
Advice-Guided Reinforcement Learning in a non-Markovian Environment

Daniel Neider1, Jean-Raphael Gaglione2, Ivan Gavran1, Ufuk Topcu3, Bo Wu3, Zhe Xu4

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany
2 Ecole Polytechnique, France

3 University of Texas at Austin, Texas, USA
4 Arizona State University, Arizona, USA

Abstract

We study a class of reinforcement learning tasks in which the
agent receives its reward for complex, temporally-extended
behaviors sparsely. For such tasks, the problem is how to
augment the state-space so as to make the reward function
Markovian in an efficient way. While some existing solutions
assume that the reward function is explicitly provided to the
learning algorithm (e.g., in the form of a reward machine),
the others learn the reward function from the interactions with
the environment, assuming no prior knowledge provided by
the user. In this paper, we generalize both approaches and
enable the user to give advice to the agent, representing the
user’s best knowledge about the reward function, potentially
fragmented, partial, or even incorrect. We formalize advice
as a set of DFAs and present a reinforcement learning algo-
rithm that takes advantage of such advice, with optimal con-
vergence guarantee. The experiments show that using well-
chosen advice can reduce the number of training steps needed
for convergence to optimal policy, and can decrease the com-
putation time to learn the reward function by up to two orders
of magnitude.

1 Introduction
Reinforcement learning (RL) assumes the environment in
which an intelligent agent operates to be modeled by a
Markov Decision Process (MDP): the states of the MDP
capture the relevant information about the environment,
while state-action pairs are equipped with rewards that either
reinforce desired or penalize undesired behaviors. In many
RL tasks, however, the agent receives its reward sparsely for
complex actions over a long period of time.

Learning an optimal policy in such settings is hard: they
do not map naturally to MDPs as the reward does not de-
pend on the immediate state of the environment and the cho-
sen action but rather on the history of the actions that the
agent has performed—in other words, the reward function
is non-Markovian. A similar problem occurs under different
guises: a non-Markovian dynamics of the MDP or partial
observability that creates an illusion of a non-Markovian en-
vironment. For the moment, we focus on the non-Markovian
reward formulation of the problem and discuss the other for-
mulations with related work.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Clearly, a reward function is Markovian or non-
Markovian only with respect to the underlying MDP, and
one can augment the states of any MDP with (relevant
parts of) the history to obtain an equivalent problem with
a Markovian reward function. However, the exact augmen-
tation is crucial: if done naively, the augmented state space
becomes too large to be computationally tractable. To over-
come this problem, finite-state machines or (equivalently)
temporal logic formulas have been proposed to concisely
capture the temporal nature of non-Markovian reward func-
tions and make the RL task feasible (Bacchus, Boutilier, and
Grove 1996; Jothimurugan, Alur, and Bastani 2019; Icarte
et al. 2018b; Brafman, Giacomo, and Patrizi 2018; Cama-
cho et al. 2019). In this paper we focus on a specific type of
finite-state machines, called reward machines, which have,
since proposed by Icarte et al. (2018b), been adopted as a
way to encode non-Markovian reward functions.

The approaches above assume that the reward machine
is fully known prior to the start of the RL process. How-
ever, this assumption is often unrealistic: in practice, reward
functions (and, thus, reward machines) are notoriously dif-
ficult to find and often not fully known. Luckily, recent re-
search has shown how to eliminate this requirement. For in-
stance, Gaon and Brafman (2020) and Xu et al. (2020) com-
bine automata learning with standard reinforcement learning
techniques in order to infer the underlying reward machine
through interactions with the environment. Although both
Gaon and Brafman’s and Xu et al.’s approaches guarantee
convergence to the optimal policy and provide convincing
experimental evaluations, methods that have to infer the re-
ward machine necessarily converge slower than the ones that
assume full knowledge of it.

While assuming full knowledge of the reward machine
is rightly deemed overly optimistic (see above), we believe
that assuming no knowledge is overly pessimistic. Indeed, a
typical situation will be between the two extremes: a human
engineer certainly has some high-level knowledge about the
reward function/machine and can often provide some sort of
“advice”.

In this paper, we think of advice as suggesting which of
the agent’s observation sequences are promising (i.e., for
which sequences the agent could get a reward, without de-
termining the numerical value of the reward), and which are
not. Formally, an observation (later called label sequence)

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9073

is a word of finite length, and we represent advice as (a
number of) deterministic finite automata (DFAs) that ac-
cept promising observations. The key argument in favor of
choosing DFAs as a formalism for advice is that they are
widely known among engineers. Furthermore, many declar-
ative specification languages (such as regular expressions or
linear temporal logic) can be translated into DFAs.

