testing)
Baseline (testing)

Average latency (giga-FLOP counts)

e
v

0.5 0.6 0.7 0.8 0.9

Average latency requirement (in GFLOP counts)

(a) Inference accuracy

1.0

0.5 0.6 0.7 0.8 0.9 1.0
Average latency requirement (in GFLOP counts)

(b) Inference latency

Figure 4: Experimental results on MSDNet over ImageNet.

the baseline method. As revealed by the literature review,
this heuristic is so far the only method capable of handling
average latency requirements. We also evaluate our method
using two Long Short-Term Memory (LSTM) models, re-
spectively on two time-series datasets, namely Google-30
(Warden 2018) and DSA-19 (Altun, Barshan, and Tuncel
2010), where the single-threshold method is served as an-
other baseline for comparison. For details on the datasets,
model architectures and training, we refer the reader to Ap-
pendix D. Note that the exit point numbers of B-AlexNet,
S-ResNet-18 MSDNet, the LSTM model over DSA-19 and
the LSTM model over Google-30 are respectively 3, 5, 5, 13
and 17. Data and code to reproduce all results are available
at https://github.com/XinruiTan/AAAI21.

In our experiments on the three object recognition mod-
els, we set k = 30,7 = 100, v = 10, J = 10, p = 1,
1 = 100 and use all-ones vector as the search direction d
for our warm-start strategy. Since the latency metrics of the
three models are different, we choose § = 2 x 107 for B-

9830

AlexNet, 3 = 500 for S-ResNet-18 and 8 = 10~ for
MSDNet. For the experiments on the two LSTM models,
we increase k to 100 and keep all other algorithm param-
eters the same as in the experiments on S-ResNet-18. We
remark that, in practical applications, the penalty parameter
3 is the only parameter needing to be tuned, and the tuning
of 8 can be carried out efficiently, so that parameter tuning
is usually not an issue. Specifically, setting the smoothness
parameter 7 is well-known to be a challenge for Nesterov’s
APG method, and is also challenging for the iPPP method.
However, even for our problem P, with a quite large %k, we
empirically find that, with a proper setting of 8 and a not-
too-large v, the inner subproblem is always 100-smooth and
1-strongly convex. Moreover, the value of 5 can be roughly
estimated according to the magnitude of dy — d;.

Effectiveness Evaluation

For each trained model, we use the validation set to deter-
mine the thresholds under different average latency require-



ments, and evaluate our method against the baseline meth-
ods not only on the validation set to examine whether our
method can well tackle our target optimization problem, but
also on the test set to examine whether the threshold settings
produced by our method can generalize well beyond the data
used for threshold determination. The experimental results
on S-ResNet-18, MSDNet and the two LSTM models are re-
spectively plotted in Figures 1, 2, 3 and 4, where the curves
labeled by ‘Baseline’, ‘Single’ and ‘Proposed’ are, respec-
tively, the results of Huang et al.’s baseline heuristic, the
single-threshold method and our method. Due to space lim-
itations, we report the experimental results on B-AlexNet in
Appendix E. Note that following the original papers (Zhang
et al. 2019; Huang et al. 2017), for S-ResNet-18 and MSD-
Net, we measure the inference latency in terms of accelera-
tion rate (AR) and FLOP counts, respectively; while for the
two LSTM models, the inference latency is also measured in
terms of AR.

For the experiments on the two LSTM models, as illus-
trated in Figures 1b and 2b, our method always produces a
threshold setting that satisfies the average latency require-
ment I'. Meanwhile, the proposed method significantly out-
performs the two baseline methods for almost all the I" set-
tings, see Figures 1a and 2a. In particular, for the Google-30
dataset, the accuracy gains of our method over the single-
threshold method on the validation and test sets are, respec-
tively, up to 9.01% and 7.95%; for the DSA-19 dataset, these
gains are, respectively, up to 7.89% and 7.07%. Comparing
with the baseline heuristic of Huang er al., these achieved
accuracy gains are even more dramatic.

For the experiments on S-ResNet-18, we vary the aver-
age latency requirement between ARs of 1.57 and 2.67. In
Figure 3b, it can be seen that all the threshold settings pro-
duced by our method satisfy their corresponding average la-
tency requirements; in Figure 3a, it also can be seen that
our method consistently achieves higher accuracies than the
baseline heuristic on both the validation and test sets. When
handling the same average latency requirement, our method,
compared to the baseline heuristic, improves the validation
and testing accuracies by up to 0.79% and 0.6%, respec-
tively.

