Inverse Reinforcement Learning with Explicit Policy Estimates

Navyata Sanghvi1,1, Shinnosuke Usami1,2, Mohit Sharma1,1, Joachim Groeger1,1, Kris Kitani1

1Carnegie Mellon University
2Sony Corporation

\texttt{navyatasanghvi@cmu.edu, shinnosuke.usami@sony.com, mohitsharma@cmu.edu, jrg@joachimgroeger.com, kkitani@cs.cmu.edu}

Abstract

Various methods for solving the inverse reinforcement learning (IRL) problem have been developed independently in machine learning and economics. In particular, the method of Maximum Causal Entropy IRL is based on the perspective of entropy maximization, while related advances in the field of economics instead assume the existence of unobserved action shocks to explain expert behavior (Nested Fixed Point Algorithm, Conditional Choice Probability method, Nested Pseudo-Likelihood Algorithm). In this work, we make previously unknown connections between these related methods from both fields. We achieve this by showing that they all belong to a class of optimization problems, characterized by a common form of the objective, the associated policy and the objective gradient. We demonstrate key computational and algorithmic differences which arise between the methods due to an approximation of the optimal soft value function, and describe how this leads to more efficient algorithms. Using insights which emerge from our study of this class of optimization problems, we identify various problem scenarios and investigate each method’s suitability for these problems.

1 Introduction

Inverse Reinforcement Learning (IRL) – the problem of inferring the reward function from observed behavior – has been studied independently both in machine learning (ML) (Abbeel and Ng 2004; Ratliff, Bagnell, and Zinkevich 2006; Boularias, Kober, and Peters 2011) and economics (Miller 1984; Pakes 1986; Rust 1987; Wolpin 1984). One of the most popular IRL approaches in the field of machine learning is Maximum Causal Entropy IRL (Ziebart 2010). While this approach is based on the perspective of entropy maximization, independent advances in the field of economics instead assume the existence of unobserved action shocks to explain expert behavior (Rust 1988). Both these approaches optimize likelihood-based objectives, and are computationally expensive. To ease the computational burden, related methods in economics make additional assumptions to infer rewards (Hotz and Miller 1993; Aguirregabiria and Mira 2002). While the perspectives these four methods take suggest a relationship between them, to the best of our knowledge, we are the first to make explicit connections between them. The development of a common theoretical framework results in a unified perspective of related methods from both fields. This enables us to compare the suitability of methods for various problem scenarios, based on their underlying assumptions and the resultant quality of solutions.

To establish these connections, we first develop a common optimization problem form, and describe the associated objective, policy and gradient forms. We then show how each method solves a particular instance of this common form. Based on this common form, we show how estimating the optimal soft value function is a key characteristic which differentiates the methods. This difference results in two algorithmic perspectives, which we call optimization- and approximation-based methods. We investigate insights derived from our study of the common optimization problem towards determining the suitability of the methods for various problem settings.

Our contributions include: (1) developing a unified perspective of methods proposed by Ziebart (2010); Rust (1987); Hotz and Miller (1993); Aguirregabiria and Mira (2002) as particular instances of a class of IRL optimization problems that share a common objective and policy form (Section 4); (2) explicitly demonstrating algorithmic and computational differences between methods, which arise from a difference in soft value function estimation (Section 5); (3) investigating the suitability of methods for various types of problems, using insights which emerge from a study of our unified perspective (Section 6).

2 Related Work

Many formulations of the IRL problem have been proposed previously, including maximum margin formulations (Abbeel and Ng 2004; Ratliff, Bagnell, and Zinkevich 2006) and probabilistic formulations (Ziebart 2010). These methods are computationally expensive as they require repeatedly solving the underlying MDP. We look at some methods which reduce this computational burden.

One set of approaches avoids the repeated computation by casting the estimation problem as a supervised classification or regression problem (Klein et al. 2012, 2013). Structured Classification IRL (SC-IRL) (Klein et al. 2012) assumes a lin-
early parameterized reward and uses expert policy estimates to reduce the IRL problem to a multi-class classification problem. However, SC-IRL is restricted by its assumption of a linearly parameterized reward function.

Another work that avoids solving the MDP repeatedly is Relative Entropy IRL (RelEnt-IRL) (Boularias, Kober, and Peters 2011). RelEnt-IRL uses a baseline policy for value function approximation. However, such baseline policies are in general not known (Ziebart 2010), and thus RelEnt-IRL cannot be applied in such scenarios.

One method that avoids solving the MDP problem focuses on linearly solvable MDPs (Todorov 2007). (Dvijotham and Todorov 2010) present an efficient IRL algorithm, which they call OptV, for such linearly solvable MDPs. However, this class of MDPs assumes that the Bellman equation can be transformed into a linear equation. Also, OptV uses a value-function parameterization instead of a reward-function parameterization, it can have difficulties with generalization when it is not possible to transfer value-function parameters to new environments (Ziebart 2010; Levine and Koltun 2012).