The main contribution of this paper is an RL algorithm,
named AdvisoRL, that takes advice from the user about the
reward machine and uses it to learn more efficiently. Advi-
soRL generalizes the prior work: advice can express the full
information about the reward machine as well as no infor-
mation at all. Importantly, the advice is not assumed to be
perfect: the algorithm can handle wrong advice.

More precisely, AdvisoRL takes a set of advice DFAs as
its input. Interacting with the environment, the agent itera-
tively learns a reward machine. We develop a novel SAT-
based method to learn a reward machine that is compatible
with the advice and consistent with the observed rewards.
This method is integrated with the standard Q-learning al-
gorithm. The advice reduces the space of all possible reward
machines consistent with the observations, thus speeding-
up the convergence. If advice is given that is incompatible
with the reward machine underlying the MDP, AdvisoRL
discards that advice and recovers the learning process.

AdvisoRL guarantees to converge to an optimal policy for
sufficiently long episodes (where the episode length depends
on the reward function, advice and the underlying MDP). In
Section 5, we show that AdvisoRL successfully uses the pro-
vided advice to reduce the number of steps needed for con-
vergence to optimal policy and that it outperforms existing
methods for incorporating high-level knowledge.

Related work The problem of incorporating high-level
temporal knowledge into RL has been studied in hierarchical
RL (Sutton, Precup, and Singh 1999; Dietterich 2000; Parr
and Russell 1998). There, an RL problem is decomposed
into a hierarchy of subtasks and the agent learns on two lev-
els: a meta-controller decides on a subtask to pursue, and a
controller decides on actions within the chosen subtask.

The idea of capturing temporal abstraction in a temporal
logic or automaton-like form appeared already in the work
of Bacchus, Boutilier, and Grove (1996), but an interest in
it resurged with the introduction of task monitors (Jothimu-
rugan, Alur, and Bastani 2019) and reward machines (Icarte
et al. 2018b). They are assumed to be given to the RL agent.

A number of papers followed that suggested learning an
automaton-like representation from experience instead of
assuming that the user provides them (Icarte et al. 2019;
Gaon and Brafman 2020; Xu et al. 2020; Furelos-Blanco
et al. 2020; Hasanbeig et al. 2019). In this paper, we assume
that the user is able to provide some knowledge, and we in-
corporate that knowledge into learning of reward machines.

The problem statements in aforementioned papers differ
slightly, but in essence they are solving the same problem:
learning a non-Markovian structure of the underlying MDP.
This can either be a non-Markovian reward function, a non-
Markovian environment dynamics, or partial observability
that creates an impression of a non-Markovian dynamics.

In our work we focus on a non-Markovian reward function,
but a similar idea may be brought to bear for other problem
formulations as well.

The notion of advice for RL has been explored in the work
by Icarte et al. (2018a). There, an advice has the form of a
temporal logic formula, which can be compiled into a DFA.
They assume the availability of background knowledge func-
tions, heuristic functions that help the agent follow the ad-
vice. No such assumption is necessary in our work. Focus-
ing more on safety than on helping the learning process, the
work on shields for RL (Alshiekh et al. 2018) corrects the
agent behavior if it violates the temporal logic specification.

2 Preliminaries
In this section we define our notion of advice and discuss the
reasons for choosing the particular formalization. Further-
more, we introduce necessary background on reinforcement
learning and reward machines. All the notions will be illus-
trated using the running example of office world (Figure 1a),
adopted from the paper by Xu et al. (2020). The agent (its
position denoted by a triangle symbol) has to first go to loca-
tion b, then d, and finally to c, and receives a reward of 100
upon doing so. If it gets to c without going to b and d first,
then it receives a reward of -50. Finally, each time the agent
visits g, it gets a reward of -10.

Decision Processes We begin by defining Markov deci-
sion processes (MDPs), which model RL problems by in-
corporating sequential decision making with effects on re-
ceived rewards and subsequent environment states. Our def-
inition differs from the “usual” modeling used in reinforce-
ment learning (e.g., (Sutton and Barto 2018)) in two ways:
first, the reward function is defined over the whole history
(i.e., the reward is non-Markovian, while the dynamics re-
mains Markovian). Second, we include a set of propositions:
they come from expert knowledge of what is relevant for
successfully executing a task and are assumed to be avail-
able to the agent.
Definition 1. A labeled Markov decision process (MDP) is
a tupleM = (S, sI , A, p,R, γ,P, L) consisting of a finite
state space S, an agent’s initial state sI ∈ S, a finite set of
actionsA, and a probabilistic transition function p : S×A×
S → [0, 1]. A reward functionR : (S×A)+×S → R and a
discount factor γ ∈ [0, 1) together specify the overall payoff
to the agent. Finally, a finite set P of propositional variables,
and a labeling function L : S ×A× S → 2P determine the
set of relevant high-level events that the agent senses in the
environment. We define the size ofM, denoted as |M|, to
be |S| (i.e., the cardinality of the set S).

