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Abstract

This work addresses the problem of robustly learning pre-
cise temporal point event detection despite only having ac-
cess to poorly aligned labels for training. While standard
(cross entropy-based) methods work well in noise-free set-
ting, they often fail when labels are unreliable since they at-
tempt to strictly fit the annotations. A common solution to this
drawback is to transform the point prediction problem into a
distribution prediction problem. However, we show that this
approach raises several issues that negatively affect the ro-
bust learning of temporal localization. Thus, in an attempt to
overcome these shortcomings, we introduce a simple and ver-
satile training paradigm combining soft localization learning
with counting-based sparsity regularization. In fact, unlike its
counterparts, our approach allows to directly infer clear-cut
point predictions in an end-to-end fashion while relaxing the
reliance of the training on the exact position of labels. We
achieve state-of-the-art performance against standard bench-
marks in a number of challenging experiments (e.g., detec-
tion of instantaneous events in videos and music transcrip-
tion) by simply replacing the original loss function with our
novel alternative—without any additional fine-tuning.

1 Introduction
The surge of deep neural networks (LeCun, Bengio, and
Hinton 2015) has accentuated the ever-growing need for
large corpora of data. The main bottleneck for the efficient
creation of datasets remains the annotation process. Over the
years, while new labeling paradigms have emerged to allevi-
ate this issue (e.g., crowdsourcing (Deng et al. 2009) or ex-
ternal information sources (Abu-El-Haija et al. 2016)), these
methods have also highlighted and emphasized the preva-
lence of label noise. Deep neural networks are unfortunately
not immune to such perturbations, as their intrinsic ability
to memorize and learn annotation errors (Zhang et al. 2017)
can be the cause of training robustness issues and poor gen-
eralization performance. In this context, the development of
models that are robust to label noise is essential.

This work tackles the problem of precise temporal local-
ization of point events (i.e., determining when and which
instantaneous events occur) in sequential data (e.g. time se-
ries, video, or audio sequences) despite only having access
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Figure 1: Task illustration. Model training solely relies on
noisy labels that differ from the ground-truth, while the final
inference objective is the precise localization of events.

to poorly aligned (w.r.t. the underlying ground-truth) anno-
tations for training (see Figure 1). This task is characterized
by the discrepancy between the noisiness of the training la-
bels and the precision expected of the predictions during
inference. Indeed, while models are trained on inaccurate
data, they are evaluated on their ability to predict event oc-
currences as precisely as possible with respect to the actual
ground-truth. In such a setting, effective models have to infer
event locations more accurately than the labels they relied on
for training. This requirement is particularly challenging for
most classical approaches that are designed to learn localiza-
tion by strictly mimicking the provided annotations. Indeed,
as the training labels themselves do not accurately reflect the
event location, focusing on replicating these unreliable pat-
terns is incompatible with the overall objective of learning
the actual ground-truth. These challenges highlight the need
for more relaxed learning approaches that are less dependent
on the exact location of labels for training.

Contributions This work: a) proposes a novel model-
agnostic loss function that relies on sequence smoothing and
sparsity regularization to achieve a robust and relaxed learn-
ing of temporal point detection with predictions that con-
verge towards clear-cut point estimates b) presents a succinct
analysis of the properties of the loss and its classical counter-
parts and c) demonstrates the effectiveness of the proposed
approach against standard benchmarks in various temporal
event detection experiments (videos, wearable sensors time
series, and audio).
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2 Related Works
Temporal Localization Under Label Misalignment The
literature on temporal noise robustness is limited despite the
critical relevance of this issue. First, (Yadati et al. 2018) pro-
pose solutions combining noisy and expert labels; however,
these methods require a sizable clean subset of annotations,
unlike our approach. Second, while (Adams and Marlin
2017) achieve increased robustness by augmenting simple
classifiers with an explicit probabilistic model of the noise
structures, the effectiveness of the approach on more com-
plex temporal models (e.g., LSTM) still needs to be demon-
strated. Finally, (Lea et al. 2017) perform robust temporal
action segmentation by introducing an encoder-decoder ar-
chitecture. However, the coarse temporal encoding comes
at the expense of finer-grained temporal information, which
is essential for the precise localization of short events (e.g.,
drum hits). In this paper, rather than a new architecture, we
propose a novel and flexible loss function—agnostic to the
underlying network—which allows for the robust training
of temporal localization networks even in the presence of
extensive label misalignment.

Classical Heuristic Our approach is closely linked to the
more classical trick of label smoothing or target smearing
(e.g., applying a Gaussian filter to the labels) which has been
considered to increase robustness to temporal misalignment
of annotations (Schlüter and Böck 2014; Hawthorne et al.
2017). However, this slight modification of the input data
converts the original point prediction problem into a distri-
bution prediction problem, which ultimately leads to several
issues such as location ambiguity and prediction entangle-
ment (see the full discussion in Section 4.2). In contrast, our
novel loss function does not suffer from any of these issues
while still achieving a more robust localization learning.

