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Abstract

Inference in deep neural networks can be computationally ex-
pensive, and networks capable of anytime inference are im-
portant in scenarios where the amount of compute or input
data varies over time. In such networks the inference process
can interrupted to provide a result faster, or continued to ob-
tain a more accurate result. We propose Hierarchical Neu-
ral Ensembles (HNE), a novel framework to embed an en-
semble of multiple networks in a hierarchical tree structure,
sharing intermediate layers. In HNE we control the complex-
ity of inference on-the-fly by evaluating more or less models
in the ensemble. Our second contribution is a novel hierar-
chical distillation method to boost the predictions of small
ensembles. This approach leverages the nested structure of
our ensembles, to optimally allocate accuracy and diversity
across the individual models. Our experiments show that,
compared to previous anytime inference models, HNE pro-
vides state-of-the-art accuracy-computation trade-offs on the
CIFAR-10/100 and ImageNet datasets.

Introduction

Deep learning models typically require a large amount of
computation during inference, limiting their deployment in
edge devices such as mobile phones or autonomous vehicles.
For this reason, methods based on network pruning (Huang
et al. 2018b), architecture search (Tan et al. 2019), as well as
manual network design (Sandler et al. 2018), have all been
used to find more efficient model architectures. Despite the
promising results achieved by these approaches, there exist
several applications where, instead of deploying a single ef-
ficient network, we are interested in dynamically adapting
the inference latency depending on external constraints. Ex-
amples include scanning of incoming data streams on online
platforms or autonomous driving, where either the amount
of data to be processed or the number of concurrent pro-
cesses is non-constant. In these situations, models must be
able to scale the number of the operations on-the-fly de-
pending on the amount of available compute at any point
in time. In particular, we focus on methods capable of any-
time inference, i.e. methods where the inference process can
be interrupted for early results, or continued for more accu-
rate results (Huang et al. 2018a). This contrasts with other
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Figure 1: (Top) HNE shares parameters and computation in
a hierarchical manner. Tree leafs represent separate models
in the ensemble. Anytime inference is obtained via depth-
first traversal of the tree, and using at any given time the
ensemble prediction of the N models evaluated so far. (Bot-
tom) Hierarchical distillation leverages the full ensemble to
supervise parts of the tree that are used in small ensembles.

methods, where the accuracy-speed trade-off has be decided
before the computation for inference starts.

We address this problem by introducing Hierarchical
Neural Ensembles (HNE). Inspired by ensemble learning
(Breiman 1996), HNE embeds a large number of networks
whose combined outputs provide a more accurate predic-
tion than any individual model. To reduce the computational
cost of evaluating the networks, HNE employs a binary-tree
structure to share a subset of intermediate layers between the
different models. This scheme allows to control the infer-
ence complexity by deciding how many networks to use, i.e.
how many branches of the tree to evaluate. To train HNE, we
propose a novel distillation method adapted to its hierarchi-
cal structure. See Figure 1 for an overview of our approach.

Our contributions are summarised as follows: (i) To the



best of our knowledge, we are the first to explore hierarchi-
cal ensembles for deep models with any-time prediction. (ii)
We propose a hierarchical distillation scheme to increase the
accuracy of ensembles for adaptive inference cost. (iii) Fo-
cusing on image classification, we show that our framework
can be used to design efficient CNN ensembles. In particular,
we evaluate the different proposed components by conduct-
ing ablation studies on CIFAR-10/100 datasets. Compared
to previous anytime inference methods, HNE provides state-
of-the-art accuracy-speed trade-offs on the CIFAR datasets
as well as the more challenging ImageNet dataset.

