
Precision-based Boosting

Mohammad Hossein Nikravan, Marjan Movahedan, Sandra Zilles
Department of Computer Science, University of Regina, Regina, SK, Canada
nikravam@uregina.ca, marjan.movahedan@gmail.com, zilles@cs.uregina.ca

Abstract
AdaBoost is a highly popular ensemble classification method
for which many variants have been published. This paper
proposes a generic refinement of all of these AdaBoost vari-
ants. Instead of assigning weights based on the total error of
the base classifiers (as in AdaBoost), our method uses class-
specific error rates. On instance x it assigns a higher weight
to a classifier predicting label y on x, if that classifier is less
likely to make a mistake when it predicts class y. Like Ada-
Boost, our method is guaranteed to boost weak learners into
strong learners. An empirical study on AdaBoost and one of
its multi-class versions, SAMME, demonstrates the superior-
ity of our method on datasets with more than 1,000 instances
as well as on datasets with more than three classes.

Introduction
One of the most popular methods for ensemble classification
is AdaBoost, introduced by Freund and Schapire (1997).
The intuitive idea behind AdaBoost is: (i) train a simple
base classifier h1 and observe its performance on the train-
ing data; (ii) assign a higher weight to the training examples
misclassified by h1 and a lower weight to the correctly clas-
sified ones (so that the base classifier h2 to be trained in the
next iteration focuses more on those data points that h1 mis-
classified); (iii) iterate this procedure T times, to create base
classifiers h1, . . . , hT ; and (iv) form a final classifier from a
weighted majority vote of the base classifiers.

If base classifier ht has a lower weighted error on the
training examples than base classifier ht′ , then ht is assigned
more weight in the final vote than ht′ . Moreover, when
reweighting training examples after iteration t, weights are
changed more substantially than after iteration t′, because
the examples misclassified by the stronger classifier ht likely
tend to be “more difficult” than many of those misclassi-
fied by the weaker classifier ht′ . The exact coefficients by
which to reweight training examples between iterations and
by which to weight base classifiers in the final vote were
chosen so as to yield guarantees on the performance of Ada-
Boost.

In this paper, we follow an idea originally proposed by
Aslam (2000) and refine the principle behind AdaBoost’s
weighting scheme. Consider a hypothetical situation in

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which several base classifiers are to be aggregated, based
on their performance on a set of 100 training examples, of
which 50 have class 1 and 50 have class 2. Classifier ht pre-
dicts correct labels for 49 of the 50 instances in class 1, and
for 25 of the 50 instances in class 2, for a total error of
26%. Classifier ht′ predicts correct labels for 40 of the 50
instances in class 1, and for 40 of the 50 instances in class
2. Its total error is 20%. When aggregating all base clas-
sifiers to make a prediction on an unseen instance x, Ada-
Boost will assign more weight to ht′ , which appears more
“trustworthy”, given its lower error. The refined approach
that we suggest though will first evaluate both ht and ht′
on x and then decide how to weight their votes. Suppose
ht(x) = 2 and ht′(x) = 1. Our statistics on the training
data suggest that, when ht predicts class 2, it is incorrect in
only 1/26 = 3.8% of all cases. By comparison, when ht′
predicts class 1, it is incorrect in 10/50 = 20% of all cases.
So, the chance of being incorrect on this specific instance x
is more than 5 times higher when following ht′ than when
following ht. Unlike what AdaBoost would do, the method
we propose in this paper would assign a higher weight to the
vote of ht than to the vote of ht′ , when making a prediction
on the specific instance x.

In short, our method does not simply assess the total er-
ror/accuracy of a base classifier, but its error/precision when
it predicts class y, separately for each class y. We use the
term class-specific precision to refer to the precision of a
classifier on any one chosen class label. When handling data
instance x, the weight our method assigns to a base classi-
fier h hence increases with h’s class-specific precision on
the class y = h(x) predicted by h on x. We thus call our
method Precision-based AdaBoost, or PrAdaBoost for short.
The same idea can be applied to virtually every existing vari-
ation of AdaBoost; e.g., we propose and test PrSAMME, the
precision-based version of the multi-class AdaBoost adapta-
tion SAMME (Hastie et al. 2009).

Following a forward-stagewise additive model (Friedman,
Hastie, and Tibshirani 2000), the choice of weight param-
eters in AdaBoost is optimal when only a single weight
parameter can be assigned to every individual base classi-
fier. In this forward-stagewise model, we simply introduce
one more degree of freedom by incorporating class-specific
precision, which leads to a different optimal solution. Our
formal analysis of PrAdaBoost shows that, as in the case

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9153



of AdaBoost, the PrAdaBoost algorithm trains and aggre-
gates weak classifiers (which are only guaranteed to be bet-
ter than random guessing) into arbitrarily strong (i.e., arbi-
trarily accurate) classifiers, when evaluated on the training
data. Analogously to Freund and Schapire’s (1996) result
for AdaBoost, we obtain an upper bound on the training er-
ror that decreases exponentially quickly as a function of the
number of iterations run by our algorithm.

