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Abstract

Loss landscape analysis is extremely useful for a deeper un-
derstanding of the generalization ability of deep neural net-
work models. In this work, we propose a layerwise loss land-
scape analysis where the loss surface at every layer is studied
independently and also on how each correlates to the overall
loss surface. We study the layerwise loss landscape by study-
ing the eigenspectra of the Hessian at each layer. In particu-
lar, our results show that the layerwise Hessian geometry is
largely similar to the entire Hessian. We also report an in-
teresting phenomenon where the Hessian eigenspectrum of
middle layers of the deep neural network are observed to
most similar to the overall Hessian eigenspectrum. We also
show that the maximum eigenvalue and the trace of the Hes-
sian (both full network and layerwise) reduce as training of
the network progresses. We leverage on these observations to
propose a new regularizer based on the trace of the layerwise
Hessian. Penalizing the trace of the Hessian at every layer
indirectly forces Stochastic Gradient Descent to converge to
flatter minima, which are shown to have better generalization
performance. In particular, we show that such a layerwise reg-
ularizer can be leveraged to penalize the middlemost layers
alone, which yields promising results. Our empirical studies
on well-known deep nets across datasets support the claims
of this work.

Introduction

Deep neural networks (DNNs) have been immensely suc-
cessful in challenging real-world problems in image, video,
text, and speech domains. Despite their tremendous success,
several questions remain as to why DNNs generalize well
despite the very high dimensions of the data involved, non-
convexity of the optimization, as well as overparametriza-
tion of the models. This has led to explicit efforts over
the last few years on trying to understand loss surfaces of
DNN models. (Anna, LeCun, and Arous 2015) specifically
pointed out the understanding of loss surfaces as a key open
problem in deep learning.

From a theoretical standpoint, efforts such as (Baldi and
Hornik 1988; Auer, Warmuth, and K 1996; Anna, LeCun,
and Arous 2015; Kawaguchi 2016) have studied the loss
landscape of deep linear/non-linear networks under certain
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assumptions, and characterized its properties. For example,
(Baldi and Hornik 1988), (Anna, LeCun, and Arous 2015)
and (Kawaguchi 2016) have shown from different perspec-
tives that every local minimum can be a global minimum for
DNNS5 under certain conditions (which do not hold in prac-
tice though). (Hardt and Ma 2017) specifically focused on
networks with residual connections and showed that arbi-
trary deep linear residual networks have zero spurious local
minima, while (Auer, Warmuth, and K 1996) showed that
there are an exponentially high number of equivalent local
minima in high dimensions as in DNN models.

From an empirical and analytical perspective, the last
few years have seen reasonable efforts in studying the ‘flaz-
ness’ of the minima that DNNs converge to. In a seminal
work, (Hochreiter 1997) studied the relation between gen-
eralization ability and loss landscape geometry many years
ago, and hypothesized that flat minima provide better solu-
tions. More recently, (Keskar et al. 2017) empirically veri-
fied that small batch training leads to flat local minima, and
hence better generalization. This also led to methods such as
Entropy-SGD in (Chaudhari et al. 2017) which aim to bias
SGD into flatter minima. On a different note, (Dinh et al.
2017) showed that it is possible for sharp minima to gen-
eralize well too, but this is work entirely theoretical with
no empirical evidence yet. A popular understanding at this
time, however, is that - largely driven by empirical studies -
flat minima exhibit better generalization than sharp minima.

The connection between the curvature of the minima (flat-
ness or sharpness) and the quality of the obtained solution
(trained DNN model) has resulted in efforts that have at-
tempted to study the loss landscape via the eigenspectrum of
the Hessian matrix of the loss function. Considering that the
explicit computation of Hessian matrix is computationally
infeasible, several approximations have been used to this
end. In this work, we propose the analysis of the layerwise
loss surface of DNN models using their Hessian eigenspec-
tra, as well as the evolution of the eigenspectra over training.
To the best of our knowledge, there has been no explicit ef-
fort on studying loss surfaces layerwise before. The other
notable effort that studied layers recently is (Zhang, Ben-
gio, and Singer 2019), which however had a different ob-
jective and provided evidence for the heterogeneity of lay-
ers. Studying the layerwise Hessian is also more computa-
tionally feasible today than earlier, and was perhaps not at-