Related Work

Efficient networks. Different approaches have been ex-
plored to reduce the inference complexity of deep neural net-
works. These include the design of efficient convolutional
blocks (Howard et al. 2017; Ma et al. 2018; Sandler et al.
2018), neural architecture search (NAS) (Tan et al. 2019; Wu
etal. 2019; Cai et al. 2020; Yu et al. 2020) and network prun-
ing techniques (Huang et al. 2018b; Liu et al. 2017). In or-
der to adapt the inference cost, other methods have proposed
different mechanisms to reduce the number of feature chan-
nels (Yu and Huang 2019; Yu et al. 2018) or skip interme-
diate layers in a data-dependent manner (Veit and Belongie
2018; Wang et al. 2018; Wu et al. 2018). Whereas these ap-
proaches are effective to reduce the resources required by a
single network, the desired speed-accuracy trade-off need to
be selected before the inference process begins.
Anytime inference. In order to provide outputs at early
inference stages, previous methods have considered to in-
troduce intermediate classifiers on hidden network layers
(Bolukbasi et al. 2017; Elbayad et al. 2020; Huang et al.
2018a; Li et al. 2019; Zhang, Ren, and Urtasun 2019). In
particular, (Huang et al. 2018a) proposed a Multi Scale
DenseNet architecture (MSDNet) where early-exit classi-
fiers are used to compute predictions at any point during
evaluation. More recently, MSDNets have been extended by
using improved training techniques (Li et al. 2019) or ex-
ploiting multi-resolution inputs (Yang et al. 2020). On the
other hand, Convolutional Neural Mixtures (Ruiz and Ver-
beek 2019) proposed a densely connected network that can
be dynamically pruned. Finally, early-exits have been also
combined with NAS by Zhang, Ren, and Urtasun (2019) to
automatically find the optimal position of the classifiers.
Different from previous works relying on early-exit clas-
sifiers, we address anytime inference by exploiting hier-
archical network ensembles. Additionally, our framework
can be used with any base model in contrast to previ-
ous approaches which require specific network architectures
(Huang et al. 2018a; Ruiz and Verbeek 2019). Therefore, our
method is complementary to approaches relying on manual
design, neural architecture search, or network pruning.
Network ensembles. Ensemble learning is a classic ap-
proach to improve generalization (Hansen and Salamon
1990; Rokach 2010). The success of this strategy relies on
the reduction in variance resulting from averaging the out-
put of different learned predictors (Breiman 1996). Semi-
nal works (Hansen and Salamon 1990; Krogh and Vedelsby
1995; Naftaly, Intrator, and Horn 1997; Zhou, Wu, and Tang
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2002) observed that a significant accuracy boost could be
achieved by averaging the outputs of independently trained
networks. Recent deep CNNs have also been shown to bene-
fit from this strategy (Geiger et al. 2020; Ilg et al. 2018; Lan,
Zhu, and Gong 2018; Lee and Chung 2020; Lee et al. 2015;
Malinin, Mlodozeniec, and Gales 2020). A main limitation
of deep network ensembles, however, is the linear increase
in training and inference costs with the number of models in
the ensemble. Whereas some strategies have been proposed
to decrease the training time (Huang et al. 2017; Loshchilov
and Hutter 2017), the high inference cost still remains as
a bottleneck in scenarios where computational resources are
limited. In this context, different works (Lan, Zhu, and Gong
2018; Lee et al. 2015; Minetto, Segundo, and Sarkar 2019)
have proposed to build ensembles where the individual net-
works share a subset of parameters in order to reduce the
inference cost.

Building on these ideas, our HNE uses a binary-tree struc-
ture to share intermediate layers between individual net-
works. Whereas hierarchical structures have been explored
for different purposes, such as learning expert mixtures (Liu
et al. 2019; Tanno et al. 2019; Kim et al. 2017), incremental
learning (Roy, Panda, and Roy 2020), or ensemble imple-
mentation (Lee et al. 2015; Zhang et al. 2018), our work is
the first to leverage this structure for anytime inference.
Diversity in network ensembles. Ensemble performance
is affected by two factors (Ueda and Nakano 1996): the ac-
curacy of each individual model, and the variance among the
model predictions. Different works encourage model diver-
sity by sub-sampling training data during optimization (Lak-
shminarayanan, Pritzel, and Blundell 2017; Lee et al. 2015)
or using regularization mechanisms (Chen and Yao 2009).
Using these strategies, however, the performance of each in-
dividual model is significantly reduced (Lee et al. 2015). For
this reason, we instead use a simple but effective strategy to
encourage model diversity. In particular, we train our HNE
by using a different initialization for the parameters of each
parallel branch in the tree structure. Previous work (Huang
etal. 2017; Neal et al. 2018) has shown that networks trained
from different initializations exhibit a significant variance
within their predictions.
Knowledge distillation. The accuracy of a low-capacity
“student” network can be improved by training it on soft-
labels generated by a high-capacity “teacher” network,
rather than directly on the training data (Ba and Caruana
2014; Hinton, Vinyals, and Dean 2015; Romero et al. 2015).
Knowledge distillation from the activation of intermediate
network layers (Sun et al. 2019), and from soft-labels pro-
vided by one or more networks with the same architecture as
the student (Furlanello et al. 2018) have also been shown to
be effective. In co-distillation (Lan, Zhu, and Gong 2018;
Zhang et al. 2018; Bhardwaj et al. 2019) the distinction
between student and teacher networks is lost and, instead,
models are jointly optimized and distilled online. For net-
work ensembles, co-distillation has been shown effective to
improve the accuracy of the individual models by transfer-
ring the knowledge from the full ensemble (Anil et al. 2018;
Song and Chai 2018).