In an empirical evaluation on 23 two-class UCI datasets,
neither PrAdaBoost nor AdaBoost consistently outperform
its competitor, but our results strongly suggest that PrAd-
aBoost tends to beat AdaBoost on larger datasets as well
as on imbalanced datasets. In the multi-class setting, on 18
UCI datasets, overall PrSAMME is the clear winner over
SAMME. In the sum, our evaluation suggests that, espe-
cially if the dataset has more than 1,000 data points, is imbal-
anced, or has more than three classes, precision-based boost-
ing should be preferred over the traditional “error-based”
boosting.

Related Work
Various methods for constructing ensemble-based systems
have been developed (Rokach 2010). Adaptive boosting
(Freund and Schapire 1997), bagging (Breiman 1996), and
random forests (Breiman 2001) are some of the best-known
ensemble-based classifiers. AdaBoost is among the most
popular methods, not only because of its successes in prac-
tice, but also because of its solid theoretical foundation.

The theory behind AdaBoost is based on the greedy min-
imization of an exponential loss function (Schapire and Fre-
und 2012; Friedman, Hastie, and Tibshirani 2000; Breiman
1999; Schapire and Singer 1999). Knowledge of this min-
imization procedure gives us insights into the convergence
properties of the AdaBoost algorithm. In addition, it pro-
vides us with a means of modifying the loss function so
as to obtain novel boosting-like methods for modified clas-
sification tasks (Schapire and Freund 2012). For example,
Schapire and Singer (Schapire and Singer 1999) used the
Hamming loss to develop a generalized multi-class version
of AdaBoost. Their method, AdaBoost MH, minimizes the
Hamming loss by decomposing the problem into several
two-class classification problems.

Approaches targeting imbalances in the data or the mis-
classification costs led to the design of asymmetric learn-
ing methods (Nikolaou and Brown 2015), such as AdaCost
(Fan et al. 1999), which reduces the cumulative misclassi-
fication cost by integrating a cost-adjustment function into
the weight updating rule of AdaBoost, and of other variants
of AdaBoost; see for instance (Wu and Nagahashi 2015)
for further references and for a comparative study of vari-
ous AdaBoost-like methods. The crucial difference between
these methods and ours is that ours is not targeted at im-
balanced data or imbalanced misclassification costs or any
other kind of imbalance between the individual classes in
the given data. Instead of targeting asymmetric learning set-
tings, we improve AdaBoost in its original task by introduc-
ing more freedom in the choice of weight parameters to be
selected in minimizing the exponential loss. The precision-
based approach is applicable to all variations of AdaBoost –

Algorithm 1: AdaBoost Scheme (Freund and
Schapire 1997)

Input: A training set S = {(x1, y1), . . . , (xn, yn)},
BaseInducer, i.e., a weak learning algorithm,
Number of iterations T ∈ N.
Initialize D1(xi) = 1

n for all i ∈ {1, . . . , n}.
For t = 1 to T do

1. Call BaseInducer with the distribution Dt

to obtain a hypothesis ht : X → Y.

2. Calculate the total error εt of ht w.r.t. Dt, i.e.,

εt =
n∑
i=1

Dt(xi)I(ht(xi) 6= yi).

If εt > 0.5, then set T to t− 1 and abort the loop.
3. Set βt as a decreasing function of εt.
4. Redistribute weights as follows, for 1 ≤ i ≤ n:

Dt+1(xi) =
Dt(xi)

Zt
×

{
e−βt if ht(xi) = yi
eβt otherwise

where Zt is set such that
∑n
i=1Dt+1(xi) = 1.

end
Output: the final hypothesis

H(x) =

{
1 , if

∑T
t=1 βtht(x) ≥ 0 ,

−1 , otherwise .
(1)

just as we test PrAdaBoost and PrSAMME, one could also
implement PrAdaCost, PrAdaBoost.M2, etc.

The only existing method using an idea similar to ours is
InfoBoost (Aslam 2000), which was never tested extensively
in the literature. Like PrAdaBoost, it uses weight parame-
ters based on class-specific precision, but it is built on an
information-theoretic motivation. By contrast, our method
employs the forward-stagewise additive model used to jus-
tify AdaBoost’s weight parameters. In particular, we intro-
duce another degree of freedom into this model, yielding a
new optimal solution. We use this new optimal solution in
our parameters, thus not only significantly improving Ada-
Boost but also beating InfoBoost by a large margin.

AdaBoost Framework
Suppose a training set S = {(x1, y1), . . . , (xn, yn)} of la-
beled examples is given, based on a binary target classi-
fier. Here, each xi represents a training instance, and yi ∈
{−1,+1} is the label of xi.

The algorithmic framework that is used by AdaBoost
(Freund and Schapire 1996) is displayed in Algorithm 1. On
input of S, the boosting algorithm runs for T iterations, in
each iteration t obtaining a new base classifier ht from a
weak learning algorithm. Initially, all training instances in S
have the same weight, but in each iteration t, the weights are
updated, see line 4. The parameter βt used in the weight ad-

9154



justment is defined to be a decreasing function of the error
εt. The latter refers to the cumulative weight of the train-
ing instances misclassified by the base classifier ht, with re-
spect to the distribution Dt, see line 2.1 After T iterations,
the final aggregated classifier computes a weighted majority
vote over all previously trained base classifiers, where the
weight of classifier ht equals βt, i.e., decreases when the er-
ror εt of ht increases, see Eqn. (1). In AdaBoost (Freund and
Schapire 1996), the crucial parameter βt is defined as

βt =
1

2
ln

1− εt
εt

.

