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Abstract

In contextual bandits, an algorithm must choose actions given
observed contexts, learning from a reward signal that is ob-
served only for the action chosen. This leads to an explo-
ration/exploitation trade-off: the algorithm must balance tak-
ing actions it already believes are good with taking new ac-
tions to potentially discover better choices. We develop a
meta-learning algorithm, MELEE, that learns an exploration
policy based on simulated, synthetic contextual bandit tasks.
MELEE uses imitation learning against these simulations to
train an exploration policy that can be applied to true contex-
tual bandit tasks at test time. We evaluate MELEE on both a
natural contextual bandit problem derived from a learning to
rank dataset as well as hundreds of simulated contextual ban-
dit problems derived from classification tasks. MELEE out-
performs seven strong baselines on most of these datasets by
leveraging a rich feature representation for learning an explo-
ration strategy.

1 Introduction

In a contextual bandit problem, an agent attempts to opti-
mize its behavior over a sequence of rounds based on limited
feedback (Kaelbling 1994; Auer 2003; Langford and Zhang
2008). In each round, the agent chooses an action based on
a context (features) for that round, and observes a reward
for that action but no others (§ 2). The feedback is partial:
the agent only observes the reward for the action it selected,
and for no other actions. This is strictly harder than super-
vised learning in which the agent observes the reward for all
available actions. Contextual bandit problems arise in many
real-world settings like learning to rank for information re-
trieval, online recommendations and personalized medicine.
As in reinforcement learning, the agent must learn to bal-
ance exploitation (taking actions that, based on past experi-
ence, it believes will lead to high instantaneous reward) and
exploration (trying new actions). However, contextual ban-
dit learning is easier than reinforcement learning: the agent
needs to only take one action, not a sequence of actions, and
therefore does not face a credit assignment problem.

In this paper, we present a meta-learning approach to
automatically learn a good exploration strategy from data.
To achieve this, we use synthetic supervised learning data
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sets on which we can simulate contextual bandit tasks in
an offline setting. Based on these simulations, our algo-
rithm, MELEE (MEta LEarner for Exploration), learns a
good heuristic exploration strategy that generalize to future
contextual bandit problems. MELEE contrasts with more
classical approaches to exploration (like e-greedy or Lin-
UCB), in which exploration strategies are constructed by
expert algorithm designers. These approaches often achieve
provably good exploration strategies in the worst case, but
are potentially overly pessimistic and are sometimes com-
putationally intractable.

MELEE is an example of meta-learning in which we
replace a hand-crafted learning algorithm with a learned
learning algorithm. At training time (§ 3), MELEE simu-
lates many contextual bandit problems from fully labeled
synthetic data. Using this data, in each round, MELEE is
able to counterfactually simulate what would happen under
all possible action choices. We can then use this informa-
tion to compute regret estimates for each action, which can
be optimized using the AggreVaTe imitation learning algo-
rithm (Ross and Bagnell 2014).

Our imitation learning strategy mirrors the meta-learning
approach of Bachman, Sordoni, and Trischler (2017) in
the active learning setting. We present a simplified, styl-
ized analysis of the behavior of MELEE to ensure that our
cost function encourages good behavior (§4), and show that
MELEE enjoys the no-regret guarantees of the AggreVaTe
imitation learning algorithm.

Empirically, we use MELEE to train an exploration policy
on only synthetic datasets and evaluate this policy on both
a contextual bandit task based on a natural learning to rank
dataset as well as three hundred simulated contextual bandit
tasks (§5). We compare the trained policy to a number of al-
ternative exploration algorithms, and show that MELEE out-
performs alternative exploration strategies in most settings.

2 Preliminaries: Contextual Bandits and
Policy Optimization

Contextual bandits is a model of interaction in which an
agent chooses actions (based on contexts) and receives im-
mediate rewards for that action alone. For example, in a sim-
plified news personalization setting, at each time step ¢, a
user arrives and the system must choose a news article to



display to them. Each possible news article corresponds to
an action a, and the user corresponds to a context z;. After
the system chooses an article a; to display, it can observe,
for instance, the amount of time that the user spends reading
that article, which it can use as a reward r¢(a;).