To improve the performance of HNE, we introduce hier-



archical distillation. Different from existing co-distillation
strategies (Lan, Zhu, and Gong 2018; Song and Chai 2018),
our approach transfers the knowledge from the full model
to smaller sub-ensembles in a hierarchical manner. Our ap-
proach is specifically designed for neural ensembles, where
the goal is not only to improve predictions requiring a low
inference cost, but also to preserve the diversity between the
individual network outputs.

Hierarchical Neural Ensembles

HNE embed an ensemble of deep networks computing an
output y¥ = & 227:1 F,(x;0,) from an input x, where
F,, is a network with parameters 6,, and N is the total
number of models. Furthermore, we assume that each net-
work is a composition of B + 1 functions, or “blocks” as
F(x;0,) = fopo---0fg1 o fgo (x), where each block fys (-)
is a set of layers with parameters 6°. Typically, fs (-) con-
tains operations such as convolutions, batch normalization
layers, and activation functions.

Hierarchical sharing of parameters and computation.
If we use different parameters 6% for all blocks and net-
works, then the set of the ensemble parameters is given by
O ={0).x,01.n,--.,08 y}, and the inference cost of com-
puting the ensemble output is equivalent to evaluate N in-
dependent networks. In order to reduce the computational
complexity, we design HNE to share parameters and com-
putation employing a binary tree structure, where each node
of the tree represents a computational block. Each of the
N = 25 paths from the root to a leaf represents a differ-
ent model composed of B + 1 computational blocks. The
first (root) computational block is shared among all mod-
els, and after each block the computational path is continued
along two branches, each with a different set of parameters
from the next block onward. See Figure 1 for an illustra-
tion. Therefore, for each block b there are K = 2° inde-
pendent sets of parameters 9’,;. The parameters of an HNE
composed of N = 28 models are collectively denoted as
e=1,... 795’:2“...,0523}.

Anytime inference. The success of ensemble learning is
due to the reduction in variance by averaging the predictions
of different models. The expected resulting improvements in
accuracy are therefore monotonic in the number of models in
the ensemble. Given that the models in the ensemble can be
evaluated sequentially, the speed-accuracy trade-off can be
controlled by choosing how many models to evaluate to ap-
proximate the full ensemble output. In the case of HNE, this
is achieved by evaluating only a subset of the paths from the
root to the leafs, see Figure 1. More formally, we can choose
any value b € {0, 1, ..., B} and compute the ensemble out-
put using a subset of N’ = 2° networks as

2b
1
y' = % Z F(x;6,).
n=1

The evaluated subset of N’ = 2° networks is obtained by
traversing the binary tree structure in a depth-first manner,
where the first leaf model is always the same. Thus, we eval-
uate the first branch, as well as all the other 2° — 1 branches
that share the last b blocks with this branch. See Figure 1.

ey
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Figure 2: Efficient HNE implementation using group convo-
lutions. Feature maps generated by different branches in the
tree are stored in contiguous memory. Using group convolu-
tions, the branch outputs can be computed in parallel. When
a branch is split, the feature maps are replicated along the
channel dimension and the number of groups for the next
convolution is doubled.

Computational Complexity

Hierarchical vs. independent networks. We analyse the
inference complexity of a HNE compared to an ensemble
composed of independent networks. By assuming that func-
tions f b(~) require the same number of operations, C, for all
b, the complexity of evaluating all the networks in a HNE
is Tune = (2811 — 1)C, where B + 1 is the total number
of blocks in each model, from root to leaf. This quantity is
proportional to 25+! — 1, which is the total number of nodes
in a binary-tree of depth B. On the other hand, an ensemble
composed by N networks with independent parameters has
an inference cost of Tjg = (B + 1)NC.