AdaBoost follows a forward-stagewise additive model
(Friedman, Hastie, and Tibshirani 2000), where the objec-
tive is to find a function H which minimizes the exponential
loss L(y,H) = e−yH(x) over S, i.e., which minimizes

n∑
i=1

L(yi, H(xi)) =
n∑
i=1

e−yiH(xi) . (2)

HereH(xi) ∈ {−1,+1} is the labelH predicts for the train-
ing instance xi and yi ∈ {−1,+1} is again the observed true
label for xi. Moreover, H is considered to be an additive
function of the following form, where βt ∈ R are coeffi-
cients and ht are base classifiers for t = 1, . . . , T :

H(x) =

T∑
t=1

βtht(x) , (3)

The greedy method implemented in AdaBoost approxi-
mates the optimal solution to (2) in an iterative way, start-
ing with H0 = 0, choosing βt and ht so as to mini-
mize

∑n
i=1 exp(−yi(Ht−1(xi) + βtht(xi))), and then set-

ting Ht(x) = Ht−1(x) + βtht(x) and H = HT . Defining
ωt,i = exp(−yiHt−1(xi)), the goal is thus to find

argmin
βt,ht

n∑
i=1

ωt,i exp(−βtyiht(xi))) (4)

= argmin
βt,ht

∑
yi=ht(xi)

ωt,ie
−βt +

∑
yi 6=ht(xi)

ωt,ie
βt . (5)

The optimal solution to this iterative procedure (thus approx-
imating the minimizer of (2)) yields βt = 1

2 ln 1−εt
εt

, as used
in AdaBoost, cf. (Friedman, Hastie, and Tibshirani 2000).

Precision-based Boosting
AdaBoost weights a classifier based on its error – a low er-
ror εt of ht results in a high weight βt assigned to ht. This is
possible, because the stagewise model shown above makes
the coefficient βt dependent on the iteration number t. We
refine this approach by adding one more degree of freedom
to the optimization problem described above. In iteration t,
we will allow the stagewise model to select two values of βt,
one value βt,1 to handle instances xi on which ht predicts
1, and one value βt,−1 to handle those on which ht predicts

1Throughout the paper, the notation I(P ) ∈ {0, 1} refers to the
binary indicator of the truth of condition P .

−1. Thus one can assign a higher weight to a classifier ht
when it predicts class y, in case it generally has a high preci-
sion on class y. Intuitively, this will create an advantage over
AdaBoost when the precision of base classifiers on the two
classes is not equal.

For this purpose, we extend Equation (4); the goal is to
find βt,1, βt,−1, and ht(x) that minimize∑

yi=ht(xi)

ωt,ie
−βt,1I(ht(xi) = 1)

+
∑

yi=ht(xi)

ωt,ie
−βt,−1I(ht(xi) = −1)

+
∑

yi 6=ht(xi)

ωt,ie
βt,1I(ht(xi) = 1)

+
∑

yi 6=ht(xi)

ωt,i + eβt,−1I(ht(xi) = −1)

(6)

While (4) eventually yields a βt-value depending on the total
error εt of ht, our approach requires two error terms, namely
εt,1 for the error of ht when it predicts class 1, and εt,−1 for
the error of ht when it predicts class −1. Specifically, the
error εt,y is defined as the cumulative weight of the training
instances on which ht incorrectly predicts y, under the dis-
tributionDt. Similarly, we use rt,y to refer to the cumulative
weight of the training instances in class y.

Definition 1. For y ∈ {1,−1} and t ∈ {1, . . . , T}, let

εt,y =
n∑
i=1

Dt(xi)I(yi 6= ht(xi))I(ht(xi) = y) and

rt,y =
n∑
i=1

Dt(xi)I(yi = y) .

In what follows, if y = 1, then ȳ = −1, and, if y = −1,
then ȳ = 1. The proof of Lemma 1 is omitted.

Lemma 1. If εt,y 6= 0 for all t, y, then (6) is minimized by

ht = argmin
h

n∑
i=1

ωt,iI(yi 6= h(xi)) and

βt,y =
1

2
ln
rt,y − εt,ȳ

εt,y
.

We correspondingly adapt the framework for AdaBoost to
a new boosting algorithm called PrAdaBoost, which is short
for Precision-based AdaBoost, shown in Algorithm 2. Intu-
itively, AdaBoost and PrAdaBoost differ only in one simple
aspect. For a given training dataset S and a set of base clas-
sifiers, AdaBoost adopts the following strategy: The higher
the accuracy of a base classifier (statistically on S), the
more one should trust its predictions. By comparison, PrAd-
aBoost’s strategy is: The higher the class-specific precision
of a base classifier h for class y (statistically on S), the more
one should trust h when it predicts class y.

