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Abstract

Large capacity machine learning (ML) models are prone
to membership inference attacks (MIAs), which aim to in-
fer whether the target sample is a member of the target
model’s training dataset. The serious privacy concerns due to
the membership inference have motivated multiple defenses
against MIAs, e.g., differential privacy and adversarial regu-
larization. Unfortunately, these defenses produce ML models
with unacceptably low classification performances.
Our work proposes a new defense, called distillation for mem-
bership privacy (DMP), against MIAs that preserves the util-
ity of the resulting models significantly better than prior de-
fenses. DMP leverages knowledge distillation to train ML
models with membership privacy. We provide a novel crite-
rion to tune the data used for knowledge transfer in order to
amplify the membership privacy of DMP.
Our extensive evaluation shows that DMP provides signif-
icantly better tradeoffs between membership privacy and
classification accuracies compared to state-of-the-art MIA
defenses. For instance, DMP achieves ∼100% accuracy
improvement over adversarial regularization for DenseNet
trained on CIFAR100, for similar membership privacy (mea-
sured using MIA risk): when the MIA risk is 53.7%, adver-
sarially regularized DenseNet is 33.6% accurate, while DMP-
trained DenseNet is 65.3% accurate. We have released our
code at github.com/vrt1shjwlkr/AAAI21-MIA-Defense.

Introduction
The remarkable performance of machine learning (ML) in
solving many classification tasks has facilitated its adoption
in various domains ranging from recommendation systems
to critical health-care management. Many ML-as-a-Service
platforms (e.g., Google API, Amazon AWS) enable novice
data owners to train ML models and release the models ei-
ther as a blackbox prediction API or as model parameters
that can be accessed in whitebox fashion.

ML models are often trained on data with sensitive user
information such as clinical records and personal photos.
Hence, ML models trained using sensitive data can leak
private information about their data owners. This has been
demonstrated through various inference attacks (Fredrikson
et al. 2015, Hitaj et al. 2017, Carlini et al. 2018), and most
notably the membership inference attack (MIA) (Shokri
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et al. 2017) which is the focus of our work. An MIA adver-
sary with a blackbox or whitebox access to a target model
aims to determine if a given target sample belonged to
the private training data of the target model or not. MIAs
are able to distinguish the members from non-members by
learning the behavior of the target model on member versus
non-member inputs. They use different features of the target
model for this classification, e.g., model predictions (Shokri
et al. 2017), model loss, and gradients of the model parame-
ters for given input (Nasr et al. 2019). MIAs are particularly
more effective against deep neural networks (Shokri et al.
2017; Salem et al. 2019), because, with their large capaci-
ties, such models can better memorize their training data.

Recent work has investigated several defenses against
membership inference attacks. In order to provide the worst
case privacy guarantees, Differential Privacy (DP) based de-
fenses add very large amounts of noise to the learning ob-
jective or model outputs (Papernot et al. 2017, Chaudhuri et
al. 2011). This results in models with unacceptable trade-
offs between privacy and utility (Jayaraman et al. 2019),
therefore questioning their use in practice. Sablayrolles et
al. (2019) showed that membership privacy is a weaker no-
tion of privacy than DP, which improves with generalization
of ML models. Similarly, Nasr et al. (2018) proposed adver-
sarial regularization targeted to defeat MIAs by improving
the target model’s generalization. However, as we demon-
strate, the adversarial regularization and other state-of-the-
art regularizations, including label smoothing (Szegedy et al.
2016) and dropout (Srivastava et al. 2014), fail to provide ac-
ceptable membership privacy-utility tradeoffs (simply called
‘tradeoffs’ here onward). Memguard (Jia et al. 2019), a
blackbox defense, improves model utility, but it cannot pro-
tect the model from whitebox MIAs and even the simple
threshold based MIAs (Yeom et al. 2018). In summary, ex-
isting defenses against MIAs offer poor tradeoffs between
model utility and membership privacy.

To this end, our work proposes a defense against MIAs
that significantly improves the tradeoffs compared to prior
defenses. That is, for a given degree of membership pri-
vacy (i.e., MIA resistance), our defense produces models
with significantly higher classification performances com-
pared to prior defenses. Our defense, called Distillation for
Membership Privacy (DMP), leverages knowledge distilla-
tion (Hinton et al. 2014), which transfers the knowledge
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of large models to smaller models, and is primarily used
for model compression. Intuitively, DMP protects member-
ship privacy by thwarting the access of the resulting models
to the private training data. The first pre-distillation phase
of DMP trains an unprotected model on the private train-
ing data without any privacy protection. Next, in distillation
phase, DMP selects/generates reference data and transfers
the knowledge of the unprotected model into predictions of
the reference data. In the final post-distillation phase, DMP
trains a protected model on the reference data labeled in the
previous phase. Unlike conventional distillation, we use the
same architectures for the unprotected and protected models.