tempted earlier because an understanding of the entire net-
work’s Hessian was still lacking. Initial efforts on under-
standing the Hessian of DNN models focused on the nature
of critical points (e.g. presence of saddle points) that these
models converge to (Dauphin et al. 2014). In the last couple
of years, more understanding of the Hessian eigenspectrum
of DNN models has emerged thanks to some initial work
by Sagun et al in (Sagun, Bottou, and LeCun 2016; Sagun
et al. 2018), followed by more recent efforts in (Ghorbani,
Shankar, and Xiao 2019; Papyan 2019). These recent efforts
have focused on efficient numerical methods to compute the
Hessian eigenspectrum of large DNN models, and making
it a viable tool to understand the DNN loss surface. The re-
cent availability of such tools makes our efforts timely and
feasible. Our key contributions in this work can be summa-
rized as follows: (i) we analyze the layerwise loss landscape
using the eigenspectrum of the Hessian and a recently pro-
posed decomposition of the Hessian, and provide insights at
a layerwise level that have not been observed hitherto; (ii)
we study the evolution of the layerwise Hessian eigenspec-
tra over the training of DNN models, and support the under-
standing of DNN models converging to flat minima; (iii) we
present interesting observations of the connection between
the middlemost layers and the full network in this context;
and (iv) we propose a new regularization method, based on
our study and layerwise analysis, that helps improve gener-
alization performance on well-known models and datasets.

Importance of Layerwise Loss Landscape Analysis:
Understanding the geometry of loss surfaces of DNN mod-
els, and its implications towards understanding generaliza-
tion properties of DNNs, is an open avenue for deep learn-
ing researchers. Recent findings such as mode connectiv-
ity (Garipov et al. 2018; Fort, Hu, and Lakshminarayanan
2019), which observe the presence of connectivity of lo-
cal minima in loss landscapes, substantiate the peculiarity
of the loss surface and the need to understand them. Efforts
in understanding the local curvature of these surfaces by ob-
serving the overall Hessian eigenspectrum shed light on an-
other peculiar property of the loss surface, viz. that they ex-
hibit large positive curvature in C' directions, where C' is
the number of classes in the dataset (Gur-Ari, Roberts, and
Dyer 2018)(Papyan 2019). Increased interest in loss surface
analysis has also recently led to development of tools that
can visualize the loss surface (Li et al. 2018) or the overall
eigenspectrum (Ghorbani, Shankar, and Xiao 2019). Layer-
wise loss surface analysis, however, adds a new dimension
in helping us understand how every layer behaves as learn-
ing progresses. The efforts closest to ours include (Ghorbani,
Shankar, and Xiao 2019; Papyan 2019; Gur-Ari, Roberts,
and Dyer 2018), all of which analyze the entire Hessian of
the loss function, and do not provide a layerwise perspec-
tive. Analyzing the entire Hessian also restricts the capabil-
ity of some of these efforts to study very large DNN models
due to the size of the Hessian, whereas layerwise analysis
is especially helpful from a computational perspective. Re-
cent work (Zhang, Bengio, and Singer 2019) has shown that
different layers behave differently, and a layerwise analysis
can build on such knowledge to treat layers differently while
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training a DNN. The work in (Martens and Grosse 2015) an-
alyzed the Fisher information matrix (as an approximation to
Hessian matrix) layerwise and found a computationally ef-
ficient way to calculate its inverse by analysing it layerwise.
Their work, however, did not study loss surfaces. To the best
of our knowledge, this is the first effort that analyzes the loss
surfaces of DNN models layerwise.