Formally, we largely follow the setup and notation of
Agarwal et al. (2014). Let X be an input space of contexts
(users) and [K] = {1,..., K} be a finite action space (ar-
ticles). We consider the statistical setting in which there ex-
ists a fixed but unknown distribution D over pairs (z,r) €
Xx|0, 1]K , where 7 is a vector of rewards (for convenience,
we assume all rewards are bounded in [0, 1]). In this setting,
the world operates iteratively over rounds ¢ = 1,2, . ... Each
round ¢:

1. The world draws (x4, 7;) ~ D and reveals context x;.
2. The agent (randomly) chooses action a; € [K] based on

x4, and observes reward ¢ (a;).

The goal of an algorithm is to maximize the cumulative
sum of rewards over time. Typically the primary quantity
considered is the average regret of a sequence of actions
ai, - -..,ar to the behavior of the best possible function in a
prespecified class F:

1

,ar) = max
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A no-regret agent has a zero average regret in the limit of
large T

To produce a good agent for interacting with the world,
we assume access to a function class F and to an oracle
policy optimizer for that function class POLOPT. For exam-
ple, 7 may be a set of single layer neural networks map-
ping user features x € X' to predicted rewards for actions
a € [K]. Formally, the observable record of interaction re-
sulting from round ¢ is the tuple (x4, as, (), pi(a)) €
X x[K]x[0,1]x[0,1], where p:(a;) is the probability that
the agent chose action a;, and the full history of interaction
is hy = ((@;,a4,7i(a;),pi(a;)))i_. The oracle policy opti-
mizer, POLOPT, takes as input a history of user interactions
and outputs an f € F with low expected regret.

An example of the oracle policy optimizer POLOPT is to
combine inverse propensity scaling (IPS) with a regression
algorithm (Horvitz and Thompson 1952). Here, given a his-
tory h, each tuple (z,a,r, p) in that history is mapped to a
multiple-output regression example. The input for this re-
gression example is the same x; the output is a vector of
K costs, all of which are zero except the a component,
which takes value r/p. This mapping is done for all tuples
in the history, and a supervised learning algorithm on the
function class F is used to produce a low-regret regression
function f. This is the function returned by the oracle pol-
icy optimizer POLOPT. IPS has the property of being un-
biased, however, it often suffers from large variance. The
direct method (DM) (Dudik et al. 2011) is another kind of
an oracle policy optimizer POLOPT that has lower variance
than IPS. The direct method estimates the reward function
directly from the history & without importance sampling,
and uses this estimate to learn a low-regret function f. In
our experiments, we use the direct method, largely for its
low variance and simplicity. However, MELEE is agnostic to
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the type of the estimator used by the oracle policy optimizer
PoLOPT.

3 Approach: Learning an Effective
Exploration Strategy

In order to have an effective approach to the contextual
bandit problem, one must be able to both optimize a pol-
icy based on historic data and make decisions about how
to explore. The exploration/exploitation dilemma is funda-
mentally about long-term payoffs: is it worth trying some-
thing potentially suboptimal now in order to learn how to
behave better in the future? A particularly simple and ef-
fective form of exploration is e-greedy: given a function f
output by POLOPT, act according to f(z) with probability
(1 — €) and act uniformly at random with probability e.

Intuitively, one would hope to improve on a strategy like
e-greedy by taking more (any!) information into account; for
instance, basing the probability of exploration on f’s uncer-
tainty. In this section, we describe MELEE, first by showing
how it operates in a Markov Decision Process (§3), and then
by showing how to train it using synthetic simulated contex-
tual bandit problems based on imitation learning (§3).