Similar to adversarial regularization and PATE, DMP as-
sumes access to a possibly sensitive and “unlabeled” refer-
ence data drawn from the same distribution as the “labeled”
private training data, and uses such reference data to train
its final models; the reference data is not publicly available.
This is a highly realistic assumption as typical model gen-
erating entities (e.g., banks) possess huge amounts of “unla-
beled” data (but limited labeled data due to the expensive la-
beling process). Furthermore, we show that this assumption
can be relaxed by synthesizing reference data using genera-
tor networks (Micaelli et al. 2019). While some prior work
(Papernot et al. 2017) combined distillation and DP to pro-
tect data privacy, our work is the first to study the promise of
knowledge distillation as the sole technique to train member-
ship privacy-preserving models. Our key contributions are
summarized below:
- We propose a defense against MIAs, called Distillation

for Membership Privacy (DMP).
- Given an unprotected model trained on a private training

data and a reference sample, we provide a novel result
that the lower the entropy of prediction of the model on
the reference sample, the lower the sensitive membership
information in the prediction. We use this result to selec-
t/generate appropriate reference data so as to improve the
membership privacy due to DMP.

- We perform an extensive evaluation of DMP to show
the state-of-the-art tradeoffs between membership privacy
and model accuracy of DMP. For instance, at a fixed high
degrees of membership privacy, DMP achieves 30% to
140% higher classification accuracies compared to state-
of-the-art defenses across various classification tasks.

Related Work
Membership Inference Attacks Shokri et al. (2017) in-
troduced membership inference attacks (MIAs). Given a tar-
get model trained on a private training data and a target sam-
ple, MIA adversary aims to infer whether the target sample
is a member of the private training data. Shokri et al. (2017)
proposed to train a neural network to distinguish the features
of the target model on members and non-members. They as-
sumed a partial access to the private trainin data. Salem et
al. (2019) relaxed this assumptions and showed the transfer-
ability of MIAs across datasets. These works relied on the
blackbox features of target models, e.g., model predictions
to mount MIAs. Nasr et al. (2019) proposed to use white-
box features of target models, e.g., model gradients, along

with the blackbox features, to further enhance the MIA accu-
racy. Above works used generalization gap (i.e., difference
in train and test accuracy) of target models to mount strong
MIAs. The more recent MIA literature focuses on deriv-
ing features that can better distinguish the behavior of target
models on members and non-members (Leino et al. (2019);
Song et al. (2020)).

Defenses Against Membership Inference Attacks MIAs
exploit differences in behaviors of target models on mem-
bers and non-members. Regularization techniques, includ-
ing dropout and label smoothing, reduce the difference in
terms of accuracies of the target model on members and
non-members, and mitigate MIAs to some extent (Shokri et
al. 2017). Nasr et al. (2018) proposed adversarial regular-
ization (AdvReg) tailored to defeat MIAs. AdvReg simulta-
neously trains the target and attack models in a game theo-
retic manner, and regularizes the target model using the ac-
curacy of the attack model. The final target models that use
above regularization defenses can be deployed in whitebox
manner, i.e., similar to DMP, they are whitebox defenses.
Hence, we thoroughly compare our DMP defense with all
these regularization techniques. However, as shown in (Song
and Mittal 2020) and seen from the original work (Nasr et
al. 2018), AdvReg is not an effective defense, because it ei-
ther fails to mitigate MIA or incurs large drops in model util-
ity (classification accuracy). Jia et al. (2019) proposed Mem-
Guard, a blackbox defense that adds noise to the output of
the target model such that the noisy output is both accurate
and fools the given MIA attack model. However, MemGuard
does not defend against the simplest of threshold based at-
tacks (Yeom et al. 2018; Sablayrolles et al. 2019). We omit
MemGuard and other blackbox defenses, e.g., top-k predic-
tions (Shokri et al. 2017), from evaluations.

Differential privacy based defenses such as DP-
SGD (Abadi et al. 2016) and PATE (Papernot et al. 2017) are
whitebox defenses and provide strong theoretical member-
ship privacy guarantees. However, as (Jayaraman and Evans
2019) show—and we confirm in our work—target models
trained using DP-SGD and PATE have prohibitively low
classification accuracies rendering them unusable.

