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Abstract

Generative moment matching networks (GMMN) present a
theoretically sound approach to learning deep generative mod-
els. However, such methods are typically limited by the high
sample complexity, thereby impractical in generating complex
data. In this paper, we present a new strategy to train GMMN
with a low sample complexity while retaining the theoretical
soundness. Our method introduces some auxiliary variables,
whose values are provided by a pre-trained model such as
an encoder network in practice. Conditioned on these vari-
ables, we partition the distribution into a set of conditional
distributions, which can be effectively matched with a low
sample complexity. We instantiate this strategy by presenting
an amortized network called GMMN-DP with shared aux-
iliary variable information for the data generation task, as
well as developing an efficient stochastic training algorithm.
The experimental results show that GMMN-DP can generate
complex samples on datasets such as CelebA and CIFAR-10,
where the vanilla GMMN fails.

Introduction
Deep generative models have achieved great success on tasks
with uncertainty modeling, such as image generation (Ledig
et al. 2017), missing data imputation (Li et al. 2018b) and
transfer learning (Isola et al. 2017). Among various models,
generative moment matching networks (GMMN) (Li, Swer-
sky, and Zemel 2015) present an attractive choice. GMMN
adopts the maximum mean criterion (MMD) (Gretton et al.
2008) as the objective, which is simple and theoretically
sound — when the underlying kernel is characteristic (Sripe-
rumbudur, Fukumizu, and Lanckriet 2011), MMD is capable
of distinguishing any two different distributions. This ap-
proach has been extended for conditional generation and
classification tasks (Ren et al. 2016).

One challenge that limits the wide application of GMMN
is that the involved kernel embedding of distributions in
MMD are global statistics requiring a high sample com-
plexity in general. In practice, due to the computational
cost and memory constraints, stochastic gradient descent
(SGD) with reasonably small-sized mini-batches is the most
effective choice to train GMMN, which however is likely to
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have high variance because of the high sample complexity.
Therefore, the vanilla GMMN can only generate data with
low-dimensional latent representations, such as the samples
from the MNIST dataset. For those complex datasets such as
CelebA and CIFAR-10, a small batch size (i.e. 64 or 128) in
practice cannot meet the sample complexity requirements to
converge (Li, Swersky, and Zemel 2015).

There are some attempts towards lowering the sample com-
plexity required to perform stochastic training for GMMN.
These methods usually construct new kernels with a stronger
statistic testing power, involving a function that extracts
meaningful features from data and then combines it with
some other kernels. For example, MMD-GAN (Li et al. 2017)
uses adversarial training to learn a target-specific feature ex-
tractor z, and to keep the characteristic property, z is required
to be injective and is learned approximately by special con-
straints. Sutherland et al. (2017) get z from a pre-defined set
of injective functions by directly maximizing the test power
objective.

In this paper, we present a new approach to improving
the performance of GMMN. The most striking difference is
that instead of constructing data-specific kernels, we use a
fixed one, preventing the notorious problem of instability in
training several networks alternately (Arjovsky, Chintala, and
Bottou 2017), i.e., the generator and the kernel networks. We
process the data distribution to adapt the fixed kernel such
that stochastic training algorithms with a small mini-batch
size can give an accurate estimator involved in the objective
function.When the kernel is characteristic, our method enjoys
the theoretical advantages of moment matching. Specifically,
the main contributions of this work lie in three folds:

• We analyze the difficulty of the vanilla GMMN and pro-
pose an alternative training strategy which requires a lower
sample complexity intrinsically. Such method is based on
the distribution partition, where we introduce additional
auxiliary random variables Y and a pre-training step to
transform the data generating process X ∼ Pd(X) into
a two-stage one (i.e. Y ∼ P (Y ), X|Y ∼ P (X|Y ) ) with
additional requirements that the marginal P (X) = Pd(X)
and the randomness in P (X|Y ) can be covered by small
data sizes. Instead of matching Pd(X) directly, we match
P (X|Y = y) for each y separately via moment based
criterion and finally recover the target distribution with
guarantees.
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• Based on the proposed strategy, we present several distribu-
tion partition methods, and an amortized network structure
called GMMN-DP as well as an efficient stochastic train-
ing algorithm. GMMN-DP can be regarded as matching a
series of conditional embedding operators in an amortized
manner.