3 Problem Formulation
As in previous works—although not necessary for the defini-
tion and use of our loss function—time is assumed to be dis-
crete. Apart from that, the main assumption of this work is
the instantaneous nature (i.e., lasting exactly one timestep)
of the events to detect. (Event duration can be modeled in
such a framework by labeling the start and end of each
event class as two separate channels.) In this setting, each
predictor Xi of the training data D :={(Xi,Yi) | 0< i≤N}
is an observable temporal sequence of length Ti (i.e.,
Xi=(xi,t)

Ti
t=1∈ IRTi×λ), such as a DNN-learned representa-

tion or any λ-dimensional time series. The observed la-
bel Yi=(yi,t)

Ti
t=1∈{0, 1}

Ti×d and the unobservable ground-
truth event locations Gi=(gi,t)

Ti
t=1∈{0, 1}

Ti×d are discrete
sequences indicating whether one event of class d was
observed—or occurred—at time t. (For the sake of sim-
plicity, we set d=1; the case with multiple event classes
(i.e., d>1) is a trivial extension.)

This work addresses the problem of label misalign-
ment, i.e., Yi 6=Gi. To that end, we model temporal la-
bel misalignment by assuming that the timestamps of la-
beled events T Yi := {t∈N≤Ti |yi,t=1} are perturbed versions
of the unobservable ground-truth timestamps of event occur-
rences T Gi := {t∈N≤Ti |gi,t=1}, i.e.,

{t∈N≤Ti |yi,t=1}︸ ︷︷ ︸
:=T Yi ∈P([1,...,Ti])

= {tk+εk | gi,tk =1, tk∈N≤Ti}, εk
iid∼E,

(1)

where E is a discrete noise distribution. The aim of this work
is thus the following:

Objective (Precise Event Detection)
Estimate the true event occurrence times T G of an unseen
input sequence X using only the noisy data D for training.

4 Classical Models
For the sake of notation simplicity, all loss functions are pre-
sented for a batch size of 1 (e.g., the label sequences Yi and
its elements yi,t become y and yt respectively).

4.1 Stepwise Cross-Entropy
In this discrete setting, the standard approach to temporal
point detection (Wu et al. 2018; Hawthorne et al. 2017) con-
sists in densely predicting—often iteratively—an event oc-
currence probability p̂t at each time step t of the input time
series X using a model fθ with parameter θ, i.e., p̂θ = fθ(X).
Thus, the temporal granularity of the sequence of proba-
bilities p̂θ is coupled with the granularity of the input se-
quence X. In this dense classification setup, the training of
the model—e.g., RNN and LSTM (Hochreiter and Schmid-
huber 1997)—is commonly done through backprogation us-
ing the stepwise cross-entropy as loss function:

LCE(p̂θ,y) =−
∑
t yt log((φ ∗ xi)t) + (1−yt) log(1−p̂θ,t)

(2)
A key feature of this objective function is that it views each
timestep as an independent classification task (i.e., strict lo-
cal focus). Indeed, in order to minimize the loss, the model is
driven to maximize p̂θ,t at timesteps where an event was la-
beled (t ∈ T Y ) and to minimize them for all other timesteps,
independently of the nature of the neighboring timesteps:

LCE(p̂θ,y)︸ ︷︷ ︸
↓loss

= −
∑
t 1[yt=1] log(p̂θ,t) + 1[yt=0] log(1−p̂θ,t)

= −
∑
t∈T Y log(p̂θ,t)︸ ︷︷ ︸
↑p̂θ,t for t∈T Y

−
∑
t/∈T Y log(1−p̂θ,t)︸ ︷︷ ︸
↓p̂θ,t for t/∈T Y

.

(3)

While this feature allows for an efficient learning of event
representations in noise-free settings as the training can rely
not only local evidences of event occurrences but also on
on local patterns indicating non-events, this rigidity is very
detrimental to the training process when annotations are sub-
ject to temporal misalignment. In fact, even in the presence
of the slightest label misalignment (i.e., T Y 6=T G), correct
predictions that match the ground-truth rather than the labels
yield an infinite loss LCE(g,y) =∞. Besides that, the learn-
ing of meaningful representations in the presence of noise
is hindered by the strict independence of timesteps induced
by LCE. Indeed, as the loss does not allow to leverage labels
from neighboring timesteps to learn local representations,
the model has to rely on ambivalent local patterns that are
sometimes concurrently labeled locally as events and non-
events in the dataset. Such high levels of uncertainty nega-
tively impact the quality of the learned representation.
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In order to demonstrate the temporal detection capabil-
ity of the loss function in isolation from the representation
learning, we propose the following simple example:

Example (Localization Learning)
Let the predictors xi be of the form xi,t=1[t=ti] and the
unique ground-truth event occurrence T Gi ={ti}; by ex-
tension, using Eq. 1 the noisy label sequence is equal
to yi,t=1[t=ti+εi], εi

iid∼E. This scenario describes a situation
where the event occurrence is clearly discernible in the
data—no representation learning is necessary, and where the
identity function is the optimal model. Given the nature of
the data, the problem is similar to learning a 1D convolution
filters φ, i.e., p̂θ,i=fθ(xi) = φ ∗ xi. In this setting, the opti-
mal prediction p̂∗i that minimizes the loss

∑
i LCE(φ ∗ xi,yi)

has the form:
p∗i,ti+τ ≈P (E = τ) (4)

Proof. As shown in Appendix A.1.,
φ∗=arg minφ

∑
iLCE(φ∗xi,yi)⇔φ∗(τ)≈P (E=τ). (5)

Then, Eq. (4) follows from the definition of the convolution.