Preliminaries
Knowledge Distillation Bucilua et al. (2006) and Ba et
al. (2014) proposed knowledge distillation, which uses the
outputs of a large teacher model to train a smaller student
model, in order to compress large models to smaller mod-
els. The outputs used for distillation can vary, e.g., Hinton et
al. (2014) use class probabilities generated by the teacher as
the outputs, while Romero et al. (2014) use the intermedi-
ate activations along with class probabilities of the teacher.
It is well established that knowledge distillation produces
students with accuracies similar to their teachers (Crowley,
Gray, and Storkey 2018; Zagoruyko and Komodakis 2016).
This also allows DMP to produce highly accurate target
models. Note that, although we use term “distillation”, DMP
uses teacher and student models of the same sizes, because
DMP is not concerned with the size of the resulting model.
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Membership Inference Attacks Below we give the threat
model and MIA methodology that we consider in this work.
Threat model. The primary goal of the adversary is to in-
fer the membership of a target sample (x, y) in the private
training data Dtr of a target model θ. Our DMP defense
uses private, unlabeled reference data Xref for knowledge
transfer, which itself could be privacy sensitive, hence, we
consider a secondary goal to infer membership of a target
sample in Xref . Following the previous works, we assume
a strong adversary with the knowledge of: target model pa-
rameters (the strongest whitebox case), half of the members
of Dtr and equal number of non-members. Similarly, to as-
sess the MIA risk to Xref , we assume that the adversary has
half of the members of Xref and the equal number of non-
members. Note that, the assumptions on the partial availabil-
ity of private Dtr and private Xref facilitates the assessment
of defenses under a very strong adversary. The adversary can
compute various whitebox and blackbox features of the tar-
get model and train an attack model. The adversary cannot
poison Xref as it is not publicly available.
Methodology. Consider a target model θ and a sample
(x, y). MIAs exploit the differences in the behavior of θ on
members and non-members of the private Dtr. Therefore,
MIAs train a binary attack model to classify target samples
into members and non-members. Such attack models can be
neural networks (Shokri et al. 2017; Salem et al. 2019) or
simple thresholding functions where threshold is tuned for
maximum attack performance (Yeom et al. 2018; Sablay-
rolles et al. 2019; Song and Mittal 2020). The adversary
computes various features of θ for given (x, y), e.g., predic-
tion θ(x, y), θ’s loss on (x, y), and the gradients of the loss.
The adversary combines these features to form F (x, y, θ).
The attack model h takes F (x, y, θ) as its input and outputs
the probability that (x, y) is a member of Dtr. Let PrDtr and
Pr\Dtr

be the conditional probabilities of the members and
non-members of Dtr, respectively. Hence, the expected gain
of the attack model for the above setting is given by:

Gθ(h) = E
(x,y)
∼PrDtr

[log(h(F ))] + E
(x,y)
∼Pr\Dtr

[log(1− h(F ))] (1)

In practice, the adversary knows only a finite set of the mem-
bers D and non-members D′A required to train h, hence
computes the above gain empirically as:

GθDA,D′A(h) =
∑
(x,y)

∈DA

log(h(F ))

|DA|
+
∑
(x,y)

∈D′A

log(1− h(F ))

|D′A|

(2)

Finally, the adversary solves for h∗ that maximizes (2).

Our Proposed Defense: DMP
Now, we present our defense Distillation For Membership
Privacy (DMP), which is motivated by the poor membership
privacy-utility tradeoffs provided by existing MIA defenses
(§ ). First, we give an intuition behind DMP and detail the
DMP training. Finally, to achieve the desired tradeoffs, we
give a criterion to tune the selection or generation (e.g., using
GANs) of reference data used in DMP.

Notations Dtr is a private training data. An ML model
trained on Dtr without any privacy protections is called un-
protected model, denoted by θup. An ML model is called
protected model, denoted by θp, if it protectsDtr from MIAs.
For knowledge transfer, DMP uses an unlabeled and possi-
bly private reference dataset which is disjoint from Dtr; as
the reference data is unlabeled, we denote it by Xref . We
denote the soft label of θ on x, i.e., θ(x), by θx.

Main Intuition Of DMP Sablayrolles et al. (2019) show
that θ trained on a sample z (short for (x, y)) provides (ε, δ)
membership privacy to z if the expected loss of the models
not trained on z is ε-close to the loss of θ on z, with proba-
bility at least 1 − δ. They assume a posterior distribution of
the parameters trained on a given data D = {z1, .., zn} to
be:

P(θ|z1, ..., zn) ∝ exp(
n∑
i=1

`(θ, zi)) (3)

Consider a neighboring dataset D′ = {z1, .., z′j , .., zn} of
D, which is obtained by modifying at most one sample of
D (Ding et al. 2018). Sablayrolles et al. (2019) show that,
to provide membership privacy to zj , the log of the ratio of
probabilities of obtaining the same θ from D and D′ should
be bounded, i.e., (4) should be bounded.

log
∣∣∣ P(θ|D)

P(θ|D′)

∣∣∣ = |`(θ, zj)− `(θ, z′j)| (4)

(4) implies that, if θ was indeed trained on zj , then to
provide membership privacy to zj , the loss of θ on zj should
be same as the loss on any non-member sample z′j .

DMP is a strong meta-regularization technique built on
this intuition. DMP aims to protect its target models against
the membership inference attacks that exploit the gap be-
tween the target model’s losses on the members and non-
members, by reducing the gap.