Markov Decision Process Formulation

We model the exploration / exploitation task as a Markov
Decision Process (MDP). Given a context vector x and a
function f output by POLOPT onrounds 1...¢—1, the agent
learns an exploration policy 7 to decide whether to exploit
by acting according to f(z), or explore by choosing a dif-
ferent action @ # f(x). We model this as an MDP, repre-
sented as a tuple (A, S, so, T, R), where A = {a} is the set
of all actions, S = {s} is the space of all possible states, s
is a starting state (or initial distribution), R(s, a) is the re-
ward function, and T'(s’|s, a) is the transition function. We
describe these below.

States A state s in our MDP represents all past informa-
tion seen in the world (there are a very large number of
states). At time ¢, the state s, includes: all past experiences
(24, ai,ri(ai))f;%, the current context x;, and the current
function f; computed by running POLOPT on the past ex-
periences.

For the purposes of learning, this state space is far too
large to be practical, so we model each state using a set of ex-
ploration features. The exploration policy = is trained based
on exploration features ® (Alg 1, line 12). These features are
allowed to depend on the current classifier f;, and on any
part of the history except the inputs z; in order to maintain
task independence. We additionally ensure that its features
are independent of the dimensionality of the inputs, so that
m can generalize to datasets of arbitrary dimensions. The
specific features we use are listed below; these are largely
inspired by Konyushkova, Sznitman, and Fua (2017) but
adapted to our setting.

Importantly, we wish to train 7 using one set of tasks (for
which we have fully supervised data on which to run sim-
ulations) and apply it to wholly different tasks (for which
we only have bandit feedback). To achieve this, we allow
7 to depend representationally on f; in arbitrary ways: for



instance, it might use features that capture f;’s uncertainty
on the current example. We additionally allow 7 to depend
in a task-independent manner on the history (for instance,
which actions have not yet been tried): it can use features
of the actions, rewards and probabilities in the history but
not depend directly on the contexts x. This is to ensure that
m only learns to explore and not also to solve the underly-
ing task-dependent classification problem. Because 7 needs
to learn to be task independent, we found that if f,’s predic-
tions were uncalibrated, it was very difficult for 7 to general-
ize well to unseen tasks. Therefore, we additionally allow 7
to depend on a very small amount of fully labeled data from
the task at hand, which we use to allow 7 to calibrate f;’s
predictions. In our experiments we use only 30 fully labeled
examples, but alternative approaches to calibrating f; that
do not require this data would be preferable. The features of
f+ that we use are: a) predicted probability p(a|f:, @), we
use a softmax over the predicted rewards from f; to convert
them to probabilities; b) entropy of the predicted probability
distribution; ¢) a one-hot encoding for the predicted action
fe(xe).

The features of h;_; that we use are: a) current time step
t; b) normalized counts for all previous actions predicted so
far; ¢) average observed rewards for each action; d) empir-
ical variance of the observed rewards for each action in the
history.

We use Platt’s scaling (Platt 1999; Lin, Lin, and Weng
2007) method to calibrate the predicted probabilities. Platt’s
scaling works by fitting a logistic regression model to the
classifier’s predicted scores.

Initial State The intial state distribution is formed by
drawing a new contextual bandit task at random, setting the
history to the empty set, and initializing the first context
as the first example in that contextual bandit task.

Actions At each state, our learned exploration policy 7
must take an input state s; (described above) and make a
decision. Its action space A is the same action space as that
of the contextual bandit problem it is trying to solve. If 7
chooses to take the same action as f, then we interpret this
as an “exploitation” step, and if it takes another action, we
interpret this as an “exploration” step.