A minor difference in forming the final classifier is that
AdaBoost has a perfect base classifier ht when βt = ∞. In
our case, βt,y = ∞ does not imply εt = 0 – one can only

9155



Algorithm 2: PrAdaBoost
Input: A training set S = {(x1, y1), . . . , (xn, yn)},
BaseInducer, i.e., a weak learning algorithm,
Number of iterations T ∈ N.
Initialize D1(xi) = 1

n for all i ∈ {1, . . . , n}.
For t = 1 to T do

1. Call BaseInducer with the distribution Dt

to obtain a hypothesis ht : X → Y.

2. If εt > miny rt,y , set T to t− 1 and abort the loop.

3. βt,1 = 1
2 ln

rt,1−εt,−1

εt,1
and βt,−1 = 1

2 ln
rt,−1−εt,1
εt,−1

.

4. Redistribute weights as follows, for 1 ≤ i ≤ n:

Dt+1(xi) =
Dt(xi)

Zt
×

{
e−βt,ht(xi) if ht(xi) = yi
eβt,ht(xi) if ht(xi) 6= yi

where Zt is defined such that
∑n
i=1Dt+1(xi) = 1.

end
Output: the final hypothesis

H(x) =


ht∞(x) , if T∞(x) 6= ∅, t∞ = minT∞(x) ,

1 , else if
∑T
t=1 βt,ht(x)ht(x) ≥ 0 ,

−1 , otherwise .

T∞(x) = {t | βt,ht(x) =∞} (7)

rely fully on ht when it predicts y. This is addressed by in-
corporating min(T∞(x)) in the output of PrAdaBoost. Our
formal derivation of βt,y above assumes that these values are
finite, so that T∞(x) = ∅; but to ensure proper logic in our
algorithm, we introduce the case T∞(x) 6= ∅.

Note that the abort condition in line 2, to ensure the β val-
ues are non-negative, is weaker than the corresponding one
used in AdaBoost, but is irrelevant in the typical practical
deployment of AdaBoost-type methods. It is given just for
formal reasons, as the pseudocode allows any kind of base
inducer. Formally, the loop is aborted when the total error of
any base classifier is higher than the weight of either class
under the current distribution. However, that abort condition
is never met when using a standard decision stump learner,
as it would favour a constant classifier with error εt = rt,y
(i.e., the trivial classifier always predicting the class with the
highest cumulative weight) over any other decision stump
with error εt > rt,y . Likewise, line 2 of AdaBoost’s pseu-
docode can be dropped when using decision stumps. PrAd-
aBoost’s runtime complexity is equal to AdaBoost’s.

Formal Analysis
AdaBoost is known to boost a series of base classifiers ht
with εt < 1

2 into a classifier with arbitrarily small training
error; known upper bounds on the training error decrease ex-
ponentially quickly as a function of T (Freund and Schapire
1996). We will now establish a similar result for PrAdaBoost
that gives, in some cases, much smaller bounds on the train-
ing error than the corresponding bounds for AdaBoost.

Theorem 1. W.r.t. the uniform distributionD1, the error εH
of the hypothesis H output by PrAdaBoost is bounded by

εH = Prxi∼D1 [H(xi) 6= yi]

≤
T∏
t=1

2
√
εt,1(rt,1 − εt,−1) + 2

√
εt,−1(rt,−1 − εt,1) .

If the base classifiers ht in Algorithm 2 satisfy εt < 1/2
for all t ∈ {1, . . . , T}, this bound decreases exponentially
quickly as a function of T .

Our proof of this theorem follows in spirit the correspond-
ing standard proof for AdaBoost, cf. (Mohri, Rostamizadeh,
and Talwalkar 2018).
Proof. Let F (x) =

∑T
t=1 βt,ht(x)ht(x). We first show, for

all i, I(H(xi) 6= yi) ≤ exp(−yiF (xi)). It suffices to show
that H(xi) 6= yi yields −yiF (xi) ≥ 0. If T∞(xi) in Algo-
rithm 2 is empty, then F (xi) = 0 or H(xi) = sgn(F (xi)).
Thus, if H(xi) 6= yi, we get −yiF (xi) ≥ 0. If T∞(xi) 6= ∅,
then H(xi) = yi by Algorithm 2, so there is nothing to
show.

Note that DT+1 can be written in terms of D1 as follows:

DT+1(xi) = D1(xi) ·
T∏
t=1

exp(−yiβt,ht(xi)ht(xi))

Zt

=
exp(−yi

∑T
t=1 βt,ht(xi)ht(xi))

n ·
∏T
t=1 Zt

=
exp(−yiF (xi))

n ·
∏T
t=1 Zt

Now we use I(H(xi) 6= yi) ≤ exp(−yiF (xi)) to obtain

εH =
n∑
i=1

D1(xi)I(H(xi) 6= yi) ≤
n∑
i=1

1

n
exp(−yiF (xi))

=
n∑
i=1

DT+1(xi)
T∏
t=1

Zt =
T∏
t=1

Zt

Using line 4 of Algorithm 2, one can express Zt as

Zt =
n∑
i=1

Dt(xi) exp(−yiβt,ht(xi)ht(xi))

=
∑

i:yi=ht(xi)

Dt(xi)e
−βt,yi +

∑
i:ȳi=ht(xi)

Dt(xi)e
βt,ȳi

= (rt,1 − εt,−1)e−βt,1 + (rt,−1 − εt,1)e−βt,−1

+ εt,1e
βt,1 + εt,−1e

βt,−1

= (rt,1 − εt,−1)