In our example, the state is the agent’s position in the
grid and the actions available to the agent are moving in
the four cardinal directions. The transition function cap-
tures the small probability of slipping. The propositions are
P = {a, b, c, d, e, f, g}, and the labeling function L applied
to the triple (s, a, s′) returns a set of propositions at the state
s′. Note, however, that the full state space is still necessary
in order to capture the model’s dynamics.

A policy is a function mapping states in S to a prob-
ability distribution over actions in A. At state s ∈ S,

9074

(a) The office world

q0 q1 q2 q3
(b, 0) (d, 0) (c, 100)

(c,−50)
(c,−50)

(g,−10) (g,−10) (g,−10)

q0 q1
b

∗ ∗

(b) Advice (bottom) compatible with
the reward machine (top)

Figure 1: Running example

an agent using policy π picks an action a with probabil-
ity π(s, a), and the new state s′ is chosen with probability
p(s, a, s′). A policy π and the initial state sI together de-
termine a stochastic process. A trajectory is a realization
of this stochastic process: a sequence of states and actions
s0a1s1 . . . aksk, with s0 = sI . Its corresponding label se-
quence is `1`2 . . . `k where L(si, ai+1, si+1) = `i+1 for
each 0 ≤ i < k. Similarly, the corresponding reward se-
quence is r1r2 . . . rk, where ri = R(s0a1s1 . . . aisi), for
each i ≤ k. The overall payoff of the agent is

∑
i γ

iri. We
call the pair (λ, ρ) := (`1`2 . . . `k, r1r2 . . . rk) a trace.

Reward machines Reward machines (Icarte et al. 2018b)
are a way to encode a non-Markovian reward function. They
are an automaton that upon reading a label, responds with
a reward and moves to its next state. Technically, a reward
machine is an instance of a Mealy machine (Shallit 2008),
with a set of real numbers as its output alphabet and subsets
of propositional variables (from the set P defined by the un-
derlying MDP) as its input alphabet.

Definition 2. A reward machine A = (V, qI , 2
P ,M, δ, σ) is

defined by a finite, nonempty set V of states, an initial state
qI ∈ V , an input alphabet 2P , an output alphabet M ⊂ R, a
(deterministic) transition function δ : V × 2P → V , and an
output function σ : V × 2P → M . We define the size of A,
denoted as |A|, to be |V | (i.e., the cardinality of the set V).

A run of a reward machine A on the se-
quence of labels `1`2 . . . `k ∈ (2P)∗ is a sequence
q0(`1, r1)q1(`2, r2) . . . qk−1(`k, rk)qk of states and label-
reward pairs such that q0 = qI and for all i ∈ {0, . . . , k−1},
we have δ(qi, `i+1) = qi+1 and σ(qi, `i+1) = ri+1. We
write A(`1`2 . . . `k) = r1r2 . . . rk to connect the input
label sequence to the sequence of rewards produced by
the machine A. We say that a reward machine A encodes
the reward function R of an MDP if for every trajectory
s0a1s1 . . . aksk and the corresponding label sequence
`1`2 . . . `k, the reward sequence that the agent receives
equals A(`1`2 . . . `k).

A reward machine for the motivating example is shown in
the upper part of Figure 1b. We note here that there can be
multiple reward machines that encode the reward function of
an MDP—reward machines may differ on a label sequence
that does not correspond to any trajectory of an underlying
MDP.

3 Advice
We use deterministic finite automata (DFAs) to model ad-
vice from the user. Formally, a DFA is a tuple D =
(Q, qI,Σ, δ,F) consisting of a nonempty, finite set Q of
states, an initial state qI ∈ Q, an input alphabet Σ (here:
Σ = 2P), a transition function δ : Q×Σ→ Q, and set F ⊆ Q
of final states. A run of D on a sequence u = a1 . . . an ∈ Σ∗

is a sequence q0, . . . , qn of states such that q0 = qI and
qi = δ(qi−1, ai) for i ∈ {1, . . . , n}. A sequence u is ac-
cepted if the run of D on u ends in a state in F, and L(D),
the language of D, is the set of all accepted sequences.