Thus, in this scenario, while the predictions p̂θ,i con-
verge towards the ground-truth gi in the noise-free setting
(i.e., P (E=τ)=1[τ=0]), models are trained to infer dispersed
predictions when labels are subject to temporal misalign-
ment. This result further indicates that the dispersion of the
prediction mass is given by the noise distribution E.

In conclusion, in noisy settings, models trained with the
stepwise cross-entropy are not only expected to struggle
to learn meaningful representations, but are also expected,
given perfect representations, to yield dispersed predictions
that thus are temporally ambiguous.

4.2 Label Smoothing
Label smoothing (i.e., applying a Gaussian filter to the point
label) is a common and state-of-the-art methodology in 2D
image point detection applications where spatial uncertainty
must be dealt with (Tompson et al. 2014, 2015; Merget,
Rock, and Rigoll 2018). This methodology is also consid-
ered to improve robustness to label misalignment in tempo-
ral applications, e.g., (Schlüter and Böck 2014). More pre-
cisely, when applied to the stepwise cross-entropy, this ap-
proach yields the following relaxed loss function:

LLS|CE(p̂θ,y |Φ) = LCE(p̂θ,Φ ∗ y)

= −
∑
t

(∑T
τ=0 yτΦ(t−τ)︸ ︷︷ ︸
(Φ∗y)t

log(p̂θ,t)

+(1−
∑T
τ=0 yτΦ(t−τ)︸ ︷︷ ︸

(Φ∗y)t

) log(1−p̂θ,t)
)
,

(6)

where Φ is a 1D convolutional filter, e.g., a Gaussian filter
Φσ2(x) = (2πσ2)−1/2e−x

2/2σ2

.
While a potentially unbounded penalization of false pre-

dictions (i.e., log(0)=−∞) might be ideal when training with
clean data, such extreme behavior can be highly detrimen-
tal when labels are subject to temporal misalignment. Thus,
a bounded alternative based on the squared error might be

preferred when dealing with high levels of noise:

LLS|SE(p̂θ,y |Φ) =
∑
t

(
p̂θ,t−

∑T
τ=0 yτΦ(t−τ)︸ ︷︷ ︸

(Φ∗y)t

)2

. (7)

Example (Localization Learning, continued)
Let φ, xi, p̂θ,i, yi and gi be defined as in the example of
Section 4.1, then the optimal prediction p̂∗i that minimizes
the loss

∑
i LLS|CE(φ ∗ xi,yi |Φ) has the form:

p∗i,ti+τ ≈(E ∗ Φ)τ =
∑
k P (E = k)Φ(τ − k) (8)

Proof. As shown in Appendix A.2.,
φ∗=arg minφ

∑
i LLS|CE(φ ∗ xi,yi |Φ)

⇐⇒ φ∗(τ) = (E ∗ Φ)τ =
∑
k P (E=k)Φ(τ−k).

(9)

Then, Eq. (8) follows from the definition of the convolution.

A similar result can be obtained for LLS|SE. Thus, in com-
parison to LCE, models optimized with smoothed labels are
trained to infer even more dispersed predictions. For in-
stance, even in a noise-free setting, the optimal predictions
with respect to the loss function are dispersed over time ac-
cording to the smoothing filter Φ.

Thus, despite its intuitive nature, the traditional solution
of smoothing the labels presents several inherent drawbacks
when applied to temporal point localization (see Figure 2):

(Issue 1) As models are designed to yield dispersed
predictions that are spread out over several timesteps, addi-
tional tailored heuristics (e.g. peak picking (Böck, Schlüter,
and Widmer 2013) or complex thresholding) are required to
obtain precise point predictions. Consequently, the learning
of point localization is not done in an end-to-end fashion.

(Issue 2) Even advanced peak picking struggles to dis-
entangle close events. For instance, a single maximum might
emerge in the middle of two events (see Figure 2), thus sig-
nificantly harming the precision of the final predictions.

(Issue 3) Even in a noise-free setting, the optimal pre-
diction at any given time does not only depend on previous
event occurrences, but also on all closely upcoming events:

p∗t =
∑T
τ=0 yτΦ(t−τ)

=
∑
τ≤t−1 yτΦ(t−τ)︸ ︷︷ ︸

past events

+ytΦ(0)+
∑
τ≥t+1 yτΦ(t−τ)︸ ︷︷ ︸

future events

.

(10)
This implies that correctly detecting an event is not enough;
the context—before and after—also has to be estimated ac-
curately. This cross-influence from other timesteps is espe-
cially problematic for causal models (i.e., models that make
predictions at time t only with data up to time t), for one-
sided recurrent networks, and for fully convolutional archi-
tectures with limited receptive fields. Indeed, these models
have little or even no ability to integrate information from
future timesteps. Thus, for example, requiring them to esti-
mate the left tail of the label distribution might force them
to learn irrelevant features preceding the actual event occur-
rence, leading to poor generalization.

The presence of strong label misalignment further wors-
ens all these issues as increased noise commonly warrants
increased smoothing, dispersing the label (and consequently
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the prediction) mass even more (e.g., Eq. (8)). Overall, ex-
perimental evidence in Section 6 shows that just one of these
issues can prove to be very detrimental to the noise robust-
ness of this classical approach.