For the experiments on MSDNet, we vary the average la-
tency requirement from 0.43 to 1.07 giga-FLOP (GFLOP)
counts. As shown in Figure 4, on the validation set, our
method always produces a threshold setting with no or negli-
gible violation of the average latency requirement, implying
that the approximation error is small; and under the same av-
erage latency requirements, our method consistently outper-
forms the baseline heuristic with a maximum improvement
of 0.63% in accuracy. However, on the test set, it is trivial
to compare the proposed and baseline methods, since both
methods produce some threshold settings that violate the
corresponding average latency requirements. Qualitatively,
our method tends to more aggressively trade-off latency for
accuracy with respect to the validation set, and thereby leads
to higher accuracies and higher violations of the average la-
tency requirement on the test set. We assert that this gen-
eralization issue is because the samples in the test set have
greater inference difficulty than those in the validation set,

9831

which is reflected by the significant gaps between the valida-
tion and testing accuracy curves in Figure 4a. It is shown by
the additional experimental results in Appendix E that if the
samples used for threshold determination have greater infer-
ence difficulty than the samples encountered by the model in
use, our method would not suffer from such a generalization
issue.

From the experimental results, it can be seen that the accu-
racy improvement by our method is more significant on the
LSTM models than that on S-ResNet-18 and MSDNet. This
is because of two reasons: first, the LSTM models have more
exit points, meaning that the impact of threshold setting on
accuracy is much greater; second, the baseline heuristic gen-
erally works quite well when the number of exit points is
small.

Efficiency Evaluation

We implement our method in Python, and measure its ex-
ecution time on an Intel quad-core 2.9 GHz CPU. On av-
erage, our method requires 0.52, 1.06, 3.82, 2.78 and 8.59
seconds of execution time (with standard deviations of 0.07,
0.12, 0.05, 0.54, 0.41 seconds), respectively, for B-AlexNet,
S-ResNet-18, MSDNet, the LSTM model over DSA-19 and
the LSTM model over Google-30. The results demonstrate
good scalability in both the number of exit points and the
size of the validation set. From a technical standpoint, the
execution time of our method is dominated by the gradi-
ent computation, which can be very efficiently carried out
using closed-form expressions. As compared with the base-
line heuristic, the proposed method is more time consuming,
owing to its iterative nature. However, the execution time re-
quired by our method is still negligible as compared with the
model training time.

Conclusion

In this paper, we considered the question: how to perform
the adaptive early-exit inference with an awareness of the in-
ference latency requirements? To address this question, we
presented an approximate formulation of the threshold de-
termination problem for controlling the adaptive early-exit
inference processes, where the objective is to find a thresh-
old setting that satisfies the predefined average latency re-
quirement and maximizes the inference accuracy. Further-
more, We introduced a threshold determination method that
ensures global convergence to a near-stationary point of
the formulated problem, and empirically verified its supe-
rior performance over an existing heuristic. As future work,
we plan to develop methods with fewer parameters to find
threshold settings that have good generalization properties.

Acknowledgments

This work was supported by the National Key Research and
Development Program of China (No. 2019YFB1005200).

Broader Impact

We believe that our study can advance the development of
adaptive early-exit inference technique in two-folds: first,



we have provided a useful on-demand tool for both the aca-
demic and industrial communities to control the accuracy-
latency trade-off of early-exit models; second, we hope that
our problem formulation will inspire further research on the
fine control of the adaptive early-exit inference processes.

References

Aketi, S. A.; Panda, P.; and Roy, K. 2020. Relevant-features
based Auxiliary Cells for Energy Efficient Detection of Nat-
ural Errors. arXiv preprint arXiv:2002.11052 .

Altun, K.; Barshan, B.; and Tungel, O. 2010. Comparative
study on classifying human activities with miniature inertial
and magnetic sensors. Pattern Recognition 43(10): 3605—
3620.

Baccarelli, E.; Scardapane, S.; Scarpiniti, M.; Momenzadeh,
A.; and Uncini, A. 2020. Optimized training and scalable
implementation of Conditional Deep Neural Networks with
early exits for Fog-supported IoT applications. Information
Sciences 521: 107-143.

Berestizshevsky, K.; and Even, G. 2019. Dynamically Sacri-
ficing Accuracy for Reduced Computation: Cascaded Infer-
ence Based on Softmax Confidence. In International Con-
ference on Artificial Neural Networks, 306-320. Springer.