Recent work that avoids solving the MDP repeatedly is the CCP-IRL approach (Sharma, Kitani, and Groeger 2017), which observes a connection between Maximum Causal Entropy IRL (MCE-IRL) (Ziebart 2010) and Dynamic Discrete Choice models, and uses it to introduce a conditional choice probability (CCP)-based IRL algorithm. On the other hand, our work establishes formal connections between MCE-IRL and a suite of approximation-based methods, of which the CCP method is but one instance. Unlike recent work, we perform a comprehensive theoretical and empirical analysis of each algorithm in the context of trade-offs between the correctness of the inferred solution and its computational burden.

3 Preliminaries

In this section, we first introduce the forward decision problem formulation used in economics literature. We then familiarize the reader with the inverse problem of interest, i.e., inferring the reward function, and the associated notation.

The Dynamic Discrete Choice (DDC) model is a discrete Markov Decision Process (MDP) with action shocks. A DDC is represented by the tuple $\langle S, A, T, r, \gamma, E, F \rangle$. S and A are a countable sets of states and actions respectively. $T : S \times A \times S \rightarrow [0, 1]$ is the transition function. $r : A \times S \rightarrow \mathbb{R}$ is the reward function. γ is a discount factor. Distinct from the MDP, each action has an associated “shock” variable $e \in E$, which is unobserved and drawn from a distribution F over e. The vector of shock variables, one for each action, is denoted e. The unobserved shocks e account for agents that take seemingly sub-optimal actions (McFadden et al. 1973). For the rest of this paper, we will use the shorthand p_t for transition dynamics $T(s'|s,a)$ and softmax $f(a) = \exp f(a) / \sum_a \exp f(a)$.

The Forward Decision Problem: Similar to reinforcement learning, the DDC forward decision problem in state (s, e) is to select the action a that maximizes future aggregated utility: $E \sum_t \gamma^t (r(s_t, a_t, \theta) + c_{a_t})$ where the state-action reward function is parameterized by θ. (Rust 1988) describes the following Bellman optimality equation for the optimal value function $V^*_\theta(s, e)$:

$$V^*_\theta(s, e) = \max_{a \in A} \{ r(s, a, \theta) + \epsilon + \gamma E_{s' \sim p', e'} [V^*_\theta(s', e')] \}. \quad (1)$$

The optimal choice-specific value is defined as $Q^*_\theta(s, a) \triangleq r(s, a, \theta) + E_{s' \sim p', e'} [V^*_\theta(s', e')]$. Then:

$$V^*_\theta(s, e) = \max_{a \in A} \{ Q^*_\theta(s, a) + \epsilon \}. \quad (2)$$

Solution: The choice-specific value $Q^*_\theta(s, a)$ is the fixed point of the contraction mapping Λ_θ (Rust 1988):

$$\Lambda_\theta(Q)(s, a) = r(s, a, \theta) + \gamma E_{s' \sim p', e'} \left[\max_{a' \in A} \{ Q(s', a') + \epsilon \} \right]. \quad (3)$$

We denote the indicator function as $I\{ \}$ From (2), the optimal policy at (s, e) is given by:

$$\pi(a|s, e) = I \{ a = \arg \max_{a'} \{ Q^*_\theta(s, a') + \epsilon \} \}. \quad (4)$$

Therefore, $\pi_\theta(a|s) = \mathbb{E}_e \{ \pi(a|s, e) \}$ is the optimal choice conditional on state alone. π_θ is called the conditional choice probability (CCP). Notice, π_θ has the same form as a policy in an MDP.

The Inverse Decision Problem: The inverse problem, i.e., IRL in machine learning (ML) and structural parameter estimation in econometrics, is to estimate the parameters θ of a state-action reward function $r(s, a, \theta)$ from expert demonstrations. The expert follows an unknown policy $\pi_\theta(r_\theta(s, a))$.

The expert’s distribution over trajectories is given by $P_E(s, a)$. Considering a Markovian environment, the product of transition dynamics terms is denoted $P(s^T|a^{T-1}) = \prod_{t=0}^{T} P(s_t|s_{t-1}, a_{t-1})$, and the product of expert policy terms is denoted: $\tau_E(a^T|s^T) = \prod_{t=0}^{T} \tau_E(a_t|s_t)$. The expert distribution is $P_E(s, a) = \pi_\theta(a^T|s^T) P(s^T|a^{T-1})$. Similarly, for a policy π_θ dependent on reward parameters θ, the distribution over trajectories generated using π_θ is given by $P_\theta(s, a) = \pi_\theta(a^T|s^T) P(s^T|a^{T-1})$.

4 A Unified Perspective

In order to compare various methods of reward parameter estimation that have been developed in isolation in the fields of economics and ML, it is important to first study their connections and commonality. To facilitate this, in this section, we develop a unified perspective of the following methods: Maximum Causal Entropy IRL (MCE-IRL) (Ziebart 2010), Nested Fixed Point Algorithm (NFXP) (Rust 1988), Conditional Choice Probability (CCP) (Hotz and Miller 1993), and Nested Pseudo-Likelihood Algorithm (NPL) (Aguirregabiria and Mira 2002).