5 Our Loss Function
5.1 Soft Localization Learning Loss
While the general principle of relaxing the localization
learning is intuitive and potentially powerful if carefully im-
plemented, smoothing only the label is problematic espe-
cially in causal settings. Many of the drawbacks arising from
the asymmetric nature of the one-sided smoothing can how-
ever be alleviated by filtering not only the labels, but also
the predictions. The comparison of these two smoothed pro-
cesses yields a relaxed loss function for the soft learning of
temporal point detection:

LSLL(p̂θ,y |Φ, E) = LLS|SE(E∗Φ∗p̂θ,y |Φ)

=
∑
t

(∑T
τ,τ̃=0 p̂θ,τΦ(τ̃−τ)E(t−τ̃)︸ ︷︷ ︸

(E∗Φ∗p̂θ)t

−
∑T
τ=0 yτΦ(t−τ)︸ ︷︷ ︸

(Φ∗y)t

)2
=
∑
t

(∑T
τ=0(

∑T
τ̃=0 p̂θ,τ̃ E(τ−τ̃)︸ ︷︷ ︸

(E∗p̂θ)τ

−yτ )Φ(t−τ)
)2
,

(11)

where Φ and E are smoothing filters. The learning is char-
acterized as soft since slight temporal shift do not cause
any abrupt increase in loss—a property that contrasts with
LCE. Thus, the model’s reliance on exact label locations is
relaxed. We once again prefer the (bounded) squared error
over the (potentially unbounded) log-based measures, espe-
cially in the presence of high misalignment levels.

Example (Localization Learning, continued)
Let φ, xi, p̂θ,i, yi and gi be defined as in the example of
Section 4.1, then the optimal prediction p̂∗i that minimizes
the loss

∑
i LSLL(φ ∗ xi,yi |Φ, E) has the form:

(E∗p∗i )τ ≈(E∗gi)τ , if 1∗E=1 and 1∗Φ=1 (12)

Proof. See Appendix A.3.

Regardless of the chosen filter E , the optimal prediction
is independent of the chosen smoothing filter Φ. Thus, in
contrast to label smoothing, our approach can rely on heavy
smoothing without causing an inevitable increase in the dis-
persion of the predictions.

This example further reveals that if E = E, then the pre-
dictions converge towards the ground-truth event locations,
i.e., p∗i,t≈ gi,t. However, while an estimate of the error dis-
tribution can be obtained by altering loss minimization and
noise estimation during the training (e.g., (Patrini et al.
2017)), this theoretical result requires an exact account of
the noise distribution and any deviation from it might cause
prediction dispersion. Thus, in practice, while alleviating the
issues observed for the label smoothing approach, LSLL does
not fully solve them, and thus does not on its own guarantee
clear-cut (i.e., no dispersion) location estimates.

Figure 2: Drawbacks of label smoothing and how our ap-
proach solves them. Issue 1: prediction ambiguity Issue 2:
prediction entanglement Issue 3: temporal cross-influence

5.2 Counting-based Sparsity Constraint
This section addresses how to ensure that predictions do
not present any temporal ambiguity nor entanglement is-
sues since these are not actively prevented by LSLL alone.
An intuitive way of alleviating these potentially remaining
issues is to force the model to output only one single high-
probability prediction per event occurrence.

We propose to achieve this prediction sparsity through the
addition of explicit constraints to the optimization problem:

minθ LSLL(p̂θ,y |Φ, E)

s.t. `0(p̂θ) = c ∧ p̂θ∈{0, 1}T
(13)

In a nutshell, the first constraint ensures that exactly c
timesteps have non-zero probability, while the second one—
that their value is equal to 1. Thus, in practice, we would
set c to the number of labeled events. (Note that the number
of event occurrences is invariant to the exact event locations,
and thus is unaffected by label misalignment.)

An unconstrained optimization problem can be derived by
integrating these constraints as penalty functions to the ob-
jective function, e.g.,
minθ LSLL(p̂θ,y |Φ, E)+λ (`0(p̂θ)−c)2︸ ︷︷ ︸

Non-Diff.

+
∑
i λip̂θ,i(1−p̂θ,i),

(14)
where λ, λi are gradually increased during the training to
progressively enforce the constraints. However, as the `0-
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norm in the second term is non-differentiable, a differen-
tiable surrogate has to be introduced.
Counting Constraint To that end, we propose to use event
counting as a differentiable means to prediction sparsity.
Indeed, the Kullback-Leibler divergence between the num-
ber of predicted events modeled as a sum of independent
Bernoulli distributions (i.e.,

∑
iB(p̂θ,i)) (Schroeter, Sidorov,

and Marshall 2019) and the indicator distribution 1c (i.e.,
P (x=c) = 1), which corresponds to the true number of la-
beled events, has a unique sparsity inducing effect:

Lemma (Count Sparsity) For all c ∈ N,

DKL(1c‖
∑
iB(p̂θ,i))= 0⇔`0(p̂θ)=c ∧ p̂θ∈{0,1}T (15)

Proof. See Appendix A.5.

In this setup, the KL-divergence is differentiable and has the
following closed-form expression:
Lemma (Poisson-Binomial Loss)

DKL(1c‖
∑
iB(p̂θ,i)) = − log(

∑
A∈F

∏
i∈A

p̂θ,i
∏
j∈Ac

(1−p̂θ,j))︸ ︷︷ ︸
:=LPB(p̂θ,c)

,

(16)
where F is the set of all subsets of {1, ..., T} of size c.

Proof. Definition of KL-divergence (Kullback and Leibler
1951) and Poisson-Binomial distribution (Wang 1993).