Transitions Each episode starts off with a new contex-
tual bandit task and an empty history ho = {}. The subse-
quent steps in the episode involve observing context vectors
1, -+ ,x7 from the new contextual bandit task. A single
transition in the episode consists of the exploration policy
7 being given the state s containing information about the
current context vector x; and the history h;_1, using which,
the exploration policy 7 chooses the next action a. The tran-
sition function T'(s'|s, a) incorporates the action a chosen
by the exploration policy in state s along with the features
representing the current state s, and produces the next state
s’ that represents a new feature vector ;. 1. The episode
terminates whenever all the context vectors in the contex-
tual bandit task have been exhausted. During the test phase,
each contextual bandit task is handled only once in a single
episode.
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More formally, let m be the exploration policy we are
learning, which takes two inputs: a function f € F and
a context x, and outputs an action. In our example, f will
be the output of the policy optimizer on all historic data,
and x will be the current user. This is used to produce an
agent which interacts with the world, maintaining an initially
empty history buffer A, as:

1. The world draws (x4, ;) ~ D and reveals context x;.

2. The agent computes f; < POLOPT(h,;) and a greedy ac-
tion dt = W(ft, l’t).

3. The agent plays a; = a; with probability (1 — 1), and a;
uniformly at random otherwise.

4. The agent observes r¢(az).

5. The agent appends (x¢,a¢,r¢(at),p:) to the history hy,

where p; = u/K ifa; # ay;andpy, = 1 — p+ p/K if

ay = &t.
Here, f; is the function optimized on the historical data, and
m uses it and x; to choose an action. Intuitively, m might
choose to use the prediction f;(x;) most of the time, un-
less f; is quite uncertain on this example, in which case 7
might choose to return the second (or third) most likely ac-
tion according to f;. The agent then performs a small amount
of additional p-greedy-style exploration: most of the time it
acts according to 7 but occasionally it explores some more.
In practice (§5), we find that setting ;x = 0 is optimal in
aggregate, but non-zero p is necessary for our theory (§4).

Rewards The reward function is chosen so that reward
maximization by the learned policy is equivalent to low re-
gret in the contextual bandit problem. Formally, at state s;,
let 7;(+) be the reward function for the contextual bandit task
at that state. The reward function is: R(s, a) = r¢(a).

Training MELEE by Imitation Learning

The meta-learning challenge is: how do we learn a good ex-
ploration policy 7?7 We assume we have access to fully la-
beled data on which we can train 7; this data must include
context/reward pairs, but where the reward for all actions is
known. This is a weak assumption: in practice, we use purely
synthetic data as this training data; one could alternatively
use any fully labeled classification dataset as in (Beygelz-
imer and Langford 2009). Under this assumption about the
data, and with our model of behavior as an MDP, a natural
class of learning algorithms to consider for learning are im-
itation learning algorithms (Daumé, Langford, and Marcu
2009; Ross, Gordon, and Bagnell 2011; Ross and Bagnell
2014; Chang et al. 2015). In other work on meta-learning,
such problems are often cast as full reinforcement-learning
problems. We opt for imitation learning instead because it
is computationally attractive and effective when a simulator
exists.

Informally, at training time, MELEE will treat one of these
synthetic datasets as if it were a contextual bandit dataset. At
each time step ¢, it will compute f; by running POLOPT on
the historical data, and then consider: for each action, what
would the long time reward look like if I were to take this
action. Because the training data for MELEE is fully labeled,
this can be evaluated for each possible action, and a policy
7 can be learned to maximize these rewards.



Algorithm 1 MELEE (supervised training sets {.5,,}, hy-
pothesis class F, exploration rate y, number of validation
examples Ny, feature extractor )

—_

: initialize meta-dataset D = {}
: for episoden =1,2,..., N do
3:  choose S at random from {S,, }, and set history hg =
{}
4:  partition and permute S randomly into train 7r and
validation Val where |Val| = Ny
forround ¢t = 1,2,...,|Tr| do
let (x4, 7¢) = Try, ¢ = (i, a4, 75(a;)) 2, w0, fo
for each actiona =1,..., K do
.ft,a = POLOPT(‘F, ht—l (&%) (xt,a,n(a),l —
£=111)) on augmented history
roll-out: estimate Q*(s¢, a), the cost-to-go of a,
using 7¢(a) and a roll-out policy 7°" on f; ,
10: end for

[\

°

11: compute f; = POLOPT(F, hi—1)