• We present empirical results showing that compared with
the original GMMN, our proposed methods can produce
samples of much better quality on benchmark datasets
MNIST, CelebA and CIFAR-10 with a small mini-batch
size (e.g., 64), while GMMN fails on the later two. Em-
pirical stability and computational complexity are also
analyzed.

Problem Settings and Preliminary
We consider the following data generation problem. Given
a dataset D consisting of samples {xi}Ni=1 drawn from an
unknown distribution Pd, our target is to generate samples
from it. We here briefly review some preliminary knowledge,
including kernel embedding of (conditional) distributions and
their applications in generative modeling.

Kernel Embedding of Distributions
We start with a brief overview of Hilbert space embedding
for distributions, where we embed distributions as elements
in a reproducing kernel Hilbert space (RKHS). Fixing an
RKHS F on X with kernel k, for a distribution P over X ,
the embedding takes expectation on its feature map φ(x) :=
k(x, ·):

µX := EX [φ(X)] =

∫
X
φ(x)P (dx).

Under some regularity conditions, µX is guaranteed to be an
element in the RKHS (Gretton et al. 2008).

For RKHS G on Y with kernel k′ and P (X,Y ) overX×Y .
The embedding can be extended to conditional distributions
P (X|Y ), which is defined point-wise as:

µX|y := EX|y[φ(X)] =

∫
X
φ(x)P (dx|y).

The above embedding can be represented as an operator
CX|Y : G → F , which satisfies the following properties:

1. µX|y = CX|Y φ(y); 2. EX|y[g(X)|y] = 〈g, µX|y〉F .
Under some conditions, the operator does exist (Song et al.
2009) and has the representation CX|Y = CXY C

−1
Y Y , where

the CXY : G → F is the cross-covariance operator:
CXY := EXY [φ(X)⊗ φ′(Y )]− µX ⊗ µY .

where ⊗ is the tensor product and CXY can also be viewed
as an element in the tensor product space F ⊗ G.

In practice, finite sample estimations for µX and CX|Y
can be obtained fromN i.i.d. samplesDXY = {(xi,yi)}Ni=1
drawn from the joint distribution P (X,Y ):

µ̂X =
1

N

N∑
i=1

φ(xi), ĈX|Y = Φ(K + λI)−1Υ>,

where Υ = (φ′(y1), ..., φ′(yN )), Φ = (φ(x1), ..., φ(xN )),
K = Υ>Υ and λ is a regularization term.

Generative Modelling with Kernel Embedding
Generative modelling aims to learn a generator G, usually
parameterized by deep networks, from which we can draw
samples X ′ ∼ Pg . The objective is to minimize the distance
between Pg and Pd. One strategy is to directly compare their
embeddings LMMD = ‖µX′ − µX‖F , which is called Maxi-
mum Mean Discrepancy (MMD) (Gretton et al. 2008). The
most remarkable property is that when the underlying ker-
nel is characteristic (e.g., the commonly used RBF kernels),
MMD is able to distinguish any two different distributions
because the embedding is an injective mapping. With sam-
ples D′X = {x′i}Mi=1 from Pg, we can estimate LMMD with
its finite sample version:

L̂2
MMD =

∥∥∥∥∥∥ 1

N

N∑
i=1

φ(xi)−
1

M

M∑
j=1

φ(x′j)

∥∥∥∥∥∥
2

F

(1)

Using the kernel trick, Eq.1 can be computed in closed form
(Gretton et al. 2008).

In the conditional generating case P (X|Y ), both the
dataset and generated samples are conditioned on some aux-
iliary variables Y . We model the joint distribution P (X,Y )
and the generator can provide samples (x′,y′) : y′ ∼
P (Y ),x′|y′ ∼ Pg. The MMD is then replaced by its con-
ditional version– Conditional Maximum Mean Discrepancy
(CMMD) (Ren et al. 2016), where the conditional embed-
ding operators are compared using LCMMD = ‖CX|Y −
CX′|Y ′‖F⊗G . With samples D′XY = {(x′i,y′)}Mi=1 from Pg ,
the finite sample estimator is:

L̂2
CMMD =

∥∥Φ(K+λI)−1Υ> − Φ′(K ′+λI)−1Υ′>
∥∥2
F⊗G ,

where Φ′,K ′,Υ′ are defined similarly for D′XY .

Our Method
We now present our method. We first propose the general
idea of matching with distribution partition, followed by
discussions on practical distribution partition method. Finally
we present our network GMMN-DP and its corresponding
stochastic training algorithm. Suppose we have RKHS F on
X with kernel k, RKHS G on Y with kernel k′.