Thus, the counting loss LPB(p̂θ, c) can be used as a differen-
tiable replacement for the `0-norm-based constraint:

Theorem (Surrogate Regularization)
minθ LSLL(p̂θ,y |Φ, E)

s.t. `0(p̂θ) = c

p̂θ∈{0, 1}T
⇐⇒

{
minθ LSLL(p̂θ,y |Φ, E)

s.t. LPB(p̂θ, c) = 0
(17)

Finally, by updating Eq. (14), we obtain a differentiable pe-
nalized objective function:

minθ LSLL(p̂θ,y |Φ, E) + λ · LPB(p̂θ, c) (18)

Regularized Loss Function However, as λ gradually in-
creases, so does the loss. In order to offset this effect—which
can be detrimental to the training, we propose to optimize
the following scaled loss function:
LSoftLoc(f(X, θ)︸ ︷︷ ︸

p̂θ

,y) := (1−ατ )LSLL(p̂θ,y |ΦSM2 , id)

+ ατLPB(p̂θ,
∑
yi), (19)

where ΦSM2 (x) := (2πSM2 )−1/2e
−x2

/
2SM2 and where id stands

for the identity function. In this equation, ατ regulates
the predominance of the prediction sparsity regularization
against the soft location learning (for training iteration τ ).
(Note that this constraint could be added neither to LCE, nor
to LLS|SE and LLS|CE since the regularization and the loss
function would have conflicting objectives.)

Example (Localization Learning, continued)
Let φ, xi, p̂θ,i, yi and gi be defined as in the example of
Section 4.1, then the optimal prediction p̂∗i that minimizes
the loss

∑
i LSoftLoc(φ ∗ xi,yi) converges towards the ground-

truth sequence gi, if P (E=k)=P (E=−k)

Proof. See Appendix A.4.

End-to-End Learning Overall, adding this prediction
sparsity constraint as a regularizer to our soft localiza-
tion learning loss LSLL allows the model to directly output
unique precise impulse-like localizations (i.e. a single high-
likelihood trigger per event), without weakening its noise
robustness properties. Thus, in contrast to more classical ap-
proaches, the proposed method offers an end-to-end solution
to the problem of temporal localization in the presence of
misaligned labels as it eliminates the need for hand-crafted
components (e.g., peak picking) or post-processing. Indeed,
in our setup, the model is given point labels and directly in-
fers sparse point predictions in an end-to-end fashion with-
out having to explicitly resort to heatmaps nor distributions;
it is only the loss function that formulates these point la-
bels and point predictions as smoothed processes. Therefore,
since the end-to-end learning paradigm is one of the key fac-
tors of the predominance of the deep learning models over
classical ones (Collobert et al. 2011; Krizhevsky, Sutskever,
and Hinton 2012), we expect our model to better serve the
task at hand.

Efficient Computation of the Regularization The expo-
nential complexity O(T · 2T ) of Eq. (16) is too computa-
tionally expensive for most applications. In practice, the
Poisson-binomial distribution can, however, be computed
more efficiently using a simple recursive formula (Howard
1972; Gail, Lubin, and Rubinstein 1981), which results in
a complexity of O(T 2). This can further be reduced to
O(c·T ) by utilizing additional heuristics such as mass trunca-
tion (Schroeter, Sidorov, and Marshall 2019). (See provided
code for more details.)

Sparsity & Uncertainty Quantifying model and predic-
tion uncertainties is often considered better practice than
inferring a single scalar estimate or clear-cut prediction.
However, while classical smoothing-based approaches (Sec-
tion 4.2) infer more scattered location estimates, the ambi-
guity of their predictions does not correctly reflect the un-
derlying uncertainty, but is rather a forced consequence of
the design of the loss function (e.g., Eq. (8)). In fact, all
benchmark models use some form of post-processing (e.g.,
NMS) to reduce this approach-induced uncertainty, and thus
our sparsity-inducing approach merely help reduce that un-
informative ambiguity in an end-to-end fashion. However,
there are no limitations on combining our model with uncer-
tainty quantification techniques, e.g., MC-dropout (Gal and
Ghahramani 2016).

`1-Regularization While sometimes considered to be
an effective alternative to the `0-regularization, the
`1-regularizer does not prevent a detection to be split
into multiple low-probability predictions. Indeed, a single
timestep with probability p=1 or two timesteps with p=0.5
each yield the same `1-loss. Thus, in contrast to the Poisson-
binomial loss function, the `1-regularization does not pro-
duce the desired sparsity-inducing effect when applied to the
occurrence probabilities p̂θ and, as a result, does not help al-
leviate the temporal ambiguity or entanglement issues men-
tioned above.
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In conclusion, our novel loss function, which combines soft
localization learning with sparsity regularization, solves all
the issues of label smoothing-based models presented in
Section 4.2 (see Figure 2), while retaining their relaxed lo-
calization learning ability. Thus, our approach is expected to
outperform existing methods—a claim that is confirmed by
multiple experiments in the next section.

6 Experiments
In order to demonstrate the effectiveness and flexibility of
our approach, a broad range of challenging experiments are
conducted. Code is available1.