DMP achieves this via knowledge transfer and restricts
the direct access of θp to the private Dtr, which significantly
reduces the membership information leakage to θp. How-
ever, unlike existing knowledge transfer, DMP proposes an
entropy-based criterion to select/generate Xref . Simply put,
soft labels of the unprotected model θup on Xref should have
low entropy and theXref should be far from decision bound-
aries of θup, i.e., far from Dtr, in the input feature space. In-
tuitively, such samples are easy to classify and none of the
members of Dtr significantly affects their predictions, and
therefore, these predictions do not leak membership infor-
mation of any particular member.

Details of the DMP Technique We now detail the three
phases of our DMP defense depicted in Figure 1. In pre-
distillation phase (step (1) in Figure 1), DMP trains θup on
the private training data, Dtr, using standard SGD optimizer,
e.g., Adam. Such unprotected θup is highly susceptible to
MIA due to large generalization error, i.e., difference be-
tween train and test accuracies (Shokri et al. 2017; Yeom
et al. 2018).

Next, in distillation phase (step (2.1) in Figure 1), DMP
obtains Xref required to transfer the knowledge of θup in
θp. Note that, Xref is unlabeled and cannot be used directly
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Figure 1: Distillation for Membership Privacy (DMP) de-
fense. (1) In pre-distillation phase, DMP trains an unpro-
tected model θup on the private training data without any
privacy protection. (2.1) In distillation phase, DMP uses
θup to select/generate appropriate reference data Xref that
minimizes membership privacy leakage. (2.2) Then, DMP
transfers the knowledge of θup by computing predictions of
θup on Xref , denoted by θXref

up . (3) In post-distillation phase,
DMP trains the final protected model θp on (Xref , θ

Xref
up ).

for any learning. Then, we compute soft labels of Xref, i.e.,
θXref
up = θup(Xref) (step (2.2) in Figure 1). There are two key

factors of the distillation phase that allow us to tune DMP
and achieve the desired privacy-utility tradeoffs. First, the
lower the entropy of predictions θXref

up , the lower the mem-
bership leakage through Xref and vice-versa. Such low en-
tropy predictions are characteristics of the members of Dtr,
however, non-members with low entropy can be obtained (or
generated using GANs (Micaelli and Storkey 2019)) due to
large input feature space. Second, using higher softmax tem-
peratures to compute θXref

up reduces membership leakage, but
may reduce accuracy of the final model, and vice-versa.

Finally, in Post-distillation phase (step (3) in Figure 1),
DMP trains a protected model θp on (Xref, θ

Xref
up ) using

Kullback-Leibler divergence loss defined in (5). In (5), y is
the target soft label. The final θp is obtained by solving (6).

LKL(x,y) =
c−1∑
i=0

yi log
( yi
θp(x)i

)
(5)

θp = argmin
θ

1

|Xref|
∑

(x,y)∈(Xref ,θ
Xref
up )

LKL(x,y) (6)

Due to KL-divergence loss in (6), the resulting model,
θp, perfectly learns the behavior of θup on the Xref . Further-
more, Xref being a representative non-member data, i.e.,
test data, we expect that the test accuracies of θp and θup
are close, and that the final DMP models will not suffer
significant accuracy reductions (Ba et al. 2014,Romero et
al. 2014).

Fine-tuning the DMP Defense As mentioned before, the
appropriate choice of reference data Xref is important to
achieve the desired privacy-utility tradeoffs in DMP. In this
section, we show that Xref with low entropy predictions of
unprotected model θup strengthens membership privacy and
derive an entropy-based criterion to select/generate Xref .

Proposition 1. Consider θup trained on a private Dtr.
Then, the membership leakage about Dtr through predic-
tions θup(Xref) can be reduced by selecting/generating Xref

that are far from Dtr in input feature space with respect to
some Lp distance and whose predictions, θup(Xref), have
low entropies.

Sketch of proof of Proposition 1. Due to space limitations,
we defer the detailed proof to the full version (Shejwalkar
et al. 2019) and provide its sketch here. Consider two train-
ing datasets Dtr and D′tr such that D′tr ← Dtr − z, and Xref.
Then, the log of the ratio of the posterior probabilities of
learning the exact same parameters θp using DMP is given
by (7). Observe that, R is an extension of (4) to the set-
ting of DMP, where θp is trained via the knowledge trans-
ferred using (Xref, θ

Xref
up ), instead of directly training on Dtr.

Sablayrolles et al. (2019) argue to reduce this ratio to im-
prove membership privacy. Hence, we want to obtain Xref

which reduces R when Dtr, D′tr, and θp are kept constant.
We note that, although similar in appearance to differential
privacy,R is defined only for the given private dataset, Dtr.