Matching with Distribution Partition
When using MMD as the objective for generative modeling as
in GMMN (Li, Swersky, and Zemel 2015), the computation
cost of the kernel gram matrix is O(n2k), where n is the
sample size and k is the feature dimension. This prevents us
from using a large sample size (e.g., the whole dataset), hence
we have to resort to stochastic mini-batch training. However,
the main difficulty arises from obtaining accurate estimations
for the embedding µX , which in general converges in a sub-
linearO(1/n2) rate. In practice, the mini-batch size is usually
set to be less than 128, which fails to estimate µX well on
datasets with complex and diverse samples, e.g. CelabA and
CIFAR-10.

Instead of matching the whole distribution Pd directly, we
propose to match it in a divide and conquer manner. The
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overall randomness in Pd is strong 1, which requires a large
mini-batch size to capture. However, if we partition the whole
space into small ones with weak randomness, we can expect
to match each one with a small mini-batch size.

X1

X2

sample space

P (X)

feature space

µX

X1

X2
P (X|y1)

P (X|y2)

µX|y1

µX|y2

Figure 1: Illustration of the matching process. The sample
space is partitioned into small sub-spaces. Instead of match-
ing µX , we match µX|y for each sub-space and eventually
recover the whole distribution.

The overall illustration is shown in Fig.1. Specifically,
suppose for now we want to match Pd with Pg, where the
later one can be parameterized by a network as discussed
later.We first introduce some auxiliary variables Y to par-
tition the whole sample space X into sub-spaces {Xi}i∈I
with X =

⋃
i∈I Xi , where each sub-space is indicated by

yi ∼ P (Y ). Note that we do not require the sub-spaces Xi
are disjoint with each other. Here we slightly abuse the term
“partition” since we allow overlapping. Under this partition,
we actually introduce a two-step sample generating proce-
dure for (X,Y ), where we first draw the indicator Y ∼ P (Y )
and then draw samples X from the conditional distribution
P (X|Y ), where the sample space for P (X|Y = yi) is Xi.
We assume P (Y ) is fixed and known. There are two neces-
sary requirements for the above process:
• The marginal distribution P (X) =

∫
Y P (X, dy) is the

same as the data distribution Pd(X), where Y is the corre-
sponding sample space for Y .
• The randomness in each P (X|y) is weak, where the term

“weak” means we can use a small batch-size to obtain a
relatively accurate estimation of its kernel embedding.

A detailed discussion about the partition step shall be shown
below. After the partition step, we match each P (X|y) with
Pg(X|y). There are two cases. When the domain of y is

1Typically, the randomness in a distribution is measured by
entropy. Here the term “strong” means the embedding cannot be
estimated well with small sample size such as 64.

discrete and finite, we can use MMD to match P (X|y) with
our generators Pg(X|y) separately.

In general the domain of y is continuous, we cannot ex-
haust every yi. In this case, we further group a series of y
and use CMMD to match the operator CX|Y ′ for P (X|Y ′)
with CX′|Y ′ for our generator Pg(X ′|Y ′), where the sample
space of Y ′ is the grouped values. It is worth pointing out that
here we do not estimate CX|Y for the whole conditional dis-
tribution P (X|Y ), which in general is a global statistic that
needs large sample size (Song et al. 2009). Instead, we only
match a sub-set of the domain of (X,Y ). For example, sup-
pose the generating process is Y ∼ 1

K

∑K
i=1 U(2i, 2i + 1),

X|Y ∼ N (Y, 1), where U is a uniform distribution and N
is a Gaussian. If we want to know the conditional embedding
µX|Y=2, instead of estimating CX|Y , we can only estimate
CX|Y ′

1
, where Y ′1 ∼ U(2 ∗ 1, 2 ∗ 1 + 1).

After the matching step, we can draw samples (X,Y ) via
Y ∼ P (Y ), X|Y ∼ Pg(X|Y ) and we have X ∼ Pd(X),
which means that Pd(X) is recovered. We summarize the
results in theorem 1 and leave the details in appendix A.

Theorem 1. Suppose that EX
√
k(x,x) <∞ and for each

Y ′ and f ∈ F ,E[f(X)|Y ′] ∈ G in the continuous case.
When the kernel k is characteristic, the true distribution
Pd(X) can be matched with Pg(X) by the above procedure.