To achieve this, we first describe a class of optimization problems that share a common form. While the methods we discuss were derived from different perspectives, we show how each method is a specific instance of this class. We characterize this class of optimization problems using a common form of the objective, the associated policy π_θ and the
objective gradient. In subsequent subsections, we discuss the critical point of difference between the algorithms: the explicit specification of a policy \(\tilde{\pi} \).

Objective Form: The common objective in terms of \(\theta \) is to maximize expected log likelihood \(L(\theta) \) of trajectories generated using a policy \(\pi_\theta \), under expert distribution \(P_E(s, a) \):

\[
L(\theta) = E_{P_E(s, a)} \left[\log P_\theta(s, a) \right].
\]

(5)

Since transition dynamics \(P(s', a') \) do not depend on \(\theta \), maximizing \(L(\theta) \) is the same as maximizing \(g(\theta) \), i.e., the expected log likelihood of \(\pi_\theta(a) \) under \(P_E(s, a) \):

\[
g(\theta) = E_{P_E(s, a)} \left[\log \pi_\theta(a|s) \right] = E_{P_E(s, a)} \left[\sum_t \log \pi_\theta(a_t|s_t) \right].
\]

(6)

Policy Form: The policy \(\pi_\theta \) in objective (6) has a general form defined in terms of the state-action "soft" value function \(Q_\theta(s, a) \) (Haarnoja et al. 2018). In subsequent sections, we explicitly specify a policy \(\tilde{\pi} \) in the context of each method.

Gradient Form: With this policy form (8), the gradient of the objective (6) is given by:

\[
\frac{\partial L}{\partial \theta} = \sum_t E_{P_E(s_t, a_t, r_t)} \left[\frac{\partial Q_\theta(s_t, a_t)}{\partial \theta} \right] - \sum_{a_t} \pi_\theta(a_t|s_t) \frac{\partial Q_\theta^\pi(s_t, a_t) }{\partial \theta}.
\]

(9)

Proof: Sanghvi et al. 2021 (Appendix A.1).

The general forms we detailed above consider no discounting. In case of discounting by factor \(\gamma \), simple modifications apply to the objective, soft value and gradient (6, 7, 9).

Details: Sanghvi et al. 2021 (Appendix A.2).

We now show how each method is a specific instance of the class of optimization problems characterized by (6-9). Towards this, we explicitly specify \(\tilde{\pi} \) in the context of each method. We emphasize that, in order to judge how suitable each method is for any problem, it is important to understand the assumptions involved in these specifications and how these assumptions cause differences between methods.

4.1 Maximum Causal Entropy IRL and Nested Fixed Point Algorithm

MCE-IRL (Ziebart 2010) and NFXP (Rust 1988) originated independently in the ML and economics communities respectively, but they can be shown to be equivalent. NFXP (Rust 1988) solves the DDC forward decision problem for \(\pi_\theta \), and maximizes its likelihood under observed data. On the other hand, MCE-IRL formulates the estimation of \(\theta \) as the dual of maximizing causal entropy subject to feature matching constraints under the observed data.

NFXP: Under the assumption that shock values \(\epsilon_a \) are i.i.d and drawn from a TIEV distribution: \(F(\epsilon_a) = e^{-e^{-\epsilon_a}} \), NFXP solves the forward decision problem (Section 3). At the solution, the CCP:

\[
\pi_\theta(a|s) = \text{softmax } Q_\theta^E(s, a),
\]

(10)

where \(Q_\theta^E(s, a) \) is the optimal choice-specific value function (3). We can show \(Q_\theta^E \) is the optimal soft value, and, consequently, \(\pi_\theta \) is optimal in the soft value sense.

Proof: Sanghvi et al. 2021 (Appendix A.3).

To estimate \(\theta \), NFXP maximizes the expected log likelihood of trajectories generated using \(\pi_\theta \) (10) under the expert distribution. We can show the gradient of this objective is:

\[
E_{P_E(s, a)} \left[\sum_t \frac{\partial r(s_t, a_t, \theta)}{\partial \theta} \right] - E_{P_\theta(s, a)} \left[\sum_t \frac{\partial r(s_t, a_t, \theta)}{\partial \theta} \right].
\]

(11)

Proof: Sanghvi et al. 2021 (Appendix A.4).

MCE-IRL: (Ziebart 2010) estimates \(\theta \) by following the dual gradient:

\[
E_{P_E(s, a)} \left[\sum_t f(s_t, a_t) \right] - E_{P_\theta(s, a)} \left[\sum_t f(s_t, a_t) \right],
\]

(12)

where \(f(s, a) \) is a vector of state-action features, and \(E_{P_E(s, a)} \left[\sum_t f(s_t, a_t) \right] \) is estimated from expert data. The reward is a linear function of features \(r(s, a, \theta) = \theta^T f(s, a) \), and the policy \(\pi_\theta(a|s) = \text{softmax } Q_\theta^\pi(s, a) \). This implies \(\pi_\theta \) is optimal in the soft value sense (Haarnoja et al. 2018).