√
εt,1

rt,1 − εt,−1

+ (rt,−1 − εt,1)

√
εt,−1

rt,−1 − εt,1

+ εt,1

√
rt,1 − εt,−1

εt,1
+ εt,−1

√
rt,−1 − εt,1

εt,−1

= 2
√
εt,1(rt,1 − εt,−1) + 2

√
εt,−1(rt,−1 − εt,1)

Thus one obtains the claimed upper bound

εH ≤
T∏
t=1

2
(√

εt,1(rt,1 − εt,−1) +
√
εt,−1(rt,−1 − εt,1)

)

9156



To show that this bound drops exponentially quickly as a
function of T , we use the known upper bound on the training
error of AdaBoost, given by the formula

T∏
t=1

2
√
εt(1− εt) , (8)

cf. (Freund and Schapire 1996; Mohri, Rostamizadeh, and
Talwalkar 2018). This bound is known to drop exponentially
quickly as a function of T if εt < 1/2 for all t. We will
see that 2

(√
εt,1(rt,1 − εt,−1) +

√
εt,−1(rt,−1 − εt,1)

)
≤

2(2
√
εt(1− εt)), i.e., our bound is within a factor of 2 of

the one known for AdaBoost and therefore also drops expo-
nentially quickly as a function of T .

To verify that our bound is within a factor of 2 of the one
for AdaBoost, it suffices to observe that

εt,y(rt,y − εt,ȳ) ≤ εt,y(rt,y − εt,ȳ) + εt(rt,ȳ − εt,y)

≤ εt(rt,y − εt,ȳ) + εt(rt,ȳ − εt,y)

= εt(rt,y + rt,ȳ − εt,ȳ − εt,y)

= εt(1− εt)

Our proof uses a crude approximation to show that our
upper bound on PrAdaBoost’s training error is at most twice
as large as that of AdaBoost. Very often in fact, our bound
on PrAdaBoost’s training error (from Theorem 1) is smaller
than the bound

∏T
t=1 2

√
εt(1− εt) (Freund and Schapire

1996; Mohri, Rostamizadeh, and Talwalkar 2018) for Ada-
Boost – a claim that we also tested empirically (results not
included here). Here we present a hypothetical situation in
which a small difference between the bounds results in a
large difference in the number of iterations after which the
bounds can guarantee a certain target training accuracy.

Suppose the maximal error maxt≤T εt incurred by both
algorithms over T iterations is 0.48 and the target error to be
reached is 0.02. Suppose further that the classes are never
quite balanced throughout PrAdaBoost’s iterations, e.g.,
rt,1 ≤ 0.4 and rt,−1 ≥ 0.6, and that the class-specific errors
(which sum up to εt) are such that εt,1 ≤ 0.285 and εt,−1 ≤
0.195 for all t. Under these conditions, the maximum possi-
ble value of 2

√
εt,1(rt,1 − εt,−1) + 2

√
εt,−1(rt,−1 − εt,1)

is roughly 0.97910 and occurs when rt,1 = 0.4, rt,−1 =
0.6, εt,1 = 0.285, εt,−1 = 0.195. The maximum possi-
ble value of 2

√
εt(1− εt) is roughly 0.99919, for εt =

0.48. Making a pessimistic estimate for both algorithms,
by considering the maximum possible values to occur not
just in one but in all iterations, PrAdaBoost’s bound evalu-
ates to roughly 0.97910T . This number is less than 0.02 if
and only if T ≥ 186. By comparison, AdaBoost’s bound∏T
t=1 2

√
εt(1− εt), which is based only on εt, evaluates to

roughly 0.99919T and is below 0.02 only when T ≥ 4828,
which is almost 26 times the value obtained through PrAd-
aBoost’s bound. Note that, for such upper-bound estimates
on AdaBoost-type algorithms, it is standard practice to as-
sume the maximum possible error under the given con-
straints occurs in every iteration, cf. (Freund and Schapire
1996; Mohri, Rostamizadeh, and Talwalkar 2018).

A Multi-class Variant
Precision-based scoring parameters can similarly be applied
in variants of AdaBoost, such as AdaCost etc. We were par-
ticularly interested in studying the effect of precision-based
boosting in multi-class classification; here we expected a
more noticeable benefit of precision-based boosting due to
the higher chance of base classifiers having large differences
in precision for at least some of the classes.

The best-known multi-class AdaBoost variants are
AdaBoost.M1, AdaBoost.M2 (Freund and Schapire
1996), AdaBoost.MH (Schapire and Singer 1999), and
SAMME (Hastie et al. 2009). Since SAMME is simpler
than AdaBoost.MH and was reported to outperform Ada-
Boost.M1 and AdaBoost.M2, we chose SAMME as a
method for our analysis. Using the same approach as in
Section , we formulate a forward stagewise additive model
in a class-specific approach, but this time starting from the
multi-class exponential loss function from which Hastie et
al. (Hastie et al. 2009) derived SAMME. Minimizing the
loss as done in Section for the binary case, one obtains
optimal parameters of a class-specific flavor.

We adapt Definition 1 to a multi-class setting with K
classes, by introducing a dual form of class error.