6.1 Golf Swing Sequencing in Video
In this section, we replicate the video event detection ex-
periment from (McNally et al. 2019) using either the orig-
inal cross-entropy (LCE), the label smoothing benchmarks
(LLS|CE and LLS|SE), or our proposed loss (LSoftLoc) for train-
ing (not changing anything else). The task consists in the
precise detection (within a one frame tolerance) of eight dif-
ferent golf swing events in video extracts (e.g., address and
impact). To assess robustness to noisy annotations, rounded
normally distributed misalignments (i.e., εm∼bN (0, σ2)e)
are artificially applied to the event timestamps of the train-
ing samples, while the test labels are kept intact for unbiased
inference.

Experiment Characteristics Among other aims, this ex-
periment allows to measure the impact of prediction ambi-
guity (i.e., Issue 1) on the performance of the LLS|CE and the
LLS|SE approaches. Indeed, as video extracts in the dataset
contain exactly one occurrence of each event type, most
of the issues highlighted in Section 4.2 do not occur (e.g.,
no prediction entanglement, no cross-influence from future
events, and no complex peak-picking required). Thus, in this
task, the only defining component that distinguishes the la-
bel smoothing benchmarks (LLS|CE, LLS|SE) from our loss
function is the potential ambiguity of prediction locations.

Results Table 1 confirms the intuitive understanding that
the cross-entropy (LCE) is not well suited to effectively deal
with label misalignment. Indeed, we observe here that at-
tempting to strictly mimic unreliable annotations leads to

LCE

LLS|CE

LLS|SE

LSOFTLOC

σ=0 1 2 3 4

62.8 57.2 47.3 40.9 35.3
57.0 54.2 50.6 46.4 42.5
61.3 59.5 55.2 49.9 46.5

63.0 62.2 59.3 54.9 50.7

Table 1: Golf Swing Action Detection. Performance com-
parison of various training loss functions (LCE, LLS|SE, and
LSoftLoc) on the golf swing sequencing task using a unidirec-
tional RNN (McNally et al. 2019) with respect to label mis-
alignment distribution bN (0, σ2)e. (σ in number of frames).
The (4-fold) cross-validated mean accuracy is reported.

1 https://github.com/SchroeterJulien/AAAI-2021-Learning-
Precise-Temporal-Point-Event-Detection-with-Misaligned-Labels

LR-M
LCE

LLS|CE

LLS|SE
LSOFTLOC

σ, δ = 0 1 2 3 4

93.0 (3.2) 80.6 (8.6) 65.9 (17.4) 64.0 (15.6) 55.0 (19.7)
92.6 (2.9) 55.3 (16.2) 36.0 (15.6) 28.9 (17.0) 25.8 (16.2)
63.9 (7.9) 58.7 (7.4) 50.6 (9.1) 49.5 (9.0) 43.3 (9.2)
63.5 (9.5) 59.2 (6.3) 54.6 (5.9) 49.4 (7.8) 46.3 (8.5)
93.1 (2.5) 90.6 (3.4) 87.8 (4.1) 83.6 (5.2) 79.0 (6.9)

Table 2: Smoking Puff Detection. Comparison of LR-M and
the deep model trained with different loss functions with re-
spect to noise distribution bN (0, σ2)e. We report the mean
(standard deviation) of ten 6-fold cross-validated F1-scores.

poor generalization performance. The results further reveal
that even just one of the issues presented in Section 4.2—
here, prediction ambiguity—can negatively impact the pre-
diction accuracy, as shown by the significant performance
gap between our approach (LSoftLoc) and the label smooth-
ing benchmarks (LLS|CE, LLS|SE) in noisy settings. Indeed,
while our approach yields sharp predictions, the predictions
resulting from a training with LLS|SE and LLS|CE are highly
ambiguous as illustrated in Appendix B.1. In strict settings
with low error tolerance, the dispersion of the predictions of
label smoothing-based models, theoretically highlighted in
Section 4.2 and observed in this experiment, leads to subop-
timal performance. The same conclusion can be drawn from
the additional experiment (see Table B.1 in Appendix B.1
for results) conducted using a (acausal) bidirectional RNN,
instead of the unidirectional architecture. Indeed, our ap-
proach achieves the best overall performance on all noise
levels, with the exception of the noise-free case σ=0.

These results thus demonstrate that the theoretical advan-
tages of our approach (see Section 5) can translate to a sig-
nificant increase in performance in practice, especially for
causal applications.

6.2 Wearable Sensors Time Series Detection
The timely detection of events in healthcare time series is a
crucial challenge to improve medical decision making. The
task tackled in this section consists in the precise tempo-
ral detection of smoking episodes using wearable sensors
features from the puffMarker dataset (Saleheen et al. 2015).
The noise robustness analysis replicates the experiment con-
ducted in (Adams and Marlin 2017), which involves nor-
mally distributed label misalignment (i.e., εm ∼ N (0, σ2))
and no error tolerance (i.e., detections have to be perfectly
aligned with the ground-truth to be considered correct).

Model and Benchmarks As the focus is set on robust-
ness rather than raw performance, the neural architecture
is kept extremely simple: a 14-node fully connected layer
followed by a 14-unit (unidirectional) LSTM and a final
fully connected layer with softmax activation. The step-
wise cross-entropy (LCE), the label smoothing benchmarks
(LLS|CE and LLS|SE) and our (LSoftLoc) loss function (with
SM = 3 frames) are used for training. The statistical LR-M
model proposed by (Adams and Marlin 2017), which was
developed to achieve strong robustness to temporal mis-
alignment of labels on this particular dataset, is also con-
sidered as benchmark.
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Experiment Characteristics Each timestep in this
dataset represents a full respiration cycle: thus, multiple con-
secutive smoking episodes can occur. Such dense sequences
of events in conjunction with a causal architecture and a very
strict tolerance allows, among others, to assess how Issue 3
(i.e., cross-influence between timesteps) might penalize the
performance of the label smoothing benchmark, unlike ours.