Preliminaries/Notations
We consider a deep neural network (DNN) with L layers

and model parameters, § = UzL:1 {OZ}, where 60; denotes
the parameters in a layer [. The training data with a total of
n training examples is provided to the DNN, with C classes
and n. (c € {1,---,C}) samples in each class. A data point
;. from the dataset | J<_, {(wic i)}, is the it sample
belonging to class ¢, i.e. y; = c. Let z denote the pre softmax
probabilities of a neural network, and f(z; ;6) denote the
pre-activation scores of the model output. The loss of the
DNN is given by L(f(zi¢;0),y:). We often use Hessto

denote the Hessian matrix £ € RP*D , Where D is the
cardinality of 6. We refer to the layerwise Hessian as Hess;

= #ﬁﬁ)u where 4,7 € {1,...,|60;|} and |6;| is the number
of parameters in layer [. SGD stands for Stochastic Gradient
Descent with a suitable minibatch size, and Tr(A) denotes

the trace of matrix A.

Layerwise Loss Landscape Analysis using the
Hessian Eigenspectrum

DNN models largely follow a layerwise composition of
functions and recent methods to improve performance (e.g.
batch normalization) are also introduced at a layer level. It
is hence natural to ask how the loss landscape at every layer
behaves, especially when compared to the overall loss land-
scape. We seek to address this question in this section.

The geometry of loss landscapes of DNN models is char-
acterized by the Hessian matrix of the loss function, and
our work in this section focuses on analyzing the Hes-
sian eigenspectrum of each layer, in particular by analyzing
their individual Gauss-Newton decompositions (Botev, Rit-
ter, and Barber 2017). We begin with introducing the reader
to the Gauss-Newton decomposition of the Hessian matrix,
Hess = H + G, defined in (Sagun, Bottou, and LeCun
2016; Papyan 2018) where:

C
o 8£(z, yc) 82fc’ (xi,c; 9)
H-= Avez,c{ 02:1 D70 | 202 ()
8f(xi,c; H)T 82£(Z7 yc) af(xi,c; 9)

o0 022

G = Avei,c{ 20

}

2)
and z; . = f(%¢;0), Ave; . denotes the average across all
observations ¢ and classes c. It is straightforward to note that
the Gauss-Newton decomposition of the layerwise Hessian,
Hess;, can be given by G; + H; for{ = 1,--- , L. This fol-
lows from the fact that the layerwise Hessian corresponds to
blocks around the diagonal in the overall Hessian, and the
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corresponding Hessian is simply restricted to ¢;, the param-
eters of that layer. Hence, the layerwise Hessian decomposi-
tion into Gjand Hjis given as:

e JOf (@i 0)T P L(2,y) | Of (i3 6)
G’l - AVez,C{ 89l 82’2 | ael
; ’ 3)
_ . a£(27yc) a2fc’('ri,c§9)
H, = Avez,c{ ; o o6 )

We study the eigenspectrum of the layerwise Hessian,
Hess; , through the eigenspectra of each G;and H;. Among
the tools available to efficiently compute the eigenspectrum,
we use the Lanczos method (Lanczos 1950) owing to its
better performance in time incurred over competing meth-
ods such as KPM (Lin, Saad, and Yang 2016) in earlier
efforts such as (Papyan 2018). The Lanczos method com-
putes the eigenspectrum of a symmetric matrix by reducing
it to a tridiagonal form, Tp € RP*P_ and computing the
spectrum of T p instead. The original Lanczos method how-
ever requires an inner iterative loop (for D iterations) to re-
orthogonalize the obtained vectors in each iteration due to
numerical errors. For matrices with very large D such as in
DNN:g, this orthogonalization step is computationally inten-
sive and necessitates the simultaneous use of multiple high-
end GPUs (such as in (Ghorbani, Shankar, and Xiao 2019))
for implementation, making it impractical.

To overcome this issue, (Lin, Saad, and Yang 2016) pro-
posed an approximation where the Lanczos method (Al-
gorithm details in supplementary section) is used only
for M << D iterations, thus obtaining M eigenvalue-
eigenvector pairs, and subsequently estimating the eigen-
spectrum density using a Gaussian convolution on the M
outputs of the approximate Lanczos. In particular, this
method is based on writing the eigenspectrum of any large
matrix as ¢(t) = & Zle 0(t — \;) where § is the Dirac
delta function, ); is the i*" eigenvalue, D is the total num-
ber of eigenvalues, and ¢(¢) is the frequency of eigenvalue
t. Instead of computing the entire spectrum, this approxi-
mation computes a Gaussian density convolution ¢, (t)
5 Ziil vi[1]295(t — \i), where g, (t — A;) is a Gaussian
centered at \; with width o. For more details of this method,
the interested reader is requested to refer to (Lin, Saad, and
Yang 2016; Papyan 2018).