Definition 2. Let y ∈ {1, . . . ,K} and t ∈ {1, . . . , T}. The
dual class error ε′t,y is defined as the cumulative weight of
the training instances in class y which are incorrectly pre-
dicted by ht, under the distribution Dt.

ε′t,y =
n∑
i=1

Dt(xi)I(yi 6= ht(xi))I(yi = y)

Then, the following scoring parameters are obtained with
a calculation similar to that in Section :

Lemma 2. Assuming y ∈ {1, . . . ,K} and t ∈ {1, . . . , T},
the following expression minimizes the precision-based ver-
sion of SAMME’s loss function.

βt,y =
(K − 1)2

K

(
ln
rt,y − ε′t,y

εt,y
+ ln(K − 1)

)
Using such βt,y as scoring parameters within SAMME,

one obtains a method we call PrSAMME, analogously to
the way PrAdaBoost was obtained from AdaBoost.

Empirical Analysis
We evaluated (Pr)AdaBoost on 23 binary UCI datasets
(Lichman 2013) and (Pr)SAMME on 18 multi-class UCI
datasets, using decision stumps trained in Matlab as base
classifiers. We performed 10-fold cross validation on each
dataset (except ‘isolet’, which has designated training and
test portions), comparing two algorithms always on the same
folds. All errors were calculated w.r.t. the uniform distribu-
tion over the input data. The datasets were preprocessed to
remove all data points with missing attribute values.

Binary Classification
We ran PrAdaBoost and AdaBoost for T iterations, trying
T = 30, 50, and 100 (without attempting to tune T .) In each

9157



case, we report (i) test error averages from 10-fold cross-
validation over iterations 1 through T , and (ii) test error at
iteration T . We also tried excluding the first 9 iterations from
the average in (i), so as not to penalize a method for very
early erroneous predictions, but since this did not change
the trends the corresponding results are not reported here.

The results for T = 50 are given in Table 1, where sta-
tistically significant wins (using 2-tailed paired t-tests at the
95% confidence level) are shown in bold. Datasets are listed
in decreasing order of size; from the top down to german
are those with 1,000 or more instances. Note that not many
of the results for iteration 50 alone are statistically signifi-
cant, as they are based on only 10 result pairs (one per fold),
whereas for iterations 1–50 we compare 50×10 result pairs.

PrAdaBoost tends to outperform AdaBoost (i) on larger
datasets but also (ii) on datasets with class imbalance. Con-
cerning (i), note that the datasets containing more than 1,000
instances are the top 14 in Table 1 – AdaBoost wins on only
4 of these 14 in terms of test error, while winning on 8 of the
9 small sets. This suggests that the training data in larger
datasets become representative enough of the test data to
give PrAdaBoost a crucial advantage over AdaBoost. As for
(ii), note that PrAdaBoost takes class ratios into account ex-
plicitly via the r1,y values in iteration t = 1. When redis-
tributing weights, class imbalance may decline, so it is hard
to predict its effect for larger t. In our study, the datasets in
which the size ratio between the larger and the smaller class
is less than 1.5 are the following: krvskp, banknote, messi-
dor, crx, cleveland, house, sonarall, and promoters. PrAd-
aBoost wins on only 2 out of these 8 datasets in terms of test
error. By contrast, it wins in terms of test error on 9 out of
15 datasets with class ratio greater than 1.5. This suggests
that PrAdaBoost provides much more of an advantage over
AdaBoost for imbalanced datasets than for balanced ones.

Results for T = 30 showed similar trends, so that we
do not display them here. For T = 100, we cannot make a
meaningful comparison. While the errors incurred by Ada-
Boost keep getting slightly smaller, PrAdaBoost’s errors ap-
pear to increase. The latter though seems to be due to numer-
ical imprecision. PrAdaBoost adjusts the weights of individ-
ual training examples much more aggressively than Ada-
Boost, so that weights can become extremely small very
quickly. In our experiments, this caused weights to be treated
as zero when in fact they weren’t, so that our test runs could
not numerically perform the operations prescribed by PrAd-
aBoost. Efforts to resolve this problem, e.g., using smooth-
ing or exact rational arithmetic, are left for future studies.

Comparison to InfoBoost
Aslam (2000) proposed InfoBoost as a first AdaBoost-type
method that takes class-specific precision into account in its
weighting scheme. The parameters used in InfoBoost differ
from those used in PrAdaBoost, and appear substantially in-
ferior, see Table 2. In terms of test error, PrAdaBoost signifi-
cantly outperforms InfoBoost on 21 of the 23 tested datasets,
ties on one dataset, and loses to InfoBoost on only one
dataset (promoters). Moreover, PrAdaBoost mostly wins by
a large margin, and it does not seem as if InfoBoost can com-
pete with the original AdaBoost either.