Results The results, produced using ten 6-fold (leave-one-
patient-out) cross-validations are summarized in Table 2.
Not only does training with the proposed LSoftLoc loss func-
tion yield a strong improvement in robustness when com-
pared to the cross-entropy (LCE) and the label smoothing
benchmarks, but our simple recurrent model also signifi-
cantly outperforms the robust LR-M model on all metrics.

In addition to normally distributed label misalignment,
more challenging noise patterns are also investigated (see
Appendix B.2 for result table): binary constant length
shifting of labels (±δ steps with equal probability) de-
noted by B(−δ, δ) and skewed-normal noise distribution
SN (0, σ2, α=−2). Aside from exhibiting strong overall
performance on all noise levels, our approach displays
scores with low standard deviations which underlines the
consistency and robustness of the learning process. These
observations hold for all noise distributions confirming that
the Gaussian filtering does not have to match the actual noise
distribution of the data to be effective. Indeed, the smooth-
ing distribution only acts as a means to relax the dependence
of the learning on the exact location of the labels, and not as
a model for the underlying noise (see Section 5).

As expected, the label smoothing benchmarks (LLS|CE,
LLS|SE) yield poor overall results on this task. In fact, the
causal architecture makes the learning with these loss func-
tions especially difficult, as the model is unable to prop-
erly learn the target smoothed labels given that it does not
have the ability to leverage crucial information from future
timesteps (see Eq. 10 and Issue 3).

6.3 Piano Onset Experiment
Piano transcription and more specifically piano onset de-
tection is a difficult problem, as it requires precise and si-
multaneous detection of hits from 88 different polyphonic
channels. In this section, we reproduce the experiment from
Hawthorne et al. (Hawthorne et al. 2017) using the MAPS
database (Emiya, Badeau, and David 2010). (Only onsets
are considered for the comparison.) Once again, to evaluate
the robustness, the training labels are artificially perturbed
according to a normal distribution (εm ∼ N (0, σ2)).

Experiment Characteristics In contrast to the wearable
sensor experiment in Section 6.2, events are more sparsely
distributed and the architecture includes temporal convolu-
tions (i.e., not fully causal model). Consequently, the label
smoothing benchmarks are expected to be less affected by
Issue 3. However, as a piano note can be played multiple
times within a very short time span, prediction entanglement
(Issue 2) might arise when training with LLS|SE .

Benchmarks Three additional classical benchmarks,
based on a model proposed by (Hawthorne et al. 2017)
that shows state-of-the-art performance on clean data, are
considered: first, the original model itself which is highly

Haw. (ORIGINAL)
Haw. (EXTENDED)
Haw. (BOOTSTRAP)
LLS|SE

LSLL

LSOFTLOC

σ=0ms 50ms 100ms 150ms 200ms

82.1 38.5 2.0 0.5 0.2
77.7 68.0 30.7 9.2 3.9
79.1 74.2 32.5 15.4 6.9
73.1 70.5 59.2 41.3 28.0

76.1 76.0 75.1 66.9 46.9
76.0 76.3 75.9 74.0 73.7

Table 3: Piano Onset Detection. Comparison of models
trained with LLS|SE, LSLL, and LSoftLoc (SM =100ms) and the
diverse classical benchmarks (Hawthorne et al. 2017) with
respect to label misalignment distribution εm∼N (0, σ2).
The mean F1-score over all pieces is reported.

representative of models aiming for optimal performance
with little regard for annotation noise (ORIGINAL); second,
a version with extended onset length (i.e., target smearing)
(EXTENDED); finally, a version trained with the soft boot-
strapping loss proposed by (Reed et al. 2014) instead of the
cross-entropy for increased robustness (BOOTSTRAP).

Architecture, Training, and Evaluation The network
is comprised of six convolutional layers (representation
learning) followed by a 128-unit LSTM (temporal de-
pendencies learning) and two fully-connected layers (pre-
diction mapping). The network is trained using mel-
spectrograms (Stevens, Volkmann, and Newman 1937)
and their first derivatives stacked together as model in-
put, while data augmentation in the form of sample rate
variations is applied for increased robustness and perfor-
mance. The models are evaluated on the noise-free test
set using the mir eval library (Raffel et al. 2014) with a
50ms tolerance as in (Hawthorne et al. 2017). (SM = 100ms,
ατ = max(min( τ−105

105 , .9), .2).)
Results As summarized in Table 3, our proposed ap-

proach LSoftLoc displays strong robustness against label
misalignment: in contrast to all benchmarks, the perfor-
mance appears almost invariant to the noise level. (See Ap-
pendix B.3 for discussion on the model’s performance for
σ > 200ms.) For instance, at σ=150ms only 26% of train-
ing labels lie within the 50ms tolerance; in such a con-
text, the score achieved by our model LSoftLoc (i.e., ∼ 75%)
is unattainable for classical approaches, which do not take
label uncertainty into account and attempt to strictly fit
the noisy annotations. While standard tricks, such as label
smoothing (LLS|SE) or label smearing (EXTENDED) slightly
improve noise robustness, their effectiveness is limited. The
results also reveal that, as the noise level increases, the ad-