The core idea of an advice DFA is to guide the inference
of reward machines by providing information about which
label sequences might result in a reward and which cannot
result in a reward. More precisely, the meaning of an advice
DFA D is that all label sequence λ ∈ L(D) can (but not
must) obtain a positive reward, whereas all label sequences
λ /∈ L(D) must not receive a positive reward. Hence, an
advice DFA acts as a binary classifier indicating which ex-
plorations are promising and which are not.

In the RL algorithm we develop in this paper, advice
DFAs are used to restrict the search space in which to search
for the true reward machine (i.e., the one defining the reward
functionR of the MDP). We do so by only constructing can-
didate reward machines that are compatible with the advice
DFAs given by the user, as defined below. This makes it pos-
sible to learn the correct machine with fewer examples and
speeds up the overall convergence of our RL algorithm.

Definition 3. We call an advice DFA D compatible with
a reward machine A if for all nonempty label sequences
`1`2 . . . `k ∈ (2P)+ with A(`1`2 . . . `k) = r1r2 . . . rk it
holds that rk > 0 implies `1`2 . . . `k ∈ L(D).

We have chosen DFAs as the means of providing advice
mainly for two reasons. First, DFAs are a simple formal-
ism, familiar to many engineers and data scientists, that ad-
mit effective translations from other common formalisms,
such as regular expressions or Linear Temporal Logic. Sec-
ond, DFAs have a simple, binary semantics, which does not
permit to express different reward values for different be-
haviors. This reflects the observation that it is less demand-
ing for humans to give advice suggesting “what must not be
done” than providing the exact, quantitative value.

An example of an advice compatible with a reward ma-
chine is shown in the bottom part of Figure 1b. Finally, note
that our definitions so far only permit advice for positive re-
wards. This is not a restriction since we can simply introduce
a second “type” of advice DFA for negative rewards. For the
sake of a simpler presentation, however, the remainder of
this paper focuses on advice DFAs for positive rewards only.

4 Reinforcement Learning with Advice
Our advice-guided reinforcement learning algorithm builds
on top of the JIRP algorithm by Xu et al. (2020) for the joint
inference of reward machines and policies in reinforcement
learning. At its heart lies a subroutine, called QRM (Icarte
et al. 2018b), which takes a reward machine and a set of q-
functions (one for each state of the reward machine) as input

9075

Algorithm 1: The AdvisoRL algorithm
Input: A set D = {D1, . . . ,D`} of advice DFAs

1 Initialize an empty sample X ← ∅
2 Initialize a reward machine A with state set V that is

compatible with D
3 Initialize a set of q-functions Q = {qq | q ∈ V }
4 for episodes i = 1, 2, . . . do
5 (λ, ρ,Q)← QRM-episode(A, Q)
6 if A(λ) 6= ρ then
7 Add (λ, ρ) to X
8 if (λ, ρ) is not compatible with a DFA in D then
9 Remove all non-compatible DFAs from D

10 if X or D have changed then
11 Infer a new minimal reward machine A that is

consistent with X and compatible with D
12 Re-initialize Q (or transfer q-functions)
13 end

and performs q-learning on the product of the reward ma-
chine and the underlying MDP. The defining difference of
JIRP to our algorithm, AdvisoRL, is that JIRP cannot handle
advice from the user. However, we retain the desirable prop-
erty that AdvisoRL—like JIRP—almost surely converges to
the optimal policy in the limit.

AdvisoRL is shown as Algorithm 1. It maintains a hy-
pothesis reward machine A and runs the QRM algorithm to
learn an optimal policy (wrt. A). The episodes of QRM are
used to collect traces and update q-functions. As long as the
traces are consistent with the current hypothesis reward ma-
chine A and compatible with each advice DFAs in D, QRM
interacts with the environment using A to guide the learning
process.

If a trace (λ, ρ) is encountered that is inconsistent with the
hypothesis reward machine (i.e., A(λ) 6= ρ), our algorithm
records it in a setX (Lines 6 and 7)—we call the trace (λ, ρ)
a counterexample and the set X a sample. Similarly, if there
exists an advice DFA D ∈ D that is not compatible with the
trace (λ, ρ), we remove D from D (Lines 8 and 9). This is
necessary because the (λ, ρ) is an actual trace experienced
by the agent, showing that the advice was incorrect.