Distribution Partition with Samples
One remaining important problem is that how we partition
the distribution Pd to satisfy the two requirements. When
the data generating process X ∼ Pd(X) is inherently hier-
archical and known to us, we can partition the distribution
according to the structure. Unfortunately, in general, we do
not know it and hence resort to a reverse process, where we
have N samples D = {xi}Ni=1 from the true distributions
Pd(X) and we partition the samples to approximate the true
distribution. When the sample size N approaches to infinity,
we can approximate Pd(X) arbitrarily accurate.

The simplest method is to randomly partition samples into
small sub-sets, each with an indicator such as the index. The
size of the sub-sets is designed so that the small mini-batch
size can give accurate approximation to the embeddings of
the sub-sets. This method naturally satisfies the two require-
ments asymptotically. For datasets of high diversity, such as
CIFAR-10, due to the constraint of memory and computa-
tion cost, random partition leads to very small sub-sets (i.e.,
< 256 in practice) and similar mini-batch size in the training
process. In this case, it leads to several drawbacks. Since
there are no meaningful correlations between the indicators,
we only get isolated generators without utilizing the inherent
similarity between samples. That is to say, the model is try-
ing to memorize every single sample by rote. Consequently,
we need larger models and the convergence rate is slow, as
shown in the experiments section.

We discuss an alternative here. The overall idea is to in-
troduce a pre-trained model to provide x with meaning-
ful latent code y with the property that similar y corre-
sponds to similar x. Specifically, we build an inverse mapping
M : x→ P (Y |x) and randomly allocate each xi with some
yi (e.g. each xi has one yi in practice). Those xi’s with the
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same yi are grouped as a sub-set of D and all the sub-sets
form an approximate partition (perhaps with overlaps) of
the data distribution. The randomness in each subset of the
partition is controlled by the size and the similarity of the
samples (i.e., small size and high similarity enjoy weak ran-
domness). The partition depends on the quality of pre-trained
model, diversity in samples and randomness in the mapping
M. For example, if mappingM have no randomness (e.g.
M : x→ 0), all samples form a single set; if the precision
ofM is one decimal instead of two, samples are inclined to
group together.

The choice of the pre-trained mappingM is flexible and
important, which involves how to learn the latent representa-
tions of special interest. Here we list two common choices:
• Encoder-decoder based models: The encoders of this type

of models can usually capture the latent structure in the
data. Thus they naturally provide the mappingM, such
as denoising auto-encoders (DAEs) (Vincent et al. 2008),
variational auto-encoders (VAEs) (Kingma and Welling
2013) and their variants.

• Clustering based methods: Clustering discovers the sim-
ilarity between data. There are many clustering methods
that yield meaningful latent codes (Xie, Girshick, and
Farhadi 2016; Law, Urtasun, and Zemel 2017). For ex-
ample, recently proposed clustering method with local
aggregation (Zhuang, Zhai, and Yamins 2019) is able to
find nearest neighbors of visual sense, which is a good
choice for our pre-trained model.

When some auxiliary information is provided (e.g., supervi-
sion signals such as the label information), one can take them
into account for better representation. How to make use of
auxiliary information efficiently is beyond the scope of this
paper, and here we only focus on the unsupervised case.

GMMN-DP Nets and Training Algorithm
From the above discussions, suppose now we have the par-
tition for the samples D =

⋃L
i=1Di with a pre-trained map-

pingM and each data xi with one corresponding latent code
yi.

We start from the general case, where the domain of y
is continuous, to define the generative moment matching
networks with distribution partition (GMMN-DP). Similar
with conditional generative moment matching network (CG-
MMN) (Ren et al. 2016), GMMN-DP depicts a conditional
generating process, where the implicit generator G is param-
eterized by a neural network gθ with parameters θ. The input
of gθ consists of two parts: the first part is the latent code y,
serving as an indicator of which part of the distribution the
generated samples belong to and latent space information;
and the other one is some randomly sampled data z to further
give randomness in that part. z can be easily sampled from
uniform distribution U [0, 1] with pre-determined dimension.

We use stochastic training method. We first divide the
whole dataset into small mini-batches. At each iteration, we
sample a mini-batch B from the training set and generate a
mini-batch samples B′ of the same size from gθ. We optimize
the CMMD objective with proper regularizations by SGD.
The algorithm is summarized in Alg. 1. Note that unlike

GCMMN, which models a single operator of CX|Y , GMMN-
DP can be interpreted as modelling a series of conditional
embedding operator CX|Y ′

i
in an amortized manner, where

the union of sample spaces of Y ′i ’s equals to the Y ’s.