Cai, H.; Zhu, L.; and Han, S. 2018a. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332 .

Cai, H.; Zhu, L.; and Han, S. 2018b. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332 .

Cheng, B.; Xiao, R.; Wang, J.; Huang, T.; and Zhang, L.
2019. High frequency residual learning for multi-scale im-
age classification. arXiv preprint arXiv:1905.02649 .

Cordella, L. P.; De Stefano, C.; Tortorella, F.; and Vento, M.
1995. A method for improving classification reliability of
multilayer perceptrons. IEEE Transactions on Neural Net-
works 6(5): 1140-1147.

Courbariaux, M.; Bengio, Y.; and David, J.-P. 2015. Bi-
naryconnect: Training deep neural networks with binary
weights during propagations. In Advances in neural infor-
mation processing systems, 3123-3131.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248-255. leee.

Dennis, D.; Pabbaraju, C.; Simhadri, H. V.; and Jain, P. 2018.
Multiple instance learning for efficient sequential data clas-
sification on resource-constrained devices. In Advances in
Neural Information Processing Systems, 10953—-10964.

Ghiasi, G.; Lin, T.-Y.; and Le, Q. V. 2019. Nas-fpn: Learning
scalable feature pyramid architecture for object detection.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 7036-7045.

Goetschalckx, K.; Moons, B.; Lauwereins, S.; Andraud, M.;
and Verhelst, M. 2018. Optimized hierarchical cascaded

9832

processing. IEEE Journal on Emerging and Selected Top-
ics in Circuits and Systems 8(4): 884-894.

Grapiglia, G. N.; and Yuan, Y.-x. 2019. On the Complexity
of an Augmented Lagrangian Method for Nonconvex Opti-
mization. arXiv preprint arXiv:1906.05622 .

Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz,
M. A.; and Dally, W. J. 2016. EIE: efficient inference en-
gine on compressed deep neural network. ACM SIGARCH
Computer Architecture News 44(3): 243-254.

Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning
both weights and connections for efficient neural network. In
Advances in neural information processing systems, 1135—
1143.

Hartvigsen, T.; Sen, C.; Kong, X.; and Rundensteiner, E.
2019. Adaptive-halting policy network for early classifica-
tion. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
101-110.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 .

Hong, M. 2016. Decomposing linearly constrained non-
convex problems by a proximal primal dual approach: Al-
gorithms, convergence, and applications. arXiv preprint
arXiv:1604.00543 .

Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 .

Hu, T.-K.; Chen, T.; Wang, H.; and Wang, Z. 2020. Triple
wins: Boosting accuracy, robustness and efficiency to-
gether by enabling input-adaptive inference. arXiv preprint
arXiv:2002.10025 .

Huang, G.; Chen, D.; Li, T.; Wu, F; van der Maaten, L.;
and Weinberger, K. Q. 2017. Multi-scale dense networks
for resource efficient image classification. arXiv preprint
arXiv:1703.09844 .

Huang, M.-Y.; Lai, C.-H.; and Chen, S.-H. 2017. Fast and
accurate image recognition using Deeply-Fused Branchy
Networks. In 2017 IEEE International Conference on Im-
age Processing (ICIP), 2876-2880. IEEE.

Jayakodi, N. K.; Chatterjee, A.; Choi, W.; Doppa, J. R.;
and Pande, P. P. 2018. Trading-off accuracy and energy
of deep inference on embedded systems: A co-design ap-
proach. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37(11): 2881-2893.

Kong, W.; Melo, J. G.; and Monteiro, R. D. 2019. Complex-
ity of a quadratic penalty accelerated inexact proximal point
method for solving linearly constrained nonconvex compos-
ite programs. SIAM Journal on Optimization 29(4): 2566—
2593.

Krizhevsky, A. 2009. Learning Multiple Layers of Features
from Tiny Images. Master’s thesis, University of Toronto .



Leroux, S.; Bohez, S.; Verbelen, T.; Vankeirsbilck, B.;
Simoens, P.; and Dhoedt, B. 2015. Resource-constrained
classification using a cascade of neural network layers. In

2015 International Joint Conference on Neural Networks
(IJCNN), 1-7. IEEE.

Li, E.; Zeng, L.; Zhou, Z.; and Chen, X. 2019a. Edge AlI:
On-Demand Accelerating Deep Neural Network Inference
via Edge Computing. IEEE Transactions on Wireless Com-
munications .