Considering the same number of models in the ensemble
for both approaches, N = 27, the ratio between the previous
time complexities is defined by:

R= TInd o B+1
_THNE_Q—Q_B'

For B = 0, both independent and hierarchical ensem-

bles reduce to a single model, and have the same compu-
tational complexity (R = 1). When the number of mod-
els is increased (B > 0), the second term in the denom-
inator becomes negligible, and the speed-up of HNE w.r.t
to an independent ensemble increases linearly in B, with
R ~ (B + 1)/2. This linear speed-up is important since
this is what makes larger ensembles, which enjoy improved
accuracy, computationally more affordable.
Efficient HNE implementation. Despite the theoretical re-
duction of the inference complexity, a naive implementation
where the individual network outputs are computed sequen-
tially does not allow to fully exploit the parallelization pro-
vided by GPUs. Fortunately, the evaluation of the different
networks in the HNE can be parallelized by means of group
convolutions (Howard et al. 2017; Xie et al. 2017), where
different sets of input channels are used to compute an inde-
pendent set of outputs, see Figure 2. Compared to sequential
model evaluation, this strategy allows to drastically reduce
training time given that all the models can be computed with
a single forward-pass.

2




HNE Optimization

Given a training set D = {(x,y)1.a} composed of M sam-
ple and label pairs, HNE parameters are optimized by mini-
mizing a loss function for each individual network as

N M
'CI(G) = Z Z E(F(xnﬁgn)»ym)v

n=1m=1

3

where £(-,-) is the cross-entropy loss comparing ground-
truth labels with network outputs.

A drawback of the loss in Eq. (3) is that it is symmet-
ric among the different models in the ensemble. Notably, it
ignores the hierarchical structure of the sub-trees that are
used to compose smaller sub-ensembles for adaptive infer-
ence complexity. To address this limitation, we can optimize
a loss that measures the accuracy of the different sub-trees
corresponding to the evaluation of an increasing number of
networks in the ensemble:

B M

DO U Ym),

b=0 m=1

£5(0) = )

where y? is defined in Eq. (1). Despite the apparent ad-
vantages of replacing Eq. (3) by Eq. (4) during learning, we
empirically show that this strategy generally produces worse
results. The reason is that Eq. (4) impedes the branches to
behave as an ensemble of independent networks. Instead,
the different models tend to co-adapt in order to minimize
the training error. As a consequence, averaging their outputs
does not reduce the variance over test data predictions. To
effectively exploit the hierarchical structure of HNE outputs
during learning, we propose an alternative approach below.

Hierarchical Distillation

Previous work on network ensembles have explored the use
of co-distillation (Anil et al. 2018; Song and Chai 2018).
These methods attempt to transfer the ensemble knowledge
to the individual models by introducing an auxiliary distilla-
tion loss for each network:

N M
ED((")) = Z Z é(Fn(Xm; 0n,)7Y7En)v

n=1m=1

&)

where y¥ = & ZnN:1 F,,(Xm; 0,) is the ensemble output
for sample x,,. The cross-entropy loss £(-,-) compares the
network outputs with the soft-labels generated by using a
soft-max function over yZ . During training, the distillation
loss is combined with the cross-entropy loss of Eq. (3) as
(1—a)L'+aLP, where « is an hyper-parameter controlling
the trade-off between both terms. The gradients of yZ w.rt
O parameters are not back-propagated during optimization.

Whereas this distillation approach boosts the performance
of individual models, it has a critical drawback in the context
of ensemble learning for anytime inference. In particular, co-
distillation encourage all the predictions to be similar to their
average. As a consequence, the variance between model pre-
dictions decreases, limiting the improvement given by com-
bining multiple models in an ensemble. To address this lim-
itation, we propose a novel distillation scheme which we
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refer to it as “hierarchical distillation”. The core idea is to
transfer the knowledge from the full ensemble to the smaller
sub-ensembles used for anytime inference in HNE. In par-
ticular, we minimize:

B—-1 M
LO)=>"> Uyh.vh). 6)
b=0 m=1

Different from £3(-), our hierarchical distillation loss dis-
tills the predictions for each sub-tree towards the full ensem-
ble outputs. Additionally, £P(-) does not force all the inde-
pendent outputs to be similar to the full ensemble predic-
tion as in standard distillation. Given that the first evaluated
model in the tree is fixed, the different subensembles are al-
ways composed by the same subset of networks. In contrast,
our hierarchical distillation loss encourages the ensemble
prediction obtained from a subset of models to match the
full ensemble prediction. Therefore, the outputs between the
individual models in this subset can be diverse and still mini-
mize the distillation loss, preserving the model diversity and
retaining the advantages of averaging multiple networks. As
empirically shown in our experiments, the proposed distil-
lation loss slightly reduces the model diversity compared to
the case where no distillation is used. However, the accuracy
of individual models tends to be much higher and thus, the
ensembles performance is significantly improved.

Experiments

Datasets. We experiment with the CIFAR-10/100
(Krizhevsky 2009) and ImageNet (Russakovsky et al.
2015) datasets. CIFAR-10/100 contain 50k train and 10k
test images from 10 and 100 classes, respectively. Following
standard protocols (He et al. 2016), we pre-process the
images by normalizing their mean and standard-deviation
for each color channel. Additionally, during training we
use a data augmentation process where we extract random
crops of 32x32 after applying a 4-pixel zero padding to the
original image or its horizontal flip. Imagenet is composed
by 1.2M and 50k high-resolution images for training and
validation, respectively, labelled across 1,000 different
categories. We use the standard protocol during evaluation
resizing the image and extracting a center crop of 224 x 224
(He et al. 2016). For training, we apply the same data
augmentation process as in (Yang et al. 2020; Huang et al.
2018a). We report classification accuracy.
Base architectures. We implement HNE with commonly
used architectures. For CIFAR-10/100, we use a variant of
ResNet (He et al. 2016), composed of a sequence of resid-
ual convolutional layers with bottlenecks. We employ depth-
wise instead of regular convolutions to reduce computational
complexity. We generate a HNE with a total five blocks em-
bedding an ensemble of N = 16 CNNs. We report results
for the base ResNet architecture, as well as a version where
for all layers we divided the number of feature channels by
two (HNEg,,,47). This provides a more complete evaluation
by adding a regime where inference is extremely efficient.
For ImageNet, we implement an HNE based on Mo-
bileNet v2 (Sandler et al. 2018), which uses inverted residual
layers and depth-wise convolutions as main building blocks.
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Figure 3: Accuracy and standard deviation in logits vs FLOPs for HNE,,,,;; trained (i) without distillation, (ii) with distillation,
and (iii) with our hierarchical distillation. Curves represent results for ensembles of size 1 up to 16.
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Figure 4: Results on CIFAR-100 for HNE,,,;; trained without distillation, standard distillation and the proposed hierarchical
distillation. Curves indicate the performance of ensembles of different sizes. Bars depict the accuracy of individual models.

# models evaluated for inference

T 2 4 8 16
T 917 924 932 937 940

HNE,,., | 1% | £5 o916 921 927 929 933
(N=16) LAD 927 931 934 941 943
LT 677 700 719 734 748

Cl00 | s 650 663 683 696 726

£HEP 711 717 734 745 753

[T 936 942 948 950 952

ane | S0 | £S5 929 936 935 941 944
(N=16) LD 946 949 951 955 95.6
T 735 754 775 190 797

C100 | s 707 733 740 757 768

LD 761 772 780 79.0 79.8

Table 1: Accuracy of HNE and HNEj,,,,;; embedding 16 dif-
ferent networks on CIFAR. Columns correspond to the num-
ber of models evaluated during inference.

In this case, we also use five blocks generating N = 16 dif-
ferent networks. In the supplementary material we present
a detailed description of our HNE implementation using
ResNet and MobileNetv2 and provide all the training hyper-
parameters. The particular design choices for both architec-
tures are set to produce a similar computational complexity
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as previous methods to which we compare. We have released
a Pytorch implementation of HNE !.

Inference complexity metric. Following (Huang et al.
2018a; Ruiz and Verbeek 2019; Zhang, Ren, and Urtasun
2019), we evaluate the computational complexity of the
models according to the number of floating-point operations
(FLOPs) during inference. The advantages of this metric is
that it is independent from differences in hardware and im-
plementations, and is strongly correlated with the wall-clock
inference time.