Input: Pre-trained mappingM : x→ P (Y |x),
dataset D = {xi}Ni=1, mini-batch size B, optimizer
ADAM.
Output: Generator gθ parameterized by θ with
distribution Pg(X|Y ).
UseM to augment each xi with a yi, D̃ = {xi,yi}
Divide data D̃ into mini batches Γ with batch size B.
repeat

1. Draw a mini batch B from Γ.
2. For every (xi,yi) from B, generate a sample
x′i|yi from gθ, which forms B′ = {x′i,yi}.
3. Computing l = ĈMMD(B,B′).
4. Update θ using ADAM with gradient ∂l∂θ .

until Convergence
Algorithm 1: Stochastic training for GMMN-DP

Recall that the generating process for GMMN-DP is to
sample Y ∼ P (Y ) first and then X|Y ∼ Pg(X|Y ). The
mapping process gives P (Y ) = 1

N

∑N
i=1 δ(Y − yi) when

we allocate each xi with one yi. Notice that with finite
samples D, what we recover is the empirical distribution
in theory with yi regarded as “anchors”. To capture the
whore latent space, we can use kernel density estimator
(KDE) with Gaussian kernels Kh concentrated on each
yi : P (Y ) =

∑N
i=1Kh(Y − yi) and regard yi as sam-

ples from it, where h is kernel bandwidth. To generate new
samples, we can first get y from the KDE and then sample
from Pg(X|y).

The case that the domain of Y is discrete and finite is
not common, since it requires that the dataset is relatively
small and has low-dimensional latent space. In this case,
we can construct the same network structure as GMMN-
DP and replace CMMD with MMD to match each P (X|yi)
separately, which is also an amortized network modelling a
series of distributions.

Related Work
There are a diverse range of deep generative models using
stochastic training algorithms with small batch size. We re-
view some related work here, pointing out how they solve the
sample complexity problem and their relations to ours.

Localization: Most generative models can be classified
into to some categories. The moment matching based meth-
ods are “global” ones, where by global we mean that the
objective is a statistic involving all samples theoretically.
Consequently, the stochastic training algorithm usually in-
troduces huge variance, failing to capture the global infor-
mation. However, “local” methods bypass global statistics,
among which the most representative and typical ones are
VAE (Kingma and Welling 2013) and GAN (Goodfellow
et al. 2014). For VAE, the lower bound is defined separately
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for each sample. This essentially introduces local parame-
ters (i.e. the encoder) to depict the generating process for
each data point. In terms of GAN, the discriminator takes
one x each time, also capturing local information instead of
the global statistic. Though generative models based on the
above two precursors (Arjovsky, Chintala, and Bottou 2017;
Johnson et al. 2016; Li et al. 2018a) has been gaining trac-
tion in recent years, the encoder or the discriminator keeps
localization. The localization treatment gathers information
of the data incrementally, naturally adapted to the stochastic
training algorithm. Our proposed method can be regarded as
a localization treatment of the GMMN, where we match the
target distribution by parts.

Maximize testing power of MMD: There are many at-
tempts trying to make GMMN applicable on datasets with
high diversity. Given a fixed dataset, most of them focus on
maximizing the statistic testing power of the underlying ker-
nels. Sutherland et al. (2017) takes the testing power as the
objective directly and finds a kernel with maximum value
from a pre-determined family. Li et al. (2017); Binkowski
et al. (2018) construct the kernel in an adversarial learning
way, by extracting powerful features from discriminators. To
keep the kernel characteristic, Li et al. (2017) achieved the
injection property by using an encoder-decoder structure to
reconstruct the real and generated samples, while Binkowski
et al. (2018) proposed repulsive loss with explicitly maxi-
mizing the pair-wise distances among the real samples. Our
proposed method works in an opposite direction. Instead of
learning a data-specific kernels, we keep kernel fixed and
process data to take better advantage of the testing power.

Experiments
We present experimental results of the generative task on
the commonly used datasets MNIST (LeCun et al. 1998),
CelebA (Liu et al. 2015) and CIFAR-10. First we list some
settings shared across all the experiments if not further point-
ing out. The code can be found HERE2.

Figure 2: Samples of the reconstruction results of the pre-
trained VAE on dataset CelebA. The first row is the vague
reconstructions of the corresponding original data in the sec-
ond row.