Connections: From our discussion above we see that, for both NFXP and MCE-IRL, policy \(\pi_\theta \) is optimal in the soft value sense. Moreover, when the reward is a linear function of features \(r(s, a, \theta) = \theta^T f(s, a) \), the gradients (11) and (12) are equivalent. Thus, NFXP and MCE-IRL are equivalent.

We now show that both methods are instances of the class of optimization problems characterized by (6-9). From the discussion above, \(\pi_\theta(a|s) = \text{softmax } Q_\theta^\pi(s, a) \). Comparing this with the forms (7, 8), for these methods, \(\tilde{\pi} = \pi_\theta \). Furthermore, by specifying \(\tilde{\pi} = \pi_\theta \), we can show that the gradients (11, 12) are equivalent to our objective gradient (9).

Proof: Sanghvi et al. 2021 (Appendix A.5). From this we can conclude NFXP and MCE-IRL are solving objective (6).

Computing \(Q_\theta^E \): For NFXP and MCE-IRL, every gradient step requires the computation of optimal soft value \(Q_\theta^E \). The policy \(\pi_\theta \) (10) is optimal in the soft value sense, \(Q_\theta^E \) is computed using the following fixed point iteration. This is a computationally expensive dynamic programming problem.

\[
Q(s, a) \leftarrow r(s, a, \theta) + \gamma \mathbb{E}_{s' \sim P} \left[\log \sum_{a'} \text{exp } Q(s', a') \right]
\]

(13)

4.2 Conditional Choice Probability Method

As discussed in Section 4.1, NFXP and MCE-IRL require computing the optimal soft value \(Q_\theta^E \) at every gradient step, which is computationally expensive. To avoid this, the CCP method (Hotz and Miller 1993) is based on the idea of approximating the optimal soft value \(Q_\theta^E \). To achieve this, they approximate \(Q_\theta^E \approx Q_\theta^E \), where \(Q_\theta^E \) is the soft value under a simple, nonparametric estimate \(\tilde{\pi}_E \) of the expert’s policy \(\pi_E \). The CCP \(\pi_\theta \) (10) is then estimated as:

\[
\pi_\theta(a|s) = \text{softmax } Q_\theta^E(s, a)
\]

(14)
In order to estimate parameters \(\theta \), the CCP method utilizes the method of moments estimator (Hotz and Miller 1993; Aguirregabiria and Mira 2010):
\[
E_{P_{\pi}(s,a)} \left[\sum_{t} \sum_{a} F(s_t, a_t) \left(I\{a_t = a\} - \pi_{\theta}(a|s_t) \right) \right] = 0,
\]
where \(F(s, a) = \frac{\partial Q_{\theta}^E(s,a)}{\partial \theta} \) (Aguirregabiria and Mira 2002). An in-depth discussion of this estimator may be found in (Aguirregabiria and Mira 2010).

Connections: We show that CCP is an instance of our class of problems characterized by (6-9). Comparing (14) with (7, 8), for this method, \(\hat{\pi} = \hat{\pi}_E \). Further, by specifying \(\pi = \hat{\pi}_E \), we obtain \(F(s, a) = \frac{\partial Q_{\theta}^E(s,a)}{\partial \theta} \). From (15):
\[
\sum_{t} E_{P_{\pi}(s_t,a_t)} \left[\frac{\partial Q_{\theta}^E(s_t,a_t)}{\partial \theta} - \sum_{a} \pi_{\theta}(a|s_t) \frac{\partial Q_{\theta}^E(s_t,a_t)}{\partial \theta} \right] = 0
\]
(16)

Notice that this is equivalent to setting our objective gradient (9) to zero. This occurs at the optimum of our objective (6).

We highlight here that the CCP method is computationally efficient compared to NFXP and MCE-IRL. At every gradient update step, NFXP and MCE-IRL require optimizing the soft value function. The development of this perspective is connections that arise due to differences in the computation of the optimal soft value. This only requires updating the soft value \(Q_{\theta}^E \). We show in Section 5 how this is more computationally efficient.

4.3 Nested Pseudo-Likelihood Algorithm

Unlike the CCP method which solves the likelihood objective (6) once, NPL solves the objective repeatedly, and its first iteration is equivalent to the CCP method. The authors (Aguirregabiria and Mira 2002) prove that this iterative refinement converges to the NFXP (Rust 1988) solution, as long as the first estimate \(\hat{\pi} = \hat{\pi}_E \) is “sufficiently close” to the true optimal policy in the soft value sense. We refer the reader to (Kasahara and Shimotsu 2012) for a discussion on convergence criteria.

Connections: The initial policy \(\hat{\pi}_k = \hat{\pi}_E \) is estimated from observed data. Subsequently, \(\hat{\pi}_k = \hat{\pi}_{k-1} \), where \(\hat{\pi}_{k-1} \) is the CCP under optimal reward parameters \(\theta^* \) from the \(k-1 \)th iteration. We have discussed that NPL is equivalent to repeatedly maximizing the objective (6), where expert policy \(\hat{\pi}_E \) is explicitly estimated, and CCP \(\pi_{\hat{\theta}}^k \) (8) is derived from refined soft value approximation \(Q_{\hat{\theta}}^k \approx Q_{\theta}^E \).