12: D+ D@ (P(st), (Q*(st,1),...,Q%(st, K)))
13: roll-in: a; ~ £1g + (1 — p)mu_1(ft, z¢) with
probability p,, where 1 is the ones-vector
14: append history h; < hi—1 @ (x4, ar, re(ar), pe)

15:  end for
16:  update 7,, = LEARN(D)
17: end for

18: return best policy in {7, }_;

More formally, in imitation learning, we assume training-
time access to an expert, w*, whose behavior we wish to
learn to imitate at test-time. Because we can train on fully
supervised training sets, we can easily define an optimal ref-
erence policy 7*, which “cheats” at training time by looking
at the true labels: in particular, 7* can always pick the cor-
rect action (i.e., the action that maximizes future rewards)
at any given state. The learning problem is then to estimate
7 to have as similar behavior to 7* as possible, but without
access to those labels.

Suppose we wish to learn an exploration policy « for a
contextual bandit problem with K actions. We assume ac-
cess to M supervised learning datasets S, ..., .Sy, where
each S, = { (z1,71),.... (zN,,,TnN,, )} of size N,,,, where
each z,, is from a (possibly different) input space &), and the
reward vectors are all in [0, l]K . In particular, multi-class
classification problems are modeled by setting the reward
for the correct label to be one and the reward for all other
labels to be zero.

The imitation learning algorithm we use is AggreVaTe
(Ross and Bagnell 2014) (closely related to DAgger (Ross,
Gordon, and Bagnell 2011)), and is instantiated for the con-
textual bandits meta-learning problem in Alg 1. AggreVaTe
learns to choose actions to minimize the cost-to-go of the
expert rather than the zero-one classification loss of mim-
icking its actions. On the first iteration AggreVaTe collects
data by observing the expert perform the task, and in each
trajectory, at time ¢, explores an action a in state s, and ob-
serves the cost-to-go Q7 (s, a) of the expert after performing

this action, defined as:

Q:(Sv CL) =Tt (CL) + ESNT(.\s,a),aN‘n'*(.\s) [Q:J,-l (37 CL)] 2
where the expectation is taken over the randomness of the
policy 7* and the MDP.

Each such step generates a cost-weighted training exam-
ple (s, t, a, @*) and AggreVaTe trains a policy 71 to mini-
mize the expected cost-to-go on this dataset. At each follow-
ing iteration n, AggreVaTe collects data through interaction
with the learner as follows: for each trajectory, begin by us-
ing the current learner’s policy 7, to perform the task, inter-
rupt at time ¢, explore a roll-in action « in the current state
s, after which control is provided back to the expert to con-
tinue up to time-horizon 7'. This results in new examples of
the cost-to-go (roll-out value) of the expert (s, ¢, a, @*), un-
der the distribution of states visited by the current policy 7,,.
This new data is aggregated with all previous data to train
the next policy 7, 1; more generally, this data can be used
by a no-regret online learner to update the policy and obtain
Tn+1- This is iterated for some number of iterations /N and
the best policy found is returned.

Following the AggreVaTe template, MELEE operates in
an iterative fashion, starting with an arbitrary 7 and improv-
ing it through interaction with an expert. Over N episodes,
MELEE selects random training sets and simulates the test-
time behavior on that training set. The core functionality is
to generate a number of states (f;, ;) on which to train 7,
and to use the supervised data to estimate the value of every
action from those states. MELEE achieves this by sampling
arandom supervised training set and setting aside some val-
idation data from it (line 4). It then simulates a contextual
bandit problem on this training data; at each time step t,
it tries all actions and “pretends” like they were appended
to the current history (line 8) on which it trains a new pol-
icy and evaluates it’s roll-out value (line 9). This yields, for
each ¢, a new training example for 7, which is added to 7’s
training set (line 12); the features for this example are fea-
tures of the classifier based on true history (line 11) (and pos-
sibly statistics of the history itself), with a label that gives,
for each action, the corresponding cost-to-go of that action
(the Q*s computed in line 9). MELEE then must commit to
a roll-in action to actually take; it chooses this according to
a roll-in policy (line 13). MELEE has no explicit “exploita-
tion policy”, exploitation happens when 7 chooses the same
action as f;, while exploration happens when it chooses a
different action. In learning to explore, MELEE simultane-
ously learns when to exploit.