R =
∣∣∣log

(
Pr(θp|Dtr, Xref)/Pr(θp|D′tr, Xref)

)∣∣∣ (7)

Next, we modifyR as:

R =
∣∣∣− 1

T

∑
x∈Xref

LKL((x, θ
x
up); θp)− LKL((x, θ

′x
up); θp)

∣∣∣
(8)

≤ 1

T

∑
x∈Xref

∣∣∣LKL(θ
x
up‖θxp )− LKL(θ

′x
up‖θxp )

∣∣∣ (9)

where θup and θ′up are trained on Dtr and D′tr, respectively.
Note that, (8) holds due to the assumption in (3) and the KL-
divergence loss used to train θp in DMP. (9) follows from (8)
because |a+b| ≤ |a|+|b|. Therefore, minimizing (9) implies
minimizing (7). Thus, to improve membership privacy due
to θp, Xref is obtained by solving (10).

X∗ref = argmin
Xref∈X

( 1

T

∑
x∈Xref

∣∣LKL(θ
x
up‖θxp )− LKL(θ

′x
up‖θxp )

∣∣)
(10)

The objective of (10) is minimized when θxup = θ′xup ∀x ∈
Xref and is very intuitive: It implies that, z (i.e., Dtr −D′tr)
enjoys stronger membership privacy when the reference
data, Xref , are such that the distributions of outputs of θup
and θ′up on Xref are not affected by the presence of z in Dtr.

Next, we simplify (10) by replacing LKL with closely
related cross-entropy loss LCE. This simplification can be
easily validated using Xref whose ground truth labels are
known. Specifically, we randomly sampleDtr andXref from
Purchase100 dataset, and compute θup and θp using DMP.
Next, for some z ∈ Dtr, we train θ′up on D′tr. Then, for each
x ∈ Xref , we compute ∆LKL as in (10) and use the available
ground truth label of x to compute ∆LCE. Finally, we show
that ∆LKL and ∆LCE are strongly correlated for all z ∈ Dtr.

Next, we use the linear approximation given by (Koh and
Liang 2017) for the difference in LCE of a pair of models
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Figure 2: The lower the entropy of predictions of unpro-
tected model on Xref , the higher the membership privacy.

trained with and without a sample to simplify (10). Then the
result of Proposition 1 follows after a few simple mathemat-
ical manipulations.

Empirical Verification Of Proposition 1. We randomly
pick Dtr of size 10k from Purhcase100 data and train θup.
Then, we sort the rest of Purhcase100 data based on entropy
of the predictions of θup on the data. We form firstXref using
the first 10k data with the lowest entropies, second Xref us-
ing the following 10k data, and so on. Finally we train multi-
ple protected models, θp’s, using each of theXref ’s. Figure 2
(left) shows the increase in the MIA risk and Figure 2 (right)
shows the increase in the classification performance of θp
with the increase in average entropy of the Xref used. This
tradeoff is because, although the higher entropy predictions
contain more useful information (Nayak et al. 2019; Hinton,
Vinyals, and Dean 2014) and lead to high accuracy of θp,
they also contain higher membership information about Dtr

and lead to higher MIA risk.

Experimental Setup
Datasets And Target Model Architectures
We use four datasets and corresponding model architec-
tures that are consistent with the previous works (Shokri et
al. (2017); Nasr et al. (2019; 2018); Salem et al. (2019)).

Purchase (Purchase 2017) is a 100 class classification task
with 197,324 binary feature vectors of length 600; each di-
mension corresponds to a product and its value states if cor-
responding customer purchased the product; the correspond-
ing label represents the shopping habit of the customer.

Texas (Texas 2017) is dataset of patient records. It is a 100
class classification task with 67,300 binary feature vectors of
length 6,170 each; each dimension corresponds to symptoms
and its value states if corresponding patient has the symptom
or not; the label represents the treatment given to the pa-
tient. For Purchase and Texas we use fully connected (FC)
networks.

CIFAR10 and CIFAR100 are popular image classifica-
tion datasets, each has size 50k and 32 × 32 color im-
ages. We use Alexnet, DenseNet-12 (with 0.77M parame-
ters), and DenseNet-19 (with 25.6M parameters) models for
CIFAR100, and Alexnet for CIFAR10. Following previous
works, we measure the test accuracy of the target models as
their utility.

Sizes Of Dataset Splits. The dataset splits are given in Ta-
ble 1. For Purchase and Texas tasks, we use Dref of size 10k
and selectXref of size 10k from the remaining data using our
entropy-based criterion. For CIFAR datasets, we use Dref of
size 25k and due to small sizes of these datasets, use the
entire remaining 25k data as Xref . The ‘Attack training’ (de-
scribed shortly) column shows the MIA adversary’s knowl-
edge of members and non-members ofDtr. Following all the
previous works, we assume that the adversary knows 50% of
Dtr. Further experimental details are provided in Appendix.

Dataset DMP training Attack training
|Dtr| |Xref| |D| |D′|

Purchase (P) 10000 10000 5000 5000
Texas (T) 10000 10000 5000 5000

CIFAR100 (C100) 25000 25000 12500 8000
CIFAR10 (C10) 25000 25000 12500 8000

Table 1: All the dataset splits are disjoint. D, D′ data are the
members and non-members ofDtr known to MIA adversary.