Pre-trained data partition model: We use the vanilla
VAE (Kingma and Welling 2013) as our distribution parti-
tioner, i.e., the encoder as mappingM : x→ P (Y |x). Both
the encoder and decoder are several (i.e. 3 to 4 based on
different datasets) MLP layers. The dimension of the final
output (i.e. latent code) ny is set according to the complex-
ity of datasets. We use ny = 16 for MNIST, ny = 64 for

2https://github.com/McGrady00H/Improving-MMD-with-
Distribution-Partition

CelebA and CIFAR-10. The pre-trained model is relatively
small and not able to reconstruct the dataset, as shown in
Fig.2. After giving each xi a latent code yi, we do not further
group similar latent codes so that each sub-set of the partition
actually contains 1 sample with a large probability. We find
this setting accelerates the convergence speed.

Network architecture: For our GMMN-DP generator,
we follow the architecture of the generator of DCGAN (Rad-
ford et al. 2016), which is composed of several layers (i.e.,
3− 5 based on different datasets), of transposed convolution
operator followed by batch normalization and ReLU. The
model size is adapted to the complexity of the datasets.

Hyper-parameters: We use a mixture of 7 RBF
kernels K(x, x′) =

∑7
i=1Kσi

(x, x′) with σi to be
{1, 4, 8, 16, 24, 32, 64} for the sample space and K(y, y′)
to be RBF kernel with σ = 1. The model is optimized using
Adam with learning rate 0.001 and β = (0.9, 0.999). The
batch sizeB is set to be 64 for all the datasets. The regulariza-
tion parameter λ for ĈX|Y is set to be 0.01. The dimension
for the additional randomness z is set to be 2.

The Generative Quality
We start with the generating results on two standard bench-
mark datasets MNIST and CelebA. The output value of the
pre-trained VAE ranges from −3 to 3 and we set the ker-
nel bandwidth h = 0.3. As mentioned before, GMMNP-
DP models a series of local conditional embedding operator
CX|Y and is expected to generate samples for unseen ys. We
compare our GMMN-DP with the original GMMN. For fair
comparison, the structure of GMMN and model size is the
same as our GMMN-DP and the hyper-parameters are set to
be the same as well.

The results are shown in Fig.3. We can easily find that our
GMMN-DP can generate clear samples with sharp bound-
aries for the MNIST, which are indistinguishable from the
original dataset. On the CelebA dataset, our GMMN-DP is
able to capture details of the faces. On the contrary, GMMN
can only generate samples with general graphic outlines.

To verify that our GMMN-DP can make efficient use of the
similarity between samples by depicting a smooth conditional
generative process instead of merely copying the dataset. We
show generating results for the linear interpolations of the
latent code y. We first fix a latent code y generated by the
VAE mapping. Then we vary y by making linear interpolation
between [−3, 3] just for 1 dimension while keep the other
dimensions fixed. The results are shown in Fig.4. We can find
that the transformations are continuous and the images are of
good quality, both on the dataset MNIST and CelebA. This
verifies that the conditional embedding operators CX|Y ′ can
generalize well for the unseen data.

We then report the generating results for the more challeng-
ing dateset CIFAR-10. We set the kernel bandwidth h = 0.15
or 0.08 for our GMMN-DP, which are balanced values be-
tween the sample quality and the generalization.

We first provide quantitative analysis. We use the inception
score (IS) on CIFAR-10 images to measure the quality and
diversity of generated samples. The implementation of IS
follows Salimans et al. (2016) which is consistent with the
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(a) MNIST samples (b) GMMN samples (c) GMMN-DP samples

(d) CelebA samples (e) GMMN samples (f) GMMN-DP samples

Figure 3: Original data samples and generated samples from GMMN and GMMN-DP (ours) on datasets MNIST and CelebA.

Figure 4: Linear interpolation results on MNIST and CelebA,
where GMMN-DP can depict a smooth generative process.

METHODS INCEPTION SCORES ± STD.