Ablation Study on CIFAR-10/100

Optimizing HNE. In order to understand the advantages
of our hierarchical distillation approach, we compare three
different alternative objectives to train HNE: (i) the indepen-
dent loss across models, £ in Eq. (3), (ii) the structured loss
maximizing the accuracy of nested ensembles, £5 in Eq. (4),
and (iii) our hierarchical distillation loss, £HP in Eq. (6),
which is combined with L.

As shown in Table 1, £ provides better performance as
compared to training with £5. The reason is that £5 en-
courages individual model outputs to co-adapt in order to

"https://gitlab.com/adriaruizo/dhne-aaai2 1
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Results on CIFAR-100 for HNE,,,,;; using different ensemble architectures: (i) fully-independent networks, (ii)

multi-branch architecture with shared backbone, (iii) our proposed HNEs.

minimize the training error. However, as the different net-
works are not trained independently, the variance reduction
resulting from averaging multiple models in an ensemble is
lost, causing a performance drop on test data. Using our hier-
archical distillation loss, however, consistently outperforms
the alternatives in all the evaluated ensemble sizes, both ar-
chitectures, and on both datasets. This is because our ap-
proach preserves the advantages of averaging multiple inde-
pendent models, at the same time that the performance of
hierarchical ensembles is increased via distillation.

Comparing distillation approaches. After demonstrating
the effectiveness of our distillation method to boost the per-
formance of hierarchical ensembles, we evaluate its advan-
tages w.rt standard distillation. For this purpose, we train
HNE using the loss £P of Eq. (5), as (Song and Chai 2018).
For standard distillation we evaluate a range of values for o
to mix the distillation and cross-entropy loss in order to an-
alyze the impact on accuracy and model diversity. The latter
is measured as the std. deviation in the logits of the eval-
uated models, averaged across all classes and test samples.
In Figure 3 we report both the accuracy and logit standard
deviation on the test set. For limited space reasons, we only
show results for HNEg,,,:;. The corresponding figure for the
bigger HNE model can be found in supplementary material.

Consider standard distillation with a high weight on the
distillation loss (o = 0.5). As expected, the performance
of small ensembles is improved w.rt training without dis-
tillation. For larger ensembles, however, the accuracy tends
to be significantly lower compared to not using distillation.
This is due to the reduction in diversity among the mod-
els induced by the standard distillation loss. This effect can
be controlled by reducing the weight «, but smaller values
(less distillation) compromise the accuracy of small ensem-
bles. In contrast, our hierarchical distillation achieves the
best FLOPs-accuracy trade-offs for all ensemble sizes and
datasets. For small ensemble sizes, our hierarchical distilla-
tion obtains similar or better accuracy than standard distil-
lation. For large ensemble sizes, our approach significantly
improves over standard distillation, and the accuracy is com-
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parable or better than those obtained without distillation.
These results clearly shows the advantages of hierarchical
distillation for any-time inference. The reason is that, in this
setting, the goal is not only in to optimize the accuracy for a
given FLOP count, but to jointly boost the performance for
all the possible ensemble sizes.

Analysis of individual network accuracies. To provide
additional insight in the previous results, Figure 4 depicts
the performance of HNE for different ensemble sizes used
during inference (curves), and the accuracy of the individ-
ual networks in the ensemble (bars). Comparing the results
without distillation (first col.) to standard distillation (second
and third cols.), we make two observations. First, standard
distillation significantly increases the accuracy of the indi-
vidual models. This is expected because the knowledge from
the complete ensemble is transferred to each network inde-
pendently. Second, when using standard distillation, perfor-
mance tends to be lower than HNE trained without distil-
lation when the number of models in the ensemble is in-
creased. Both phenomena are explained by the tendency of
standard distillation to decrease the diversity between the
individual models. As a consequence, the gains obtained
by combining a large number of networks is reduced even
though they are individually more accurate.