Membership Inference Attacks
We briefly review the four MIAs we use for evaluations. Fol-
lowing previous works, we use the accuracy of MIAs on tar-
get models as a measure of their membership privacy.

Bounded loss (BL) attack (Yeom et al. 2018) decides
membership using a threshold on the target model’s loss on
the target sample. When 0-1 loss is used, the attack accuracy
is simply the difference in training and test accuracy of target
model. We denote BL attack accuracy by Abl.

NN attack (Salem et al. 2019) uses a shadow dataset ds
drawn from the same distribution as Dtr. The attacker splits
ds in d′s and d′′s , trains a shadow model θs on d′s, computes
predictions of θs on d′s and d′′s , labels the predictions of d′s
as members and that of d′′s as non-members, and trains bi-
nary attack model on the predictions. We denote NN attack
accuracy by Ann. Due to their small sizes, DMP cannot be
evaluated with CIFAR datasets, hence we omit NN attack
evaluation for CIFAR datasets.

NSH attacks (Nasr et al. 2019) are similar to NN attacks.
They concatenate various whitebox (e.g., model gradients)
and/or blackbox (e.g., model loss, predictions) features of
target model, while NN attack uses only the target model
predictions. We denote whitebox and blackbox NSH attack
accuracies by Awb and Abb, respectively. For NN and NSH
attacks, we use the same attack models as the original works.

Experiments
Comparison With Regularization Techniques
Regularization improves the generalization of ML models,
and hence, reduce the MIA risk (Shokri et al. 2017). Hence,
we compare DMP with five regularization defeses, includ-
ing state-of-the-art MIA defense—adeversarial regulariza-
tion (Nasr et al. 2018). In all tables, Egen is generalization
error, i.e., (Atrain−Atest), whereAtrain andAtest are train and
test accuracies of the target model, respectively. A+

test gives
the % increase in Atest due to DMP over the other regular-
izers. Awb, Abb, Abl, Ann are accuracies of various attacks
discussed in the previous section.
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Dataset No defenseand
model Egen Atest Awb Abb Abl Ann
P-FC 24.0 76.0 77.1 76.8 63.1 60.5
T-FC 51.3 48.7 84.0 82.2 76.1 71.9

C100-A 63.2 36.8 90.3 91.3 81.8 N/A
C100-D12 33.8 65.2 72.2 71.8 67.5 N/A
C100-D19 34.4 65.5 82.3 81.6 68.1 N/A

C10-A 32.5 67.5 77.9 77.5 66.4 N/A

Table 2: Models trained without any defenses have high test
accuracies, Atest, but their high generalization errors, Egen

(i.e., Atrain−Atest) facilitate strong MIAs (§ ). “N/A” means
the attack is not evaluated due to lack of data.

Table 2 shows accuracies of models trained without any
defense; CIFAR models have lower than state-of-the-art ac-
curacies due to smaller training datasets.

Comparison With Adversarial Regularization (AdvReg)
Table 3 compares Atest of DMP and AdvReg models, for
similar MIA accuracies (i.e., membership privacy). As ex-
pected, these models also have similar Egen’s. However,
Atest of DMP models is significantly higher than AdvReg
models; A+

test column shows the % increase in Atest due to
DMP over AdvReg: Accuracy improvements due to DMP
over AdvReg are close to 100% for CIFAR-100, and 20%
to 45% for other datasets. AdvReg uses accuracy of an
MIA model to regularize and train its target models to fool
the MIA model. However, AdvReg allows its target models
to directly access Dtr. Hence, to effectively fool the MIA
model, it puts relatively large weight on the regularization-
loss term. This reduces the impact of the loss on main task
and reduces the accuracy of AdvReg models. DMP uses ap-
propriate reference data to transfer the knowledge of Dtr

to its target models without allowing them direct access.
Hence, DMP significantly outperforms AdvReg in terms of
privacy-utility tradeoffs.

Comparison With Other Regularizers Next, we com-
pare DMP with four state-of-the-art regularizers: weight
decay (WD), dropout (Srivastava et al. 2014) (DR), la-
bel smoothing (Szegedy et al. 2016) (LS), and confidence
penalty (Pereyra et al. 2017) (CP). Due to the poor MIA re-
sistance of CP, we defer its results to Appendix.

Table 4 shows the results, when MIA risks of regularized
models is close that of DMP models (Table 3). We note that,
in all the cases, Atest of DMP are significantly higher (up
to 385% increase as A+

test column specifies) than Atest of
other regularizers. This is because, these regularizers aim to
improve the test accuracies of target models, but are not de-
signed to reduce MIA risk. Thus, to reduce MIA risk, these
regularization techniques add large, suboptimal noises dur-
ing training, and hurt the utility of resulting models.