Li, H.; Zhang, H.; Qi, X.; Yang, R.; and Huang, G. 2019b.
Improved Techniques for Training Adaptive Deep Net-
works. In Proceedings of the IEEE International Conference
on Computer Vision, 1891-1900.

Lin, Q.; Ma, R.; and Xu, Y. 2019. Inexact Proximal-Point
Penalty Methods for Non-Convex Optimization with Non-
Convex Constraints. arXiv preprint arXiv:1908.11518v1 .

Lo, C.; Su, Y.-Y.; Lee, C.-Y.; and Chang, S.-C. 2017. A
dynamic deep neural network design for efficient workload
allocation in edge computing. In 2017 IEEE International
Conference on Computer Design (ICCD), 273-280. IEEE.

Nesterov, Y. 2018. Lectures on convex optimization, volume

137. Springer.

Panda, P.; Sengupta, A.; and Roy, K. 2016. Conditional deep
learning for energy-efficient and enhanced pattern recogni-
tion. In 2016 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 475-480. IEEE.

Park, E.; Kim, D.; Kim, S.; Kim, Y.-D.; Kim, G.; Yoon,
S.; and Yoo, S. 2015. Big/little deep neural network for
ultra low power inference. In 2015 International Confer-

ence on Hardware/Software Codesign and System Synthesis
(CODES+1SSS), 124-132. IEEE.

Phuong, M.; and Lampert, C. H. 2019. Distillation-Based
Training for Multi-Exit Architectures. In Proceedings of the
IEEE International Conference on Computer Vision, 1355—
1364.

Qi, H.; Sparks, E. R.; and Talwalkar, A. 2017. Paleo: A per-
formance model for deep neural networks. In International
Conference on Learning Representations (ICLR).

Sahni, S. 1974. Computationally related problems. SIAM
Journal on Computing 3(4): 262-279.

Stamoulis, D.; Chin, T.-W.; Prakash, A. K.; Fang, H.; Sajja,
S.; Bognar, M.; and Marculescu, D. 2018. Designing adap-
tive neural networks for energy-constrained image classifi-
cation. In Proceedings of the International Conference on
Computer-Aided Design, 1-8.

Sun, H.; and Pang, Y. 2018. GlanceNets—Efficient convolu-
tional neural networks with adaptive hard example mining.
Science China Information Sciences 61(10): 109101.
Teerapittayanon, S.; McDanel, B.; and Kung, H.-T. 2016.
Branchynet: Fast inference via early exiting from deep neu-
ral networks. In 2016 23rd International Conference on Pat-
tern Recognition (ICPR), 2464-2469. 1EEE.
Teerapittayanon, S.; McDanel, B.; and Kung, H.-T. 2017.
Distributed deep neural networks over the cloud, the edge

9833

and end devices. In 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems (ICDCS), 328-339.
IEEE.

Venkataramani, S.; Raghunathan, A.; Liu, J.; and Shoaib,
M. 2015. Scalable-effort classifiers for energy-efficient ma-
chine learning. In Proceedings of the 52nd Annual Design
Automation Conference, 1-6.

Warden, P. 2018.  Speech commands: A dataset for
limited-vocabulary speech recognition.  arXiv preprint
arXiv:1804.03209 .

Wu, W.; He, D.; Tan, X.; Chen, S.; Yang, Y.; and Wen,
S. 2020. Dynamic Inference: A New Approach To-
ward Efficient Video Action Recognition. arXiv preprint
arXiv:2002.03342 .

Yokoo, S.; lizuka, S.; and Fukui, K. 2019. MLSNet:
Resource-Efficient Adaptive Inference with Multi-Level
Segmentation Networks. In 2019 IEEE International Con-
ference on Image Processing (ICIP), 1510-1514. IEEE.

Yuan, Z.; Wu, B.; Liang, Z.; Zhao, S.; Bi, W.; and Sun,
G. 2019. S2DNAS: Transforming Static CNN Model for
Dynamic Inference via Neural Architecture Search. arXiv
preprint arXiv:1911.07033 .

Zhang, C.; Ren, M.; and Urtasun, R. 2018. Graph hy-
pernetworks for neural architecture search. arXiv preprint
arXiv:1810.05749 .

Zhang, L.; Tan, Z.; Song, J.; Chen, J.; Bao, C.; and Ma, K.
2019. SCAN: A scalable neural networks framework to-
wards compact and efficient models. In Advances in Neural
Information Processing Systems, 4029-4038.