The results for our Hierarchical Distillation (last col.)
clearly show its advantages with respect to the alternative
approaches. We can observe that the accuracy of the first
model is better than in HNE trained without distillation, and
also significantly higher than the accuracy of the model ob-
tained by standard distillation. The reason is that the ensem-
ble knowledge is directly transferred to the predictions of the
first network in the hierarchical structure. The performance
of the other individual networks in the ensemble tends to be
lower than when training with standard distillation. The im-
provement obtained by ensembling their predictions is, how-
ever, significantly larger. This is because hierarchical distil-
lation preserves the diversity between networks, compensat-
ing the lower accuracy of the individual models.

Hierarchical parameter sharing. In this experiment, we
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Figure 6: Comparison of HNE with the state of the art. Each curve corresponds to a single model with anytime inference.

compare the performance obtained by HNE and an ensem-
ble of independent networks, using the same base architec-
ture. We also compare to multi-branch architectures (Lan,
Zhu, and Gong 2018; Lee et al. 2015). In the latter case,
the complexity is reduced by sharing the same “backbone”
for the first blocks for all models, and then bifurcate in one
step to N independent branches for the subsequent blocks.
For HNE we use five different blocks with N = 16. To
achieve architectures in a similar FLOP range, we use the
first three blocks as the backbone and implement 16 inde-
pendent branches for the last two blocks. We use our hierar-
chical distillation loss for all three architectures.

In Figure 5 we report both the accuracy (Acc) and the
standard deviation of logits (Std). We observe that HNE ob-
tains significantly better results than the independent net-
works. Moreover, the hierarchical structure allows to sig-
nificantly reduce the computational cost for large ensemble
sizes. For small ensembles on CIFAR-100 the multi-branch
models obtain slightly better accuracy than HNE. In all other
settings, HNE achieve similar or better accuracy, especially
for larger ensembles. The results can again be understood
by observing the diversity across models. HNE and inde-
pendent models have similar diversity, while in the case of
the multi-branch ensemble diversity is significantly lower.
This shows the importance of using different parameters in
early-blocks to achieve diversity across models.

Comparison with the State of the Art

CIFAR-10/100. We compare the performance of HNE
trained with hierarchical distillation with state-of-the-art
approaches for anytime inference: Multi-scale DenseNets
(Huang et al. 2018a), Resolution Adaptive Networks (Yang
et al. 2020), Graph Hyper-Networks (Zhang, Ren, and Ur-
tasun 2019), Deep Adaptive Networks (Li et al. 2019), and
Convolutional Neural Mixture Models (Ruiz and Verbeek
2019). We report HNE results for ensembles of sizes up to
eight, in order to provide a maximum FLOP count similar to
the compared methods (<250M). Results in Figure 6 show
that for both datasets HNE significantly outperforms previ-
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ous approaches across all the FLOP range.

ImageNet. We compare our method with Multi-Scale
Densenets (Huang et al. 2018a), and Resolution Adaptive
Networks (Yang et al. 2020). To the best of our knowledge
these works have reported state-of-the-art performance on
ImageNet for anytime inference. The results in Figure 6
show that our HNE achieves better accuracy than the com-
pared methods across all inference complexities. Compared
to the best baseline, our method achieves an accuracy im-
provement across the different FLOP ranges between 1.5%
and 11%. This is a significant performance boost given the
difficulty and large-scale nature of ImageNet. Additionally,
note that the minimum FLOP count for HNE and the com-
pared models are similar. Whereas HNE needs a full pass
over a single base model to provide an initial output, the
compared approaches based on intermediate classifiers also
require to compute all the intermediate network activations
up to the first classifier, which can be considered as the base
model for these approaches.

Conclusions

In this paper we proposed Hierarchical Neural Ensembles
(HNE), a framework to design deep models with anytime
inference. In addition, we introduced a novel hierarchical
distillation approach adapted to the structure of HNE. Com-
pared to previous deep models with anytime inference, we
have reported state-of-the-art compute-accuracy trade-offs
on CIFAR-10/100 and ImageNet. While we have demon-
strated the effectiveness of our framework in the context of
CNN s for image classification, our approach is generic and
can be used to build ensembles of other types of deep net-
works for different tasks and domains. In particular, HNE
can be applied to any base model and network branching.
This property allows to design anytime models adapted to
different computational constraints such as the maximum
and minimum FLOP count or the number of desired operat-
ing points. This flexibility allows our framework to be com-
bined with other approaches for efficient inference such as
network compression or neural architecture search.
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