Comparison With Differentially Private Defenses
Comparison With DP-SGD Following the methodology
of Jayaraman et al. (2019), we compare DMP and DP-
SGD (Abadi et al. 2016) using the empirically observed
tradeoffs between membership privacy (MIA resistance) and

Atest of models. We use only CIFAR10 for these experi-
ments, as the DP-SGD achieves prohibitively low accuracies
on difficult tasks such as Texas and CIFAR100. We evaluate
MIA risk using the whitebox NSH attack. Table 5 shows
the results of Alexnet trained on CIFAR10 using DMP and
DP-SGD with different privacy budgets ε’s; -veEgen implies
Atrain is lower than Atest. DP-SGD incurs significant (35%)
loss in Atest at lower ε (12.5) to provide strong member-
ship privacy. At higher ε, Atest of DP-SGD increases, but
at the cost of very high generalization error, which facili-
tates stronger MIAs. Note that, further increase in privacy
budget, ε, does not improve tradeoff of DP-SGD. More im-
portantly, for low MIA risk of ∼ 51.3%, DMP models have
12.8% higherAtest (i.e., 24.5% improvement) than DP-SGD
models, which shows the superior tradeoffs due to DMP.

Comparison With PATE. PATE (Papernot et al. 2017),
a semi-supervized learning technique, requires a compati-
ble pair of generator and disciminator to achieve acceptable
performances. Hence, we use CIFAR10 dataset and, instead
of Alexnet, use the generator-discriminator pair from (Sali-
mans et al. 2016), which has state-of-the-art performances.
PATE trains a set of teachers, computes hard labels of each
teacher on some Xref , aggregates the labels for each x ∈
Xref using majority voting, adds DP noise to the aggregate,
and finally trains its target model on the noisy aggregate.

We train ensembles of 5, 10, and 25 teachers using Dtr of
sise 25k. We use the optimized confident-GNMax (GNMax)
aggregation scheme of (Papernot et al. 2018) to label Xref

We present a subset of results in Table 6 and defer compre-
hensive comparison to Appendix. At low ε’s (<10), GNMax
hardly produces any labels, hence, the final target model has
very lowAtest, but at higher ε’s (>1000), PATE target model
has acceptable Atest. However, PATE cannot achieve perfor-
mances close to DMP, as it divides Dtr among its teachers.
Such teachers have significantly lower accuracies and their
ensemble cannot achieve the accuracy close to that of the
unprotected model of DMP, which is trained on the entire
Dtr. Hence, the quality of knowledge transferred in DMP is
always higher than that in PATE.

Discussions
Below, we provide further key insights in to DMP defense
and defer their detailed discussion to Appendix.

Hyperparameter Selection In DMP Increasing the tem-
perature of softmax layer of the unprotected model, θup,
used to transfer the knowledge of θup, can further reduce
the membership leakage of Dtr. This is because, at higher
softmax temperatures, predictions of θup have uniform dis-
tribution over all classes and contain no useful information
for MIAs. Similarly, reducing the size of Xref reduces MIA
risk due to DMP, but comes at the cost of reduction in Atest.

Privacy Risk to Reference Data (Xref ) We evaluate the
privacy risk to Xref , as it can be of sensitive nature, e.g.,
in case of Texas medical records dataset. Our results in ap-
pendix show that given the final DMP model, θp, and a tar-
get sample, MIA adversary (who mounts BL, NN, or NSH
attacks) cannot decide if the sample belonged to Xref with
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Dataset Adversarial regularization (AdvReg) DMP
and

Egen Atest
Attack accuracy

Egen Atest A+
test

Attack accuracy
model Awb Abb Abl Ann Awb Abb Abl Ann

Purchase + FC 9.7 56.5 55.8 55.4 54.9 50.1 10.1 74.1 +31.2% 55.3 55.1 55.2 50.2
Texas + FC 6.1 33.5 58.2 57.9 54.1 50.8 7.1 48.6 +45.1% 55.3 55.4 53.6 50.0

CIFAR100 + Alexnet 6.9 19.7 54.3 54.0 53.5 N/A 6.5 35.7 +81.2% 55.7 55.6 53.3 N/A
CIFAR100 + DenseNet-12 5.5 26.5 51.4 51.3 52.8 N/A 3.6 63.1 +138.1% 53.7 53.0 51.8 N/A
CIFAR100 + DenseNet-19 7.2 33.9 54.2 53.4 53.6 N/A 7.3 65.3 +92.6% 54.7 54.4 53.7 N/A

CIFAR10 + Alexnet 4.2 53.4 51.9 51.2 52.1 N/A 3.1 65.0 +21.7% 51.3 50.6 51.6 N/A

Table 3: Comparing test accuracy (Atest) and generalization error (Egen) of DMP and Adversarial Regularization, for near-equal,
low MIA risks (high membership privacy). A+

test shows the % increase in Atest of DMP over Adversarial Regularization.