Earlier work that analyzed the entire loss landscape of
DNN models using the Hessian eigenspectrum have made
interesting observations. In particular, (Sagun et al. 2018)
as well as (Papyan 2018) observed that the Hessian eigen-
spectrum is divided into a bulk region, and an outlier region.
More interestingly, both (Sagun et al. 2018) and (Papyan
2018) also showed that the number of outliers in the Hes-
sian eigenspectrum is approximately the number of classes,
C. With this background in context, we study the layer-
wise loss surface using the Hessian eigenspectrum, as com-
puted using Lanczos method. We conducted studies on many
state-of-the-art DNN models including VGG11,13,16 (with
and without Batch Normalization), ResNet18 and DenseNet
on MNIST, FashionMNIST, and CIFAR10 datasets. Due to
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Figure 1: Eigenspectra of {Hess;}* and {G;}, on
VGG11+BatchNormalization model trained on CIFAR-10
(Best viewed in color). Note that where the graph of the
Hessian is not visible, the spectra of Hessian and G over-
lap completely. The last subplot “full” refers to eigenspectra
of the Hess and G of the entire network;

space constraints, we report our results only with VGGI11-
BN on CIFAR-10 in Figure 1 and the remaining results can
be found in the Supplementary material. We inferred similar
observations for all of these models however, and all our re-
sults can be reproduced using our anonymized source code
repository shared herewith!.

Figures 1 show the eigenspectrum of {Hess;}* jand
{Gl}lL:1 of VGG11(with Batch Normalization), ResNet18
when trained on the CIFARIO dataset. The eigenspec-
trum of {G;}, is obtained by the decomposition of
{Hess; } -, defined in Equations 3 and 4. We do not report
the spectrum of H;, since we found the eigenvalues to be
mostly ~ 0. This was pointed out by (Sagun et al. 2018) in
their work too, who observed that the spectra of H ~ 0 and
that of Hess ~ G. This is reflected in our results; for e.g.,
in Figures 1, one can see that the spectra of {Hess; }/;and
{G}L_, almost overlap across all layers. Based on our re-
sults across models and datasets including Figure 1, we re-
port our inferences below.

(Papyan 2018) (cf. Fig 6) reported that the spectra of G
peaks at a particular epoch during training, where the num-
ber of outliers in the eigenspectra of G and Hess is C, the
number of classes. Interestingly, we too find that the num-
ber of outliers in the layerwise eigenspectra of {G;}~ ; and
{Hess; }},are also C, across almost all layers. One can no-
tice this on careful observation in Figure 1 (notice the num-
ber of peaks in the spectra in each subplot).

More recently, (Papyan 2019) showed that G can be writ-

c
tenas G = tAAT = Avei,c{ >t 51-70,01556)0,}, where
i, is the ¢-th column of a submatrix of A (please see

Sec 2, Eqns 15-16 of (Papyan 2019) for details). It was fur-
ther shown that the t-SNE plots of J. (obtained by averag-

~
~
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ing d; .- over all observations ¢ and all potential classes ¢’)
yields C clusters again. We conducted these studies layer-
wise, and found that the same observation holds for the lay-
erwise {Gl}lL=1 too, as shown in Figure 2, where we plot the
t-SNE embeddings of . obtained by decomposing {G;}~_
matrix for all layers in a DNN.
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0 .
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Figure 2: Layerwise two-dimensional t-SNE embeddings
of 6., obtained as a decomposition of {G;}%, in (Papyan
2018) show C clusters in each subplot (VGG11+BN on CI-
FAR10). The last subplot “full” corresponds to §,. of the en-

tire G matrix. o i
To understand further, we studied if there are particular

layers in these well-known, often-used DNN models whose
loss landscape matches the overall loss surface the most. We
considered the eigenspectrum density of layers, and the en-
tire network, and computed the normalized Wasserstein dis-
tance (Villani 2008): between the spectra of {Hess; }~  and
Hess for different DNN models. These results are shown
in Figure 3. It can be clearly observed that the spectra of
Hess; of middle layers of DNN models are very similar
to spectrum of the overall Hess. Such an observation has
not been made hitherto, to the best of our knowledge. We
also conducted this study using other measures such as KL-
divergence (results in Supplementary section) which had a
similar observation about the middle layers being closest to
the overall loss surface.