Roll-in actions. The distribution over states visited by
MELEE depends on the actions taken, and in general it is
good to have that distribution match what is seen at test time.
This distribution is determined by a roll-in policy (line 13),
controlled in MELEE by exploration parameter p € [0, 1].
As p — 1, the roll-in policy approaches a uniform random
policy; as i — 0, the roll-in policy becomes deterministic.
When the roll-in policy does not explore, it acts according
tom (ft7 )

Roll-out values. The ideal value to assign to an action
(from the perspective of the imitation learning procedure) is
that total reward (or advantage) that would be achieved in
the long run if we took this action and then behaved accord-



ing to our final learned policy. Unfortunately, during train-
ing, we do not yet know the final learned policy. Thus, a
surrogate roll-out policy 7°" is used instead. A convenient,
and often computationally efficient alternative, is to evaluate
the value assuming all future actions were taken by the ex-
pert (Langford and Zadrozny 2005; Daumé, Langford, and
Marcu 2009; Ross and Bagnell 2014). In our setting, at any
time step ¢, the expert has access to the fully supervised re-
ward vector 7, for the context ;. When estimating the roll-
out value for an action a, the expert will return the true re-
ward value for this action 7;(a) and we use this as our esti-
mate for the roll-out value.

4 Theoretical Guarantees

We analyze MELEE, showing that the no-regret property of
AGGREVATE can be leveraged in our meta-learning setting
for learning contextual bandit exploration. In particular, we
first relate the regret of the learner in line 16 to the overall
regret of 7. This will show that, if the underlying classifier
improves sufficiently quickly, MELEE will achieve sublinear
regret. We then show that for a specific choice of underly-
ing classifier (BANDITRON), this is achieved. MELEE is an
instantiation of AGGREVATE (Ross and Bagnell 2014); as
such, it inherits AGGREVATE’s regret guarantees.

Theorem 1 After N episodes, if LEARN (line 16) is no-
regret algorithm, then as N — oo, with probability 1, it
holds that J () > J(w*) — 2T'\/ Ké,iass(T), where J(-) is
the reward of the exploration policy, T is the average policy
returned, and €.,5s(T') is the average regression regret for
each m, accurately predicting Q*, where

N
1 - * N *
n NE ;:1 [QT—H-l(S: ) — nin Qr—i41(s, a)]

is the empirical minimum expected cost-sensitive classifi-
cation regret achieved by policies in the class 11 on all the
data over the N iterations of training when compared to the
Bayes optimal regressor, fort ~ U(T),s ~ dt. ,U(T) the
uniform distribution over {1,..., T}, d.. the distribution of
states at time t induced by executing policy m, and Q* the
cost-to-go of the expert.

gclasx(qﬂ) - l;rnel

Thus, achieving low regret at the problem of learning 7 on
the training data it observes (“D” in MELEE), i.e. €qqs55(T)
is small, translates into low regret in the contextual-bandit
setting. At first glance this bound looks like it may scale
linearly with T'. However, the bound in Theorem 1 is depen-
dent on é.,55(T). Note however, that s is a combination of
the context vector x; and the classification function f;. As
T — o0, one would hope that f; improves significantly and
€ctass(T') decays quickly. Thus, sublinear regret may still be
achievable when f learns sufficiently quickly as a function
of T For instance, if f is optimizing a strongly convex loss
function, online gradient descent achieves a regret guarantee

of O( %) (Hazan et al. 2016, Theorem 3.3), potentially

leading to a regret for MELEE of O(+/(log T')/T).
The above statement is informal (it does not take into

account the interaction between learning f and 7). How-
ever, we can show a specific concrete example: we analyze
MELEE’s test-time behavior when the underlying learning
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Figure 1: Win/Loss counts for all pairs of algorithms over
16 random shuffles for the MSLR-10K dataset.

algorithm is BANDITRON. BANDITRON is a variant of the
multiclass Perceptron that operates under bandit feedback.
Details of this analysis (and proofs, which directly follow the
original BANDITRON analysis) are given in the appendix.