4.4 Summary

Commonality: In this section, we demonstrated connections between reward parameter estimation methods, by developing a common class of optimization problems characterized by general forms (6-9). Table 1 summarizes this section, with specifications of \(\pi \) for each method, and the type of computation required at every gradient step.

Differences: In Section 4.1, we discussed that the computation of the NFXP (or MCE-IRL) gradient (11) involves solving the forward decision problem exactly in order to correctly infer the reward function. This requires computing a policy \(\pi = \pi_{\hat{\theta}} \) that is optimal in the soft value sense. On the other hand, we discussed in Sections 4.2-4.3 that the computation of the CCP and NPL gradient involves an approximation of the optimal soft value. This only requires computing the policy \(\pi_{\theta} \) that is an improvement over \(\hat{\pi} \) in the soft value sense. This insight lays the groundwork necessary to compare the methods. The approximation of the soft value results in algorithmic and computational differences between the methods, which we make explicit in Section 5. Approximating the soft value results in a trade-off between correctness of the inferred solution and its computational burden. The implication of these differences (i.e., approximations) on the suitability of each method is discussed in Section 6.

5 An Algorithmic Perspective

In this section, we explicitly illustrate the algorithmic differences that arise due to differences in the computation of the soft value function. The development of this perspective is important for us to demonstrate how, as a result of approximation, NPL has a more computationally efficient reward parameter update compared to MCE-IRL.

Optimization-based Methods: As described in Section 4.1, NFXP and MCE-IRL require the computation of the optimal soft value \(Q_{\theta}^E \). Thus, we call these approaches “optimization-based methods” and describe them in Alg. 1.

We define the future state occupancy for \(s' \) when following policy \(\pi: \text{Occ}^\pi(s') = \sum_t P_{\pi}(s_t = s') \). The gradient (11) can be expressed in terms of occupancy measures:
\[
\mu_{\hat{\pi}_E} = \sum_{s'} \text{Occ}_{\hat{\pi}_E}(s') E_{a' \sim \hat{\pi}_E} \left[\frac{\partial r(s', a', \theta)}{\partial \theta} \right],
\]
(17)
\[
\mu_{\pi_{\theta}} = \sum_{s'} \text{Occ}_{\pi_{\theta}}(s') E_{a' \sim \pi_{\theta}} \left[\frac{\partial r(s', a', \theta)}{\partial \theta} \right]
\]
(18)
\[
\frac{\partial \pi_{\theta}}{\partial \theta} = \mu_{\hat{\pi}_E} - \mu_{\pi_{\theta}}
\]
(19)

Approximation-based Methods: As described in Sections (4.2, 4.3), CCP and NPL avoid optimizing the soft value by approximating \(Q_{\theta}^E \approx Q_{\hat{\theta}}^E \) using a policy \(\hat{\pi} \). We call these approaches “approximation-based methods” and describe them in Algorithm 2. Note, \(K = 1 \) is the CCP Method. We define the future state occupancy for \(s' \) when beginning in \((s, \alpha)\) and following policy \(\pi: \text{Occ}^\pi(s'|s, \alpha) = \sum_t P_{\pi}(s_t = s'|s, \alpha) = \text{Occ}_{\pi}(s'|s, \alpha) \).
Although computing occupancy measures \(\text{Occ} \) without dynamic programming, as the occupancy measures (Line 5) requires dynamic programming in the inner reward update loop, approximation-computational load in Sanghvi et al. 2021 (Appendix B).

Efficient environment.

same computational complexity, i.e., in both algorithms (Alg. 1: Line 7, Alg. 2: Line 10) has the Sanghvi et al. 2021 (Appendix B). The gradient update step reward gradient respectively, and can be computed in one Q gradient step in NPL (Alg. 2) only involves: (1) updating \(\partial \hat{Q}_\theta(s, a) \) (Line 7), and (2) evaluating \(\mu^\pi \theta \) by computing occupancy measures \(\text{Occ}^\pi \) (Line 6, (13)). On the other hand, each gradient step in MCE-IRL (Alg. 1) involves expensive dy-

\[
\sum \pi^\theta (s_t = s') (s_0, a_0) = (s, a), \quad (7, 9) \text{ can be written in terms of occupancy measures as follows:}
\]

\[
Q_\theta^\pi (s, a) = r(s, a, \theta) + \sum \text{Occ}^\pi (s'|s, a) E_{a' \sim \pi^\theta} \left[r(s', a', \theta) - \log \hat{\pi}(a'|s') \right], \tag{20}
\]

\[
\frac{\partial Q_\theta^\pi (s, a)}{\partial \theta} = \frac{\partial r(s, a, \theta)}{\partial \theta} + \sum \text{Occ}^\pi (s'|s, a) E_{a' \sim \pi^\theta} \left[\frac{\partial r(s', a', \theta)}{\partial \theta} \right] \tag{21}
\]