1-50 50 alone
Name AdaB Pr AdaB Pr

bankfull 10.50 10.33 10.21 10.03
adult 15.98 15.11 14.69 14.22

creditcard 18.06 18.09 18.06 18.10
magic04 19.14 17.98 17.22 16.04

htru2 2.27 2.20 2.27 2.16
agaricus 0.17 0.07 0 0

spambase 8.98 7.89 7.10 6.56
krvskp 7.73 7.15 5.60 5.44
seismic 6.58 6.79 6.57 6.59
titanic 22.22 22.29 22.17 22.17

banknote 2.88 3.52 0.43 2.26
messidor 35.03 33.45 32.23 32.40
biodeg 18.68 16.48 17.44 14.98
german 26.19 25.62 24.30 25.50
breastc 4.73 5.60 4.24 6.59

crx 13.45 14.63 13.16 15.62
diabetes 21.65 24.22 21.89 25.96

ionosphere 9.91 8.79 8.57 7.12
cleveland 17.30 17.86 17.13 17.81

house 3.38 5.68 3.46 8.58
sonarall 19.87 20.91 15.38 22.11

promoters 10.36 15.31 8.72 17.09
hepatitis 15.13 16.78 13.75 17.50

Table 1: Test errors (%) of AdaBoost and PrAdaBoost, aver-
aged over iterations 1–50 and at iteration 50 alone.

To show that this is not an issue of InfoBoost aggressively
overfitting, we display training errors as well. Given Info-
Boost’s poor performance compared to PrAdaBoost over 50
iterations, we did not evaluate InfoBoost further.

Multi-Class Classification
Table 3 compares PrSAMME and SAMME in a 10-fold
cross-validation and for 100 iterations, with bold entries
again referring to statistically significant wins at the 95%
confidence level (paired t-tests).

PrSAMME clearly outperforms SAMME (15 wins, 2
losses, 1 tie, when averaging over 100 iterations). Note that,
in the few cases in which SAMME’s errors are significantly
less than PrSAMME’s, their differences are still very small,
whereas PrSAMME often beats SAMME by a large mar-
gin. PrSAMME tends to outperform SAMME more strongly
when the number of classes increases. 13 of the 18 tested
datasets have more than 3 classes. PrSAMME significantly
outperforms SAMME on all of them. The datasets in which
PrSAMME does not substantially beat SAMME (splice,
wine, and iris) have only 3 classes each.

Stronger Base Classifiers
To see whether the trends in our results are specific to the use
of decision stumps as base classifiers, we also tested both ap-
proaches using stronger base classifiers. Allowing trees with
up to 5 splits as base classifiers, we tested the four largest
two-class datasets and the four largest multi-class datasets:
bankfull, adult, creditcard, magic04, connect4, sensorless,
shuttle, and letter. For ‘shuttle’, SAMME and PrSAMME

9158



Training error Test error
Name Info Pr Info Pr

bankfull 18.34 10.26 18.38 10.33
adult 33.97 15.01 33.99 15.11

creditcard 34.85 18.00 34.87 18.09
magic04 45.51 17.43 45.77 17.98

htru2 8.04 2.15 8.10 2.20
agaricus 29.91 0.07 29.91 0.07

spambase 13.83 6.97 14.55 7.89
krvskp 17.87 6.93 18.02 7.15
seismic 13.27 6.59 13.86 6.79
titanic 32.75 22.27 32.90 22.29

banknote 2.93 2.81 3.62 3.52
messidor 42.62 26.92 45.52 33.45
biodeg 22.97 12.89 26.68 16.48
german 47.61 21.42 49.41 25.62
breast 4.27 2.78 6.85 5.60

crx 23.35 10.34 27.08 14.63
diabetes 24.23 14.85 29.85 24.22

ionosphere 5.64 4.00 12.30 8.79
cleveland 18.38 12.02 25.89 17.86

house 5.24 4.27 7.01 5.68
sonarall 7.08 5.19 25.19 20.91

promoters 2.19 1.52 14.23 15.31
hepatitis 9.34 1.01 25.30 16.78

Table 2: Training/test errors (%) of InfoBoost and PrAd-
aBoost, averaged over iterations 1 through 50.

were on par; for the other seven datasets the comparison re-
sults were similar to those we reported for decision stumps,
just with smaller error values throughout. In particular, Pr
won significantly on six datasets and lost slightly only on
creditcard. This suggests that, at least for larger datasets,
precision-based methods are preferable even when using
stronger base classifiers. Since most of the literature uses
AdaBoost with decision stumps, we did not extend our study
on stronger classifiers beyond the reported eight datasets.

Conclusions
We demonstrated that the AdaBoost framework can sub-
stantially benefit from using class-specific precision in its
weighting scheme. In particular, we formally derived a
weighting scheme that is provably optimal under additive
forward stagewise modeling in a setting that generalizes the
one on which AdaBoost is built. The resulting algorithm
PrAdaBoost is guaranteed to convert a weak learner into a
strong learner. It provably decreases its training error ex-
ponentially quickly, and the obtained error bound can of-
ten substantially improve on the known ones for AdaBoost.
Similarly, virtually all known ensemble classification meth-
ods built on AdaBoost can be adapted to take class-based
precision into account, as illustrated for SAMME. One in-
teresting direction for future work would be to establish gen-
eralization error bounds for precision-based boosting.