5 Experimental Setup and Results

Using a collection of synthetically generated classification
problems, we train an exploration policy 7 using MELEE
(Alg 1). This exploration policy learns to explore on the ba-
sis of calibrated probabilistic predictions from f together
with a predefined set of exploration features (§ 3). Once 7
is learned and fixed, we follow the test-time behavior de-
scribed in § 3 to evaluate 7 on a set of contextual bandit
problems. We evaluate MELEE on a natural learning to rank
task (§5). To ensure that the performance of MELEE general-
izes beyond this single learning to rank task, we additionally
perform thorough evaluation on 300 “simulated” contextual
bandit problems, derived from standard classification task.
In all cases, the underlying classifier f is a linear model
trained with an optimizer that runs stochastic gradient de-
scent. We seek to answer two questions experimentally:

1. How does MELEE compare empirically to alternative (ex-
pert designed) exploration strategies?

How important are the additional features used by MELEE
in comparison to using calibrated probability predictions
from f as features?

Training Datasets

In our experiments, we follow Konyushkova, Sznitman, and
Fua (2017) (and also Peters et al. (2014), in a different set-
ting) and train the exploration policy 7 only on synthetic
data. This is possible because the exploration policy 7 never
makes use of x explicitly and instead only accesses it via
ft’s behavior on it. We generate datasets with uniformly dis-
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Figure 2: Learning curve on the MSLR-10K dataset: x-axis
shows the number of queries observed, and y-axis shows the
progressive reward.

tributed class conditional distributions. The datasets are al-
ways two-dimensional.

Evaluation Methodology

For evaluation, we use progressive validation (Blum, Kalai,
and Langford 1999), which is exactly computing the re-
ward of the algorithm. Specifically, to evaluate the perfor-
mance of an exploration algorithm A on a dataset S of size
n, we compute the progressive validation return G(.A)
LS 1 ri(ay) as the average reward up to n, where ay is the
action chosen by the algorithm A and r; is the true reward.
Progressive validation is particularly suitable for measuring
the effectiveness of the exploration algorithm, since the de-
cision on whether to exploit or explore at earlier time steps
will affect the performance on the observed examples in the
future.

Because our evaluation is over 300 datasets, we report ag-
gregate results in terms of Win/Loss Statistics: We compare
two exploration methods by counting the number of statisti-
cally significant wins and losses. An exploration algorithm
A wins over another algorithm B if the progressive valida-
tion return G(.A) is statistically significantly larger than B’s
return G(B) at the 0.01 level using a paired sample t-test.

Experimental Results

Learning to Rank We evaluate MELEE on a natural learn-
ing to rank dataset. The dataset we consider is the Microsoft
Learning to Rank dataset, variant MSLR-10K from (Qin and
Liu 2013). The dataset consists of feature vectors extracted
from query-url pairs along with relevance judgment labels.
The relevance judgments are obtained from a retired label-
ing set of a commercial web search engine (Microsoft Bing),
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Figure 3: Behavior of MELEE in comparison to baseline
and state-of-the-art exploration algorithms. A representative
learning curve on dataset #1144.

which take 5 values from O (irrelevant) to 4 (perfectly rele-
vant) . In our experiments, we limit the number of labels
to the two extremes: 0 and 4, and we drop the queries not
labelled as any of the two extremes. A query-url pair is rep-
resented by a 136-dimensional feature vector. The dataset
is highly imbalanced as the number of irrelevant queries is
much larger than the number of relevant ones. To address
this, we sample the number of irrelevant queries to match
that of the relevant ones. To avoid correlations between the
observed query-url pairs, we group the queries by the query
ID, and sample a single query from each group. We convert
relevance scores to losses with 0 indicating a perfectly rele-
vant document, and 1 an irrelevant one.