Summary of Observations: Based on our results, we
proposition that the behavior of outliers in the layerwise
Hessian eigenspectra, especially the grouping into C' clus-
ters, indicates that every layer of state-of-the-art DNN mod-
els encapsulates discriminative capability, i.e., the capability
to discriminate between the classes. Further, the loss land-
scape of the middlemost layers of DNN models consistently
match the overall loss surface. These new observations on
the layerwise understanding on the loss surfaces, especially
the influence of middle layers on the loss surface, can po-
tentially be used in regularization methods, use of batch-
normalization, or in other training methods.
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Figure 3: Plots of normalized Wasserstein distance between
the spectra of Hess;;Vl = 1---L and Hess of different
DNN models across datasets.

Evolution of Hessian Eigenspectra

Continuing the discussion from the previous section, we
now shift our focus towards analyzing the eigenspectra over
the course of DNN training. There have been a few efforts
in the recent past by other researchers (Pratik and Stefano
2018; Ghorbani, Shankar, and Xiao 2019) seeking to un-
derstand gradient descent trajectories. (Pratik and Stefano
2018) showed the relationship between SGD and variational
inference while studying these trajectories; In a related at-
tempt, (Ghorbani, Shankar, and Xiao 2019) studied GD tra-
jectories by studying the Hessian eigenspectra, but their fo-
cus was largely on the tool developed by them to analyze
the Hessian than present any newer observations. The work
closest to ours in this direction is that of (Jastrzebski et al.
2019) where the authors study the trajectories of SGD and
the connection to generalization performance. In particular,
they show the behavior of SGD along sharp directions of the
loss surface, and conclude that a variant of SGD can find
sharp minima with good generalization. We are fundamen-
tally different from this work from multiple perspectives:
(i) Their work follows earlier efforts in (Dinh et al. 2017),
which show that sharp minima can be generalizable too,
while our work follows most earlier efforts such as (Keskar
et al. 2017) which show the importance of flatter minima
in generalization; (ii) Their work relies on experiments on
a simple 4-layered CNN on CIFAR-10, while we use state-
of-the-art DNN models; (iii) We also introduce a tool to ef-
ficiently compute the trace of the Hessian and analyze the
spectra, which has not been used before. While the above-
mentioned literature in this field have different perspectives
and our work was conceived independent of these efforts,
the presence of these efforts only support the need for such
analysis in the community.

We begin by studying the evolution of the eigenspectra
for the entire Hessian, and subsequently study the layer-
wise Hessians. To this end, we use the maximum eigenvalue,
Amaz, and the trace of the Hessian, considering it is not triv-
ial to study the entire spectra over all epochs of training.
We note that both these quantities, A4, and trace of Hes-
sian denoted by Tr(ﬁu), provide understanding of the cur-
vature of the loss surface (higher these values, steeper the
curvature). Clearly, the reduction in both these quantities in-
dicates flatter regions of the loss surface. While \,,,, can



Algorithm 1 Hutchinson method to compute Hessian trace

Input: Model parameters: 6, Loss function £; No of iters: n

. 2°L
Output: Trace of 553

trace =0
fort=1--- ndo
v~ N(0,T); go = %; trace = trace + v
end for
return trace/n

s
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Figure 4: Evolution of A.x, trace of Hessian

be obtained using the methods discussed in Sec , computing
the trace of the Hessian of very large matrices (as in DNNs)
is computationally non-trivial. Earlier work that attempted
such a direction (Jastrzebski et al. 2019) did not take into
account the complete spectrum for this reason. We hence
introduce the use of tools from randomized numerical linear
algebra, in particular the Hutchinson method, to compute the
trace of the Hessian without explicit computation of the Hes-
sian (Avron and Toledo 2011). The trace is obtained as:

1"

Tr(L") =Tr(L'T) = Tr(C E[vv'])
—E[Tr(L vw)] =E[v L]

where v ~ N (0,I). The equality E[vv '] = I comes from
the expectation of quadratic form when v ~ A(0,I). We
can also draw v from the Rademacher distribution where
each entry is either 41 or —1 with probability 0.5. The com-
plete methodology to compute T'+(£") using the Hutchin-
son method is summarized in Algorithm 1.