Experiments on 23 two-class and 18 multi-class bench-
mark datasets showed PrAdaBoost and PrSAMME to be su-
perior to AdaBoost and SAMME, resp., in many cases. Typ-
ically, larger datasets as well as datasets with more classes

1–100 100 alone
Name SAMME Pr SAMME Pr

connect4 29.58 28.14 27.75 25.75
sensorless 59.64 45.64 48.26 43.65

shuttle 5.54 0.89 2.98 0.09
letter 73.06 66.30 58.18 56.39

nursery 19.96 14.96 23.40 14.27
pendigit 44.63 35.52 29.34 25.61

isolet 79.91 65.73 68.44 52.34
satimage 25.25 23.78 20.44 22.44

splice 6.80 7.18 5.33 6.30
segment 24.97 19.80 17.01 16.75

yeast 68.53 68.39 68.53 68.39
vowel 68.84 62.95 63.74 57.17
vehicle 41.30 40.31 39.37 37.12
glass 47.62 45.35 48.98 43.10
seed 8.66 6.94 8.57 7.14
wine 4.85 4.72 3.40 3.46
iris 5.95 7.13 4.67 8.00

breastt 40.24 37.26 31.00 38.55

Table 3: Test errors (%) of SAMME and PrSAMME, av-
eraged over iterations 1–100 and at iteration 100 alone;
datasets are in decreasing order of size.

support our conclusion more strongly. Class imbalance also
tends to be more easily handled by the precision-based ap-
proach. These trends seem plausible. Given multiple classes,
the chances are higher that class-specific precision of any
base classifier varies among classes, thus increasing the
positive effect of the precision-based approach. Potential
negative effects of class imbalance are possibly mitigated
through the rt,y terms. The fact that PrAdaBoost does not
beat AdaBoost on the smaller datasets tested, presumably
has its reasons in the aggressiveness of PrAdaBoost’s weight
update technique. The latter may have adverse effects when
the training data are not representative of the test data –
which is more likely for small datasets. Regularization might
help to mitigate PrAdaBoost’s problems with overgeneral-
ization on small datasets, and possibly also the numerical
issues we encountered when running it for many iterations.

We do not claim that PrAdaBoost/PrSAMME are not out-
performed by any existing boosting method, but that they
tend to outperform their non-precision-based counterparts
AdaBoost/SAMME on larger/multi-class datasets. In the
same vein, we propose to consider replacing other existing
AdaBoost-type methods by their corresponding precision-
based variants when dealing with larger datasets.

In the sum, our experiments from both binary and multi-
class settings suggest that the preferred choice, when run-
ning an AdaBoost-type method on datasets with more than
1,000 instances or with more than 3 classes, should be to
use the precision-based approach that we propose, as it is
expected to improve the predictive performance.

Acknowledgements
This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), through the
Discovery Grants and Canada Research Chairs programs.

9159



References
Aslam, J. A. 2000. Improving Algorithms for Boosting.
In Proceedings of the Thirteenth Annual Conference on
Computational Learning Theory (COLT)), 200–207. Mor-
gan Kaufmann.
Breiman, L. 1996. Bagging Predictors. Machine Learning
24(2): 123–140. doi:10.1007/BF00058655. URL http://dx.
doi.org/10.1007/BF00058655.
Breiman, L. 1999. Prediction games and arcing algorithms.
Neural Computation 11(7): 1493–1517.
Breiman, L. 2001. Random Forests. Machine Learning
45(1): 5–32. doi:10.1023/A:1010933404324. URL http:
//dx.doi.org/10.1023/A:1010933404324.
Fan, W.; Stolfo, S. J.; Zhang, J.; and Chan, P. K. 1999. Ada-
Cost: misclassification cost-sensitive boosting. In ICML,
97–105.
Freund, Y.; and Schapire, R. E. 1996. Experiments with a
new boosting algorithm. In ICML, 148–156.
Freund, Y.; and Schapire, R. E. 1997. A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting. Journal of Computer and System Sciences 55(1):
119–139.
Friedman, J.; Hastie, T.; and Tibshirani, R. 2000. Additive
logistic regression: a statistical view of boosting (with dis-
cussion and a rejoinder by the authors). The Annals of Statis-
tics 28: 337–407.
Hastie, T.; Rosset, S.; Zhu, J.; and Zou, H. 2009. Multi-class
AdaBoost. Statistics and its Interface 2: 349–360.
Lichman, M. 2013. UCI Machine Learning Repository.
URL http://archive.ics.uci.edu/ml.
Mohri, M.; Rostamizadeh, A.; and Talwalkar, A. 2018.
Foundations of Machine Learning, 2nd ed. MIT Press.
Nikolaou, N.; and Brown, G. 2015. Calibrating AdaBoost
for Asymmetric Learning. In Proceedings of the 12th Inter-
national Workshop on Multiple Classifier Systems (MCS),
112–124.
Rokach, L. 2010. Ensemble-based classifiers. Artificial In-
telligence Review 33(1-2): 1–39.
Schapire, R.; and Freund, Y. 2012. Boosting: Foundations
and Algorithms. MIT Press.
Schapire, R. E.; and Singer, Y. 1999. Improved boost-
ing algorithms using confidence-rated predictions. Machine
learning 37(3): 297–336.
Wu, S.; and Nagahashi, H. 2015. Analysis of Generalization
Ability for Different AdaBoost Variants Based on Classifi-
cation and Regression Trees. J. Electrical and Computer
Engineering 2015: 835357:1–835357:17.

9160