Purchase + FC (DMP’s Atest = 74.1)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 10.3 42.5 +74.4% 54.9 55.4 55.2

WD + DR 9.1 42.1 +76.0% 56.4 56.8 54.6
WD + LS 12.3 42.0 +76.4% 57.2 57.0 56.2

Texas + FC (DMP’s Atest = 48.6)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 5.0 22.5 +116% 58.3 57.7 52.5

WD + DR 6.1 14.2 +242% 63.1 62.6 53.1
WD + LS 8.3 37.3 +30% 61.7 61.0 54.2

CIFAR100 + DenseNet-12 (DMP’s Atest = 63.1)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 4.0 26.3 +140% 49.9 49.7 52.0

WD + DR 3.7 32.3 +95.4% 51.2 51.0 51.9
WD + LS 2.7 13.0 +385% 51.0 51.4 51.4

CIFAR10 + Alexnet (DMP’s Atest = 65.0)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 4.1 45.9 +41.6% 52.4 52.5 52.1

WD + DR 3.2 44.7 +45.4% 51.9 51.7 51.6
WD + LS 4.8 53.2 +22.2% 53.8 53.0 52.4

Table 4: Evaluating three state-of-the-art regularizers, with
similar, low MIA risks (high membership privacy) as DMP.
A+

test shows the % increase in Atest due to DMP over the
corresponding regularizers.

sufficient confidence. This is expected, because DMP trains
its θp on noisy, soft-labels of Xref , which do not contain any
sensitive information about Xref and its ground-truth labels,
which is necessary for MIAs to succeed (Yeom et al. 2018).
We provide detailed results in Appendix.

DMP With Synthetic Reference Data (Xref ) Following
previous works (Papernot et al. 2018,2017), including the
state-of-the-art MIA defense AdvReg (Nasr et al. 2018), we
assume availability of Xref . However, in privacy sensitive
domains such as patient medical records, Xref may not be
available. Hence, we show that the assumption can be re-
laxed by using Xref synthesized from private Dtr to train
DMP models. For CIFAR10, we use DC-GAN to gener-
ate synthetic Xref of sizes 12.5k, 25k, and 37.5k from Dtr

of size 25k. We then train three DMP models and evaluate
their MIA risk using whitebox NSH attack. We note that for
12.5k, 25k, and 37.5k synthetic Xref samples, (Egen, Atest,
Awb) of DMP are (2.1, 53.0, 50.3), (3.5, 56.8, 51.3), and
(5.0, 57.5, 52.1), respectively. Note that, DMP outperforms
existing defenses even with synthetic Xref (Tables 3, 4).

Defense Privacy Egen Atest Awbbudget (ε)
No defense – 32.5 67.5 77.9

DMP – 3.10 65.0 51.3

DP-SGD
198.5 3.60 52.2 51.7
50.2 1.30 36.9 50.2
12.5 0.30 31.7 50.0
6.8 -1.60 29.4 49.9

Table 5: DP-SGD versus DMP for CIFAR10 and Alexnet.
For low MIA risk of ∼ 51.3%, DMP achieves 24.5% higher
Atest than of DP-SGD (12.8% absolute increase in Atest).

# of Queries Privacy Target model
AwbTeachers answered budget (ε) Egen Atest

5 49 195.9 31.4 33.9 49.1
1163 11684 65.4 68.1 49.0

10 23 42.9 39.1 38.3 50.1
1527 6535 63.9 65.2 49.8

25 108 183.5 53.8 55.7 49.0
4933 1794.1 57.8 60.3 48.6

Table 6: Comparing PATE with DMP. DMP has Egen, Atest,
and Awb of 1.19%, 76.79%, and 50.8%, respectively. PATE
has low accuracy even at high privacy budgets, as it divides
data among teachers and produces low accuracy ensembles.

Adaptive Attack On DMP In DMP, the reference data,
Xref , is selected such that the predictions of DMP’s unpro-
tected model θup on Xref have low entropies. Due to mem-
orization, predictions of θup on Dtr also have low entropies.
Hence, an adaptive adversary may exploit this peculiar Xref

selection in DMP. Based on this intuition, we investigate the
possibility of an adaptive MIA, which labels a target sam-
ple as a member if the sample is close to some Xref datum
in feature space. However, such attack has accuracy close to
random guess. This is because, we observe that the proxim-
ity of two samples in feature space has no correlation with
the entropy of predictions of given θup on those samples,
which is the selection criterion of DMP. We leave further
investigation of adaptive attacks on DMP to future work.

Conclusions
We proposed Distillation for Membership Privacy (DMP),
a knowledge distillation based defense against membership
inference attacks that significantly improves the member-
ship privacy-model utility tradeoffs compared to state-of-
the-art defenses. We provided a novel criterion to generate/s-
elect reference data in DMP and achieve the desired trade-
offs. Our extensive evaluation demonstrated the state-of-the-
art privacy-utility tradeoffs of DMP.
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