Figure 4 shows the plot of A\« and trace of Hessian for
Resnet-18 and DenseNets models on the CIFAR-10 dataset.
A clear observation, which was also reflected in all our ex-
periment runs, is that both A\, and the Tr(ﬁ”) reduce over
epochs, pointing to the inference that the curvature becomes
smaller over training, thus leading to flatter minima.

To further understand the connection between the trace of
the Hessian and generalization performance, we explicitly
considered architectural changes in models that have im-
proved generalization performance in recent years. In par-
ticular, we used batch normalization and skip connections
(such as in ResNets and DenseNets), which have proven im-
provements in generalization performance over the last few
years. Figure 5 shows the results of these experiments. In
addition to corroborating our above inference that the trace
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of the Hessian decreases over training, these plots also show
that the use of batch normalization plays an important role in
reducing the curvature, as well as the inference that the Hes-
sian trace and generalization performance are closely linked,
as evident from these figures. Similar trends on DenseNets
and are provided in supplementary material.

We subsequently studied the evolution of the layerwise
Hessian eigenspectra in our experiments, and report one re-
sult (owing to space constraints) in Figure 6. Clearly, the
same trends hold for A, of each layerwise Hessian, where
the value goes down over training. We could not include the
trace results to avoid overcrowding in the graph, but trace
values of layerwise Hessians showed a similar trend. Inter-
estingly, we once again see that middle layers have values of
Amaz closest to that of the entire network across the epochs.
This was a consistent observation across our studies, and
points to a deeper connection which is yet to be theoretically
understood. We hope that this work will raise this pertinent
question in the community.

Summary of Observations: Our study of the evolution of
Hessian eigenspectra over training presents a few important
observations: (i) Our results broadly support earlier work,
such as (Keskar et al. 2017), that state-of-the-art DNN mod-
els converge to flatter minima (with lower curvatures on the
loss surface); (ii) there is an evident connection between the
trace of the Hessian and generalization error, as shown by
our studies with and without batch normalization and skip
connections; and (iii) the same trend holds for the layerwise
Hessian too, and importantly, the middlemost layers have
Amaz closest to that of the full network across the training.

Motivated by these observations, we now present a new
regularization method, layerwise Hessian Trace Regulariza-
tion, which seeks to lower the layerwise Hessian trace dur-
ing training explicitly, with an aim to improve generalization
performance.

Layerwise Hessian Trace Regularization

The proposed layerwise regularization method for DNNG,
which we call layerwise Hessian Trace Regularization (or
HTR), is motivated by our empirical observations that state-
of-the-art models reduce the trace of layerwise Hessian over
training. Importantly, we show that this layerwise regular-
ization approach lends itself to an interesting premise - that
regularizing only on the trace of Hessian of the middlemost
layers by itself provides strong performance. This observa-
tion is in alignment with findings from our earlier sections.
To the best of our knowledge, such a layer-specific regular-
ization method has not been studied before.
We modify the DNN training objective as:

L

0" = arg meinﬂ(f(:c; 0),y) + VZTr(Hessl)
=1

®)