\[
\frac{\partial \pi^\theta}{\partial \theta} = \sum s' \text{Occ}^\pi (s') \left(E_{a' \sim \pi^\theta} \left[\frac{\partial Q_\theta^\pi (s', a')}{\partial \theta} \right] - E_{a' \sim \pi^\theta} \left[\frac{\partial \pi^\theta (s', a')}{\partial \theta} \right] \right). \tag{22}
\]

\[\sum, P^\pi (s_t = s') (s_0, a_0) = (s, a), \quad (7, 9) \text{ can be written in terms of occupancy measures as follows:}
\]

\[
Q_\theta^\pi (s, a) = r(s, a, \theta) + \sum \text{Occ}^\pi (s'|s, a) E_{a' \sim \pi^\theta} \left[r(s', a', \theta) - \log \hat{\pi}(a'|s') \right], \tag{20}
\]

\[
\frac{\partial Q_\theta^\pi (s, a)}{\partial \theta} = \frac{\partial r(s, a, \theta)}{\partial \theta} + \sum \text{Occ}^\pi (s'|s, a) E_{a' \sim \pi^\theta} \left[\frac{\partial r(s', a', \theta)}{\partial \theta} \right] \tag{21}
\]

\[
\frac{\partial \pi^\theta}{\partial \theta} = \sum s' \text{Occ}^\pi (s') \left(E_{a' \sim \pi^\theta} \left[\frac{\partial Q_\theta^\pi (s', a')}{\partial \theta} \right] - E_{a' \sim \pi^\theta} \left[\frac{\partial \pi^\theta (s', a')}{\partial \theta} \right] \right). \tag{22}
\]

\[\sum, P^\pi (s_t = s') (s_0, a_0) = (s, a), \quad (7, 9) \text{ can be written in terms of occupancy measures as follows:}
\]

\[
Q_\theta^\pi (s, a) = r(s, a, \theta) + \sum \text{Occ}^\pi (s'|s, a) E_{a' \sim \pi^\theta} \left[r(s', a', \theta) - \log \hat{\pi}(a'|s') \right], \tag{20}
\]

\[
\frac{\partial Q_\theta^\pi (s, a)}{\partial \theta} = \frac{\partial r(s, a, \theta)}{\partial \theta} + \sum \text{Occ}^\pi (s'|s, a) E_{a' \sim \pi^\theta} \left[\frac{\partial r(s', a', \theta)}{\partial \theta} \right] \tag{21}
\]

\[
\frac{\partial \pi^\theta}{\partial \theta} = \sum s' \text{Occ}^\pi (s') \left(E_{a' \sim \pi^\theta} \left[\frac{\partial Q_\theta^\pi (s', a')}{\partial \theta} \right] - E_{a' \sim \pi^\theta} \left[\frac{\partial \pi^\theta (s', a')}{\partial \theta} \right] \right). \tag{22}
\]

\[\sum, P^\pi (s_t = s') (s_0, a_0) = (s, a), \quad (7, 9) \text{ can be written in terms of occupancy measures as follows:}
\]

\[
Q_\theta^\pi (s, a) = r(s, a, \theta) + \sum \text{Occ}^\pi (s'|s, a) E_{a' \sim \pi^\theta} \left[r(s', a', \theta) - \log \hat{\pi}(a'|s') \right], \tag{20}
\]

\[
\frac{\partial Q_\theta^\pi (s, a)}{\partial \theta} = \frac{\partial r(s, a, \theta)}{\partial \theta} + \sum \text{Occ}^\pi (s'|s, a) E_{a' \sim \pi^\theta} \left[\frac{\partial r(s', a', \theta)}{\partial \theta} \right] \tag{21}
\]

\[
\frac{\partial \pi^\theta}{\partial \theta} = \sum s' \text{Occ}^\pi (s') \left(E_{a' \sim \pi^\theta} \left[\frac{\partial Q_\theta^\pi (s', a')}{\partial \theta} \right] - E_{a' \sim \pi^\theta} \left[\frac{\partial \pi^\theta (s', a')}{\partial \theta} \right] \right). \tag{22}
\]

\[\sum, P^\pi (s_t = s') (s_0, a_0) = (s, a), \quad (7, 9) \text{ can be written in terms of occupancy measures as follows:}
\]

\[
Q_\theta^\pi (s, a) = r(s, a, \theta) + \sum \text{Occ}^\pi (s'|s, a) E_{a' \sim \pi^\theta} \left[r(s', a', \theta) - \log \hat{\pi}(a'|s') \right], \tag{20}
\]

\[
\frac{\partial Q_\theta^\pi (s, a)}{\partial \theta} = \frac{\partial r(s, a, \theta)}{\partial \theta} + \sum \text{Occ}^\pi (s'|s, a) E_{a' \sim \pi^\theta} \left[\frac{\partial r(s', a', \theta)}{\partial \theta} \right] \tag{21}
\]

\[
\frac{\partial \pi^\theta}{\partial \theta} = \sum s' \text{Occ}^\pi (s') \left(E_{a' \sim \pi^\theta} \left[\frac{\partial Q_\theta^\pi (s', a')}{\partial \theta} \right] - E_{a' \sim \pi^\theta} \left[\frac{\partial \pi^\theta (s', a')}{\partial \theta} \right] \right). \tag{22}
\]
to evaluating recovered reward, evaluating $\pi^{\theta*}$ is important because different rewards might induce policies that perform similarly well in terms of our objective (6). We provide experimental details in Sanghvi et al. 2021 (Appendices C, D).