CIFAR-10 DATASET 11.95± 0.20

MMD-GAN 6.17± 0.07
WGAN 5.88± 0.07
GMMN 3.47± 0.03

GMMN-DP (h = 0) 7.49± 0.06
GMMN-DP (h = 0.08) 6.21± 0.06
GMMN-DP (h = 0.15) 5.08± 0.06

Table 1: Inception scores for GMMN-DP and some other
related generative models.

results reported in other related work. The results are summa-
rized in Table??. When the kernel bandwidth h = 0, which
corresponds to the case that Y samples from the empirical dis-
tribution P0(Y ) = 1

N

∑N
i=1 δ(Y − yi). In this case, the sam-

ples are inclined to be identical to the dataset, which matches

the theoretical property recovering the data distribution. The
corresponding IS 7.49 is highest as well. As we increase the
kernel bandwidth, the IS decreases monotonously. This is an
expected issue since that as we varying y, the sample quality
depends on the generalization ability of the estimated local
conditional embedding operator CX|Y . We conjure that the
rate of decay is largely depends on the quality of the mapping
M, which is proved to some extent in further experiments
(see Fig.8).

(a) MMD-GAN samples (b) GMMN-DP samples (h =
0.15)

Figure 5: Generated samples from MMD-GAN and GMMN-
DP (ours) on dataset CIFAR-10.

Now we give some qualitative analysis. We compare our
GMMN-DP with MMD-GAN (Li et al. 2017). The generator
of MMD-GAN is set to be the same as our GMMN-DP. Fig.5
shows that both the MMD-GAN and our GMMN-DP can
generate meaningful and diverse samples. The difference is
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Figure 6: Linear interpolation results on dataset CIFAR-10.
The global structure is maintained when only one dimension
of the latent code varies.

that MMD-GAN samples have sharper boundaries while less
global structure information. On the contrary, our GMMN-
DP is trying to keep the global information as the randomness
increasing while changing some details, which is further
verified in Fig.6. It shows the linear interpolation results,
where we vary only one dimension of the latent code with the
others fixed. We can find the global structure changes while
keeps meaningful information.

Stability of GMMN-DP
We experimentally illustrate the relation between the CMMD
loss in GMMN-DP with the generated sample quality. We
take the CelebA dataset as example. The result is shown
in Fig.7. The samples are generated by a fixed yi given by
the VAE mapping and the loss is smoothed by a moving
average. We can easily find that as the training processes, the
loss decreases globally and the sample quality increases. The
converge rate is rather fast as we can observe that the sample
quality becomes high after tens of thousands of iterations.

iter:
0.2k 1k 5k 40k 160k

Figure 7: Illustration of the relation between the sample qual-
ity and the loss on dataset CelebA. There is a clear correlation
between the sample quality and the loss.

Necessity of the Pre-trained Model
We investigate the importance of the pre-trained mappingM
that meaningful latent code can accelerate the convergence
speed. We use the dataset CIFAR-10 with 300× 64 samples.

The competitor is a random mappingM as mentioned before,
which has no information about the structure of the samples.
We keep other settings the same and the result is shown in
Fig.8. Obviously, GMMN-DP with VAE pre-trained mapping
convergences faster and has lower nadir. Based on this evi-
dence, it is reasonable to conjure that the more informative
the mappingM is, the better convergence rate and sample
quality we can obtain.

Figure 8: Illustration of the mapping quality and the conver-
gence speed on CIFAR-10. A better result is obtained with
more meaningful latent codes.

Computation Cost Analysis
We provide computational complexity analysis for GMMN-
DP. For training with mini-batch size B, data dimension
D and latent code dimension Z, each iteration is O(B3 +
B2(D+Z)) with fixed kernels. The term O(B3) is the com-
putation cost of the inverse manipulation on (K + λI)−1.
In our experimental settings with a single RTX 2080ti GPU,
the average time per iteration on CIFAR10 with B = 64 and
model size 4, 300MB is 0.25s. When the dataset is partitioned
into fixed mini-batches, the inverse matrix can be calculated
and cached in advance to further reduce the computational
complexity to O(B2D) per iteration, which is the cost of the
kernel gram matrix.

Conclusions and Discussions
We propose a new training method for MMD based genera-
tive models. Our method partitions the whole sample space
into small sub-spaces, which break the strong randomness
into weak ones that a small mini-batch size is sufficient to de-
pict it. By matching each small sub-space, we can recover the
whole distribution, without breaking the underlying universal
property for kernels. We present the distribution partition
methods, a GMMN-DP network and its supporting stochas-
tic training algorithm for practical use. Experimental results
show that our proposed methods can give promising results
on high-dimensional latent space datasets such as CelebA and
CIFAR-10, which have much better quality than the original
GMMN and are comparable with some GAN based models.
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