where Tr(Hess;) is the trace of the Hessian of the loss func-
tion at layer [ and ~ is a regularization hyperparameter. The
proposed layerwise regularizer works by penalizing the sum
of the trace of layerwise Hessians. We choose a uniform
weighting of layers in this work. It is possible to weight
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Figure 5: Evolution of trace of Hessian of state-of-the-art models with and without batch normalization/skip connections on
MNIST and CIFARI10. Training accuracy was close to state-of-the-art for all considered models at the end of these iterations.
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] Model+Dataset | L.+HTR | Lee \
LeNet + MNIST 1.19 +0.07 | 1.25 £ 0.03
LeNet + FMNIST 11.14 £ 0.04 | 11.22 £0.11
LeNet + SVHN 10.77 £ 0.26 | 10.94 £ 0.06
VGG11 + CIFAR10 15.11 £ 0.22 | 18.20 £ 0.45
VGGI13 + SVHN 7.47 £+ 0.01 7.73 +£0.28
ResNet18 + CIFAR10 1195+ 0.22 | 11.97 £ 0.14
VGGI11-BN + CIFARI00 | 44.98 + 0.05 | 45.25 £ 0.44

Table 1: Comparison of generalization error when trained
using cross-entropy loss (L..) with and without HTR

Hessians of different layers differently, which is an interest-
ing future direction of work. This penalization at every layer
helps encourage SGD to converge to solutions with flatter
minima, and hence generalize better (Keskar et al. 2017).
We studied the usefulness of this regularizer on several well-
known DNN models across multiple datasets (MNIST, FM-
NIST, SVHN, CIFAR10, CIFAR100). Cross-entropy loss,
L., was used to train each of these classification models.
We used a momentum of 0.9, learning rate of le-2, L2 reg-
ularization co-efficient of 1e-3, batch size of 64. We trained
our model on a NVidia GeForce GTX 1080 GPU with 12GB
GPU memory. We ran 5 trials of each experiment to avoid
bias in randomness of initialization. Our anonymized source
code (Python) is available 2 for reproducibility.

Table 1 reports the generalization error when proposed

“https://github.com/yashkhasbage25/HTR
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| Model+Dataset | Middle | FullN/W |
LeNet + MNIST 1.18 £ 0.07 | 1.19 £ 0.07
LeNet + FMNIST 11.10 = 0.07 | 11.14 +0.04
ResNet18 + CIF10 11.87 = 0.12 | 11.95 +0.22
VGGI11-BN + CIF100 | 44.81 + 0.15 | 44.98 £ 0.05

Table 2: Comparison of generalization error when HTR is
used only on middle layers, versus HTR on all layers

HTR is incorporated into the cross-entropy loss objective. It
can be clearly noticed that generalization error is better when
HTR is incorporated into the objective of the DNN training
across the considered datasets and models. All our experi-
ments were conducted in a fair manner by tuning regulariza-
tion hyperparameters in each of these methods and reporting
the best result for each of the considered methods. This im-
provement in generalization performance happens with al-
most no change in training accuracy, thus showing promise
in reducing the generalization gap. Fig 7 shows the training
accuracy with and without HTR. This figure also shows the
sum of traces of layerwise Hessians, which is indeed lower
at the end of training with the proposed HTR method, sug-
gesting solutions corresponding to relatively flatter minima.

Building further on the observations from the earlier sec-
tion, where the statistical properties of the loss surface of
the middle layers were found to be closest to the loss sur-
face of the overall network, we leveraged the layerwise na-
ture of the proposed HTR to penelize the middlemost layers
alone. Such an approach offers computational advantages
too, since the number of parameters involved in that term
is restricted now to weights only from the middlemost lay-
ers. Table 2 reports the generalization error results on dif-
ferent datasets when trained only by penalizing the middle-

most layers, against penalizing all layers. We considered the
1th

layers between 7 and %th of the total number of layers
as “middle layers” for purposes of these experiments. It is
interesting to note that the generalization error tht the mod-
els in fact perform marginally better in this case, suggesting
a deeper connection between the middlemost layer and the
overall network’s error surfaces.