Figure 2 shows the evaluation results on a subset of
the MSLR-10K dataset. Since the performance is closely
matched between the different exploration algorithms, we
repeat the experiment 16 times with randomly shuffled per-
mutations of the MSLR-10K dataset. Figure 2 shows the
learning curve of the trained policy 7 as well as the base-
lines. Here, we see that MELEE quickly achieves high re-
ward, after about 100 examples the two strongest baselines
catch up. By 200 examples all approaches have asymptoted.
We exclude LinUCB from these runs because the required
matrix inversions made it too computationally expensive.'
Figure 1 shows statistically-significant win/loss differences
for each of the algorithms, across these 16 shuffles. Each
row/column entry shows the number of times the row algo-
rithm won against the column, minus the number of losses.
MELEE is the only algorithm that always wins more than it
loses against other algorithms, and outperforms the nearest

'Tn a single run of LinUCB we observed that its performance is
on par with e-greedy.
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Figure 4: Behavior of MELEE in comparison to baseline and
state-of-the-art exploration algorithms. Win statistics: each
(row, column) entry shows the number of times the row algo-
rithm won against the column, minus the number of losses.
MELEE outperforms the nearest competition (e-decreasing)
by 23.

competition (e-decreasing) by 3 points.

Simulated Contextual Bandit Tasks We perform an ex-
haustive evaluation on simulated contextual bandit tasks
to ensure that the performance of MELEE generalizes be-
yond learning to rank. Following Bietti, Agarwal, and Lang-
ford (2018), we use a collection of 300 binary classifica-
tion datasets from openml.org for evaluation. These datasets
cover a variety of different domains including text & image
processing, medical, and sensory data. We convert classi-
fication datasets into cost-sensitive classification problems
by using a 0/1 encoding. Given these fully supervised cost-
sensitive multi-class datasets, we simulate the contextual
bandit setting by only revealing the reward for the selected
actions.

In Figure 3, we show a representative learning curve.
Here, we see that as more data becomes available, all the ap-
proaches improve (except T-first, which has ceased to learn
after 2% of the data). MELEE, in particular, is able to very
quickly achieve near-optimal performance (in around 40 ex-
amples) in comparison to the best baseline which takes at
least 200.

In Figure 4, we show statistically-significant win/loss
differences for each of the algorithms. Here, each (row,
column) entry shows the number of times the row algo-
rithm won against the column, minus the number of losses.
MELEE is the only algorithm that always wins more than it
loses against other algorithms, and outperforms the nearest
competition (e-decreasing) by 23 points.

To understand more directly how MELEE compares to -
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dataset; the x-axis shows the reward of MELEE, the y-axis
shows e-decreasing, and red dots represent statistically sig-
nificant runs.
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Figure 6: MELEE vs MELEE using only the calibrated pre-
diction probabilities (x-axis). MELEE gets an additional
leverage when using all the features.

decreasing, in Figure 5, we show a scatter plot of rewards
achieved by MELEE (x-axis) and e-decreasing (y-axis) on
each of the 300 datasets, with statistically significant dif-
ferences highlighted in red and insignificant differences in
blue. Points below the diagonal line correspond to better
performance by MELEE (147 datasets) and points above to
e-decreasing (124 datasets). The remaining 29 had no statis-
tically significant difference.

Finally, we consider the effect that the additional features
have on MELEE’s performance. In particular, we consider a
version of MELEE with all features (this is the version used
in all other experiments) with an ablated version that only
has access to the (calibrated) probabilities of each action
from the underlying classifier f. The comparison is shown
as a scatter plot in Figure 6. Here, we can see that the full
feature set does provide lift over just the calibrated probabil-
ities, with a win-minus-loss improvement of 24 by adding
additional features from which to learn to explore.
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