LSLL

LPB

LSOFTLOC

σ=0ms 50ms 100ms 150ms 200ms

76.06 76.00 75.10 66.88 46.91
71.59 73.04 68.69 70.33 67.26

76.88 76.34 75.86 74.87 73.68

Table 4: Piano Detection Ablation Study. Piano onset detec-
tion performance (F1-score) of our model trained with loss
functions LSoftLoc (SM =100ms), LPB, and LSLL respectively
in various noise level settings.
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dition of the prediction sparsity regularization LPB to LSLL

is crucial to achieve strong robustness. Finally, a fixed pa-
rameter set is used throughout this experiment, which ex-
plains the small performance gap between our approach and
(Hawthorne et al. 2017) for the noise-free case. This could
easily be remedied by adapting the loss settings (e.g., ατ =1,
SM2 → 0ms) to maximize performance in tasks without noise.

Ablation Study To assess the usefulness of the differ-
ent components of LSoftLoc, we repeat the experiment twice
using either LPB or LSLL as loss function. Table 4 reveals
that LSLL is the main driver of performance in noise-free
settings, while LPB ensures stability under increased label
misalignment. (A simple threshold-based peak-picking al-
gorithm was implemented to infer localization from the dis-
persed mass produced by LSLL.) Indeed, while LSLL pro-
duces reasonable predictions on its own, only the combined
LSoftLoc yields both competitive scores in noise-free settings
and strong robustness to temporal misalignment.

6.4 Drum Detection Experiment

The softness SM is a defining model hyperparameter. In this
section, 210 runs of the same drum detection experiment are
conducted with varying noise and softness levels in order to
highlight the correlation between this key parameter, label
noise and the final localization performance.

More specifically, the experiment is based on the D-DTD
Eval Random drum detection task (based on the IDMT-SMT-
Drums dataset (Dittmar and Gärtner 2014)) performed by
Wu et al. (Wu et al. 2018). The goal is the correct tem-
poral detection of three different classes of drum hits—
hi-hats, kick drums, and snare drums—within a 50ms tol-
erance window. The network—the number of filters and
nodes aside, the training, and the evaluation are similar to
the piano experiment conducted in Section 6.3. For each
run, the noise level σ (i.e., εm ∼ N (0, σ2)) and the soft-
ness SM are uniformly sampled at random from [0ms, 100ms]
and [0ms, 150ms] respectively. (learning rate: 10−4, batch
size: 32, iterations: 1.5× 105, sample length: 1.5s)

Figure 3: Noise and Hyperparameter Sensitivity in Drum
Detection. Model Performance with respect to model soft-
ness SM (x-axis) and label noise σ (y-axis). F1-scores are
Nadaraya-Watson estimates based on 210 runs (white dots).

METHOD

RNN
TANHB
RELUTS
LSTMPB
GRUTS

SOFTLOC

KD SD HH PRE REC F1

97.2 92.9 97.3 95.7 96.9 95.8
95.4 93.1 97.3 93.9 97.1 95.3
86.6 93.9 97.7 92.7 95.0 92.7
98.4 96.7 97.4 97.7 97.6 97.5
91.4 93.2 96.2 91.8 97.2 93.6

98.6 95.7 97.8 98.3 97.2 97.4

Table 5: Noise-free Drum Detection. Comparison of our
model (SM =100ms) and state-of-the-art models (Wu et al.
2018) on the clean D-DTD Eval Random task (σ=0ms). The
F1-scores per instrument (KD/SD/HH), as well as the aver-
age precision, recall, and overall F1-score are displayed.

Results The results of the 210 runs are displayed in
Figure 3. A Gaussian Nadaraya-Watson kernel regression
(Nadaraya 1964; Watson 1964) is used to interpolate the F1-
scores, offering a detailed view of the model’s response to
varying label misalignment levels. This figure not only con-
firms the model’s high robustness to label misalignments,
but also reveals that these results are very robust to changes
in the softness level. Indeed, a wide range of softnesses
yield optimal performance (i.e., as long as SM ≥ σ). Ro-
bustness considerations aside, our LSoftLoc model displays an
outstanding overall performance with F1-scores over 95%
across all noise levels; the model—even when trained on ex-
tremely noisy labels (e.g., σ=100ms)—outperforms several
standard benchmarks (Wu et al. 2018) which were trained
on noise-free training samples (σ=0ms).

Noise-free Comparison In clean settings (i.e., σ=0ms),
the benchmark models have a clear advantage as they cor-
rectly assume noise-free labels. Despite this, our model
LSoftLoc achieves state-of-the-art performance on three dif-
ferent metrics (KD, HH, overall precision) demonstrating
that robustness does not come at the expense of raw local-
ization performance (see results in Table 5).

7 Conclusion
This work shows how prediction filtering combined with
sparsity regularization can offset the shortcomings inherent
to standard loss functions (e.g., LCE and LLS|SE) for im-
proved robustness to label misalignment in temporal point
detection learning. The experiments not only confirm the
effectiveness of our approach on a wide range of task (i.e.
video action detection, time series event detection, music on-
set detection), but also reveal that this improvement is robust
to large variations in the model’s main hyperparameter. As
the proposed loss function is agnostic to the underlying net-
work, it can be used as a simple drop-in loss replacement for
the classical stepwise cross-entropy in almost any architec-
ture to increase robustness to temporal label misalignment.
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