Method Dependencies: From Section 4, we observe that the MCE-IRL gradient (12) depends on the expert policy estimate π^E only through the expected feature count estimate $E_{P_{\theta}(s,a)} [\sum_t f(s_t, a_t)]$. In non-linear reward settings, the dependence is through the expected reward gradient estimate $E_{P_{\theta}(s,a)} [\sum_t \partial r(s_t, a_t, \theta) / \partial \theta]$. On the other hand, the NPL (or CCP) gradient (16) depends on the expert policy estimate for estimating a state’s importance relative to others (i.e., state occupancies under the estimated expert policy), and for approximating the optimal soft value.

From these insights, we see that the suitability of a method for a problem depends on: (1) the amount of expert data, and on (2) how “good” the resultant estimates and approximations are in that scenario. In the following subsections, we introduce different problem scenarios, each characterized by the goodness of these estimates, and investigate our hypotheses regarding each method’s suitability for those problems.

6.1 Well-Estimated Feature Counts

Scenario: We first investigate scenarios where feature counts can be estimated well even with little expert data. In such scenarios, the feature representation allows distinct states to be correlated. For example, the expert’s avoidance of any state with obstacles should result in identically low preference for all states with obstacles. Such a scenario would allow expert feature counts to be estimated well, even when expert data only covers a small portion of the state space.

Hypothesis: Optimization-based methods will perform better than approximation-based methods in low data regimes, and converge to similar performance in high data regimes.

Reasons: If feature counts can be estimated well from small amounts of data, MCE-IRL (\simeq NFXP) is expected to converge to the correct solution. This follows directly from method dependencies outlined above. On the other hand, NPL (and CCP) require good estimates of a state’s relative importance and soft value in order to perform similarly well. Since low data regimes do not allow these to be well-estimated, approximation-based methods are expected to perform as well as optimization-based ones only in high data regimes.

Experiment: We test our hypothesis using the Obstacleworld environment (Figure 1). We use three descriptive feature representations (path, obstacle, goal) for our states. Since this representation is simultaneously informative for a large set of states, we can estimate feature counts well even with little expert data. The true reward is a linear function of features (path : 0.2, obstacle : 0.0, goal : 1.0).

In Figure 1, we observe that in low data-regimes (i.e., with few trajectories) MCE-IRL performs well on all metrics. However, with low expert data, CCP and NPL perform poorly (i.e., high NLL, Stochastic EVD, EPIC). With more expert data, CCP method and NPL converge to similar performance as MCE-IRL. This is in agreement with our hypothesis.

6.2 Correlation of Feature Counts and Expert Policy Estimates

Scenario: We now investigate the scenario where the goodness of feature count and expert policy estimates becomes correlated. In other words, a high amount of expert data is required to estimate feature counts well. This scenario may arise when feature representations either (1) incorrectly discriminate between states, or (2) are not informative enough to allow feature counts to be estimated from little data.

Hypothesis: Both optimization-based and approximation-based methods will perform poorly in low expert data regimes, and do similarly well in high expert data regimes.

Reasons: In this scenario, the goodness of feature count, relative state importance and optimal soft value estimates is similarly dependent on the amount of expert data. Thus we expect, optimization- and approximation-based methods to perform poorly in low data regimes, and similarly well in high data regimes.

Experiment: We investigate our hypothesis in the MountainCar environment, with a feature representation that discriminates between all states. Thus, state features are defined as one-hot vectors. MountainCar is a continuous environment where the state is defined by the position and velocity of the car. The scope of this work is limited to discrete settings with known transition dynamics. Accordingly, we estimate the transition dynamics from continuous expert trajectories using kernels, and discretize the state space to a large set of states (10^4). We define the true reward as distance to the goal.

In Figure 2, we observe that in low-data regimes all methods perform poorly with high values for all metrics. As the amount of expert data increases, the performance of each method improves. More importantly, around the same number of trajectories (≈ 400) all methods perform equally well, with a similar range of values across all metrics. This is in agreement with our hypothesis.
6.3 Deep Reward Representations

Scenario: We investigate scenarios where rewards are deep neural network representations of state-action, as opposed to linear representations explored in previous subsections.

Hypothesis: Optimization-based methods either perform better or worse than the approximation-based methods in low data regimes and perform similarly well in high data regimes.