Continuing further, we note that the proposed HTR is a
general idea, and can also be used in conjunction with other



| LeNet+MNIST | LeNet+FMNIST | LeNet+SVHN | VGG11+CIF10 | ResNet18+CIF10 | VGG11-BN+CIF100 |

[T15£002 [ ILIT£005 | 996 £ 0.10

[15.08 £ 0.16

[11.89£0.13 | 4432£0.29 |

Table 3: Generalization error, with HTR objective is incorporated into L2 regularizer. (Baseline comparision in Table 1)

accuracy trace
0.90
w/o HTR 1200 w/o HTR
0.85 w/ HTR w/ HTR
0.80 1000
0.75
800
0.70
0.65 600
0 10 20 30 0 10 20 30

Figure 7: Plots of training accuracy and Hessian trace with
and without HTR (LeNet+FMNIST); x-axis corresponds to
training epochs.

regularizers such as L2 weight decay. We experimented fur-
ther to study how the proposed HTR works when combined
with standard L2 regularizer and the results are reported in
Table 3. It can be noted that the generalization error has re-
duced further in comparison to using HTR alone (see Table
1 for the baseline), indicating the effectiveness of HTR when
used with other regularizers.

One issue with the proposed regularizer is that comput-
ing the Hessian trace or its derivative at every step can be
computationally intensive, although this is mitigated to an
extent using layerwise Hessians (whose sizes are smaller).
However, to address this issue, we propose the use of the
HTR term only at periodic intervals over the training pro-
cess, and not at every iteration. We term this the penaliza-
tion/update frequency, f,.. We studied further impact of the
choice of f,, and report these results in Figure 8. As evident
from the figure, even lower values of the update frequency
performed quite well, thus reducing the computational cost
of this method. (The results in Table 1 were, in fact, obtained
at f, = 50).

0.90

0.85 e A

0.80 ¥ — £=25
20.75 fr=50
£ —— =100
% 0.70 —— £=500

0.65 —— £=1000

0.60

0.55

0 10 20 30 40
epochs

Figure 8: Ablation study on update frequency f, on LeNet +
FMNIST (Best viewed in color, solid lines = train accuracy,
dashed lines = test accuracy)

Analyzing further, it may be a natural question to ask
about understanding the difference between regularizing

over the trace of the entire Hessian versus the sum of the
trace of layerwise Hessians in the proposed method. We
note that under the conditions studied in this work for Eqn
5, where we do not weight each layer differently, both are
equivalent since the sum of traces of layerwise Hessians is
the trace of the overall Hessian. This is the reason for our
result in Figure 7, where the trace of the overall Hessian re-
duces over training with our regularizer. This can also be
seen in Figure 6, where the trace of layerwise Hessian re-
duces, and the overall trace also reduces. There is, however,
a considerable computational advantage with layerwise Hes-
sian trace penalization when compared to full Hessian trace
penalization. The trace of each layerwise Hessian can be
computed in parallel leading to an increase in time efficiency
by a factor of L (number of layers in the neural network).
Layerwise penalization is also effective from a memory per-
spective, since it is a smaller matrix to compute and store. A
major reason for the lack of progress in using second-order
information in training DNNs is: (i) The Hessian is computa-
tionally intensive to obtain, especially for large models with
millions of parameters; (ii) Storing the Hessian matrix is also
not memory-efficient. The proposed layerwise HTR, which
is the first layerwise regularizer to the best of our knowledge,
mitigates both these problems. There is now a considerably
smaller memory footprint as we consider only a submatrix
of the overall Hessian. The method also allows different co-
efficients for penalizing different layers differently, or even
ignoring certain layers, which could be an added advantage
and we leave for future work.

Conclusion

The layerwise analysis of loss surfaces of DNN models de-
serves the attention of the deep learning community. In this
work, we analyzed how layerwise landscape loss properties
correlate with overall loss landscape by studying properties
primarily through the lens of the Hessian eigenspectrum. We
analyzed both the spectral density, as well as specific prop-
erties such as maximum eigenvalue and trace of the Hessian
over the training of these DNN models. Our studies on state-
of-the-art models across datasets show that each layer of a
DNN also maintains class discriminability, with the mid-
dlemost layers having the strongest connection to the over-
all loss surface. Our study of the evolution of the spectra
showed that state-of-the-art DNN models seek flatter min-
ima, and that middlemost layers maintain a relationship with
the overall network through the training process. Motivated
by this observation, we propose a new layerwise Hessian-
based regularizer, Hessian Trace Regularization method that
works promisingly when models and datasets become com-
plex. We believe that the observations presented in this work
will help deepen the community’s understanding about DNN
models in general.
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