Reasons: From (11), the gradient of optimization-based methods depends on the expert policy estimate through the expected reward gradient. Comparing (11) and (12), we can think of the vector of reward gradients $\partial r(s_t, a_t, \theta)/\partial \theta$ as the state-action feature vector. During learning, since this feature vector is dependent on the current parameters θ, the statistic $E_{p_\theta(s,a)} \left[\sum_t \nabla r(s_t, a_t, \theta)/\partial \theta \right]$ is a non-stationary target in the MCE-IRL gradient. In the low data regime, at every gradient step, this could either be well-estimated (similar to Section 6.1) or not (similar to Section 6.2), depending on the capacity and depth of the network. On the other hand, in high data regimes, we can expect reward gradient, relative state importance and soft value to all be estimated well, since the expert policy can be estimated well.

Experiment: We investigate the hypothesis using the Objectworld environment (Wulfmeier, Ondruska, and Posner 2015) which consists of a non-linear feature representation. Objectworld consists of an N^2 grid and randomly spread through the grid are objects, each with an inner and outer color chosen from C colors. The feature vector is a set of continuous values $x \in \mathbb{R}^{2C}$, where x_i and x_{i+1} are state’s distances from the i^{th} inner and outer color.

From Figure 3, in low-data regimes, all methods perform poorly with high values for all metrics. With more expert data, the performance for all methods improve and converge to similar values. Similar results for MCE-IRL were observed in (Wulfmeier, Ondruska, and Posner 2015). Consistent with our hypothesis, in this environment we observe no difference in the performance of optimization- and approximation-based methods in both low and high data regimes.

6.4 Discussion

In Sections 6.1-6.3, we described three problem scenarios and discussed the performance of optimization- and approximation-based methods. We now discuss the suitability of methods for these scenarios.

High data regimes: In all scenarios we discussed, in high data regimes, both optimization- and approximation-based methods perform similarly well on all metrics (Figures 1-3). Qualitatively, all methods also recover similar rewards in high data regimes (Figures 4, 7 (Appendix D, Sanghvi et al. 2021)). This is because, as stated in Section 4, NPL converges to NFXP when the expert policy is well-estimated, i.e., when more data is available. Further, approximation-based methods are significantly more computationally efficient than optimization-based methods (Section 5). This finding is em-
In this work, we explicitly derived connections between four methods of reward parameter estimation developed independently in the fields of economics and ML. To the best of our knowledge, we are the first to bring these methods under a common umbrella. We achieved this by deriving a class of optimization problems, of which each method is a special instance. We showed how a difference in the estimation of the optimal soft value results in different specifications of the explicit policy $\tilde{\pi}$, and used our insights to demonstrate algorithmic and computational differences between methods. Using this common form we analyzed the applicability of each method in different problem settings. Our analysis shows how approximation-based methods are superior to optimization-based methods in some settings and vice-versa.

Additionally, approximation-based approaches have been applied to situations with continuous state or action spaces (Altuğ and Miller 1998). Such settings are outside of the scope of this paper and we leave their discussion for future work. In this work, our goal is to explicitly demonstrate connections in the discrete problem setting, to facilitate further inter-disciplinary work in this area.

Future Work: Finally, we touch upon interesting directions to explore based on the theoretical framework developed in this work. The first of these is leveraging our derived connections to investigate approximation-based methods from an optimization perspective. Specifically, we propose to work on the characterization of the primal-dual optimization forms of these methods. Since many IRL methods (including adversarial imitation learning) use an optimization perspective, we believe this will not only lead to new algorithmic advances, but will also shed more light on the similarities and differences between our approaches and more recent IRL methods.

Another direction we plan to explore is to use our explicit algorithmic perspectives for practical settings where MCE-IRL is intractable, such as problems with very large state spaces, e.g. images in activity forecasting. For such situations, our work details how approximation-based methods can be applied in a principled manner when expert data is readily available. We hope to apply our insights to problems such as activity forecasting, social navigation and human preference learning.

Acknowledgments

This work was sponsored in part by IARPA (D17PC00340). We thank Dr. Robert A. Miller for his support in this work.

References

Table 2: Training time (secs) averaged across multiple runs. Numbers in brackets indicate speed up against MCE-IRL.

<table>
<thead>
<tr>
<th>Settings</th>
<th>MCE-IRL</th>
<th>NPL</th>
<th>CCP Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>MountainCar</td>
<td>4195.76</td>
<td>589.21 (\times7)</td>
<td>193.95 (\times22)</td>
</tr>
<tr>
<td>ObjectWorld</td>
<td>32.21</td>
<td>4.18 (\times8)</td>
<td>2.40 (\times13)</td>
</tr>
<tr>
<td>Grid: 162, C: 4</td>
<td>638.83</td>
<td>30.63 (\times21)</td>
<td>14.00 (\times46)</td>
</tr>
<tr>
<td>Grid: 322, C: 2</td>
<td>471.64</td>
<td>29.85 (\times16)</td>
<td>11.19 (\times42)</td>
</tr>
<tr>
<td>Grid: 642, C: 4</td>
<td>10699.47</td>
<td>340.55 (\times31)</td>
<td>103.79 (\times103)</td>
</tr>
</tbody>
</table>