Every time the sample is updated or an advice is re-
moved, AdvisoRL infers a new minimal reward machine A′

(Line 11) that is (a) consistent with the sample in the sense
that A′(λ) = ρ holds for all (λ, ρ) ∈ X and (b) compatible
with each advice DFA in D. Note that AdvisoRL infers a
minimal consistent and compatible reward machine (i.e., one
with the fewest number of states among all consistent and
compatible reward machines). This additional requirement
can be seen as an Occam’s razor strategy (Löding, Mad-
husudan, and Neider 2016) and is crucial in that it enables
AdvisoRL to converge to the optimal policy in the limit.

Also note that we re-use all of JIRP’s algorithmic opti-
mizations, such as transfer of q-functions from one reward
machine to the next and batching of counterexamples, but
we omit their descriptions here.

Inferring Reward Machines with Advice
In this section, we describe how AdvisoRL infers (minimal)
reward machines from counterexamples while being guided
by the advice DFAs. To this end, we assume that the infer-
ence algorithm maintains a finite sample X ⊂ (2P)+ × R+

of traces as well as a set D = {D1, . . .D`} of advice
DFAs. In the following, we assume that each advice DFA
is compatible with the sample X in the sense that for
each (l1 . . . lk, r1 . . . rk) ∈ X with rk > 0 we also have
l1 . . . lk ∈ L(D). If this is not satisfied, the corresponding
advice DFA gets removed from D.

The task of the inference algorithm is to find a minimal
reward machine A that is (a) consistent with X and (b) com-
patible with each D ∈ D. Note that the requirement to infer
a minimal reward machine is crucial for the convergence of
AdvisoRL to an optimal policy.

To solve this task, we follow a recent approach that uses
SAT-based automata learning to verify parametric systems
(Neider 2012; Neider and Jansen 2013; Neider 2014). The
underlying idea is to reduce the inference task to a series of
satisfiability checks of formulas in propositional logic. More
precisely, we construct and solve a sequence of propositional
formulas ΦX,Dn for increasing values of n > 0 that have the
following two properties:

• ΦX,Dn is satisfiable if and only if there exists a reward ma-
chine with n states that is consistent with X and compat-
ible with each D ∈ D; and

• if ΦX,Dn is satisfiable, then a satisfying assignment con-
tains sufficient information to construct a consistent and
compatible reward machine with n states.

By starting with n = 1 and increasing n until ΦX,Dn be-
comes satisfiable, we obtain an effective algorithm to com-
pute a minimal reward machine that is consistent withX and
compatible with D.

Before we show how to construct the formula ΦX,Dn in the
remainder, let us briefly introduce the necessary notation.
We use the standard syntax for propositional logic: start-
ing with a set of propositional variables X = {x, y, z, . . .},
we construct propositional formulas Φ inductively using the
Boolean connectives ¬, ∧, ∨, and →. An interpretation is
a mapping I : X → {0, 1} that assigns a Boolean value to
each variable. Satisfaction of a propositional formula is de-
fined in the usual way, and we write I |= Φ to denote that
the interpretation I satisfies the formula Φ.

Finally, given a sample X , let RX ⊂ R denote the finite
set of rewards that appear in a trace τ ∈ X; we use this set
as the output alphabet of our reward machine. Additionally,
for a trace τ = (l1 . . . lk, r1 . . . rk) ∈ (2P)∗×R∗, we define
the set of prefixes of τ by Pref (τ) = {(l1 . . . li, r1 . . . ri) ∈
(2P)∗×R∗ | 0 ≤ i ≤ k} (note that (ε, ε) ∈ Pref (τ) always
holds). We lift this notion to samples X ⊂ (2P)∗ × R∗ by
Pref (X) =

⋃
τ∈X Pref (τ).

Encoding Reward Machines in Propositional Logic
The encoding of reward machines in propositional logic ex-
ploits that once a set V of states and an initial state qI ∈ V
is fixed, every reward machine A = (V, qI , 2

P , RX , δ, σ)
is uniquely determined by its transition function δ and its

9076

output function σ. Hence, let us fix a set V of states with
|V | = n and an initial state qI ∈ V .

To encode the transition function and the set of final
states, we introduce two propositional variables: dp,l,q for
p, q ∈ V and l ∈ 2P ; and op,l,r for p ∈ V , l ∈ 2P ,
and r ∈ RX . Intuitively, the variable dp,l,q is set to true if
and only if the transition δ(p, l) = q exists in the prospec-
tive reward machine, while op,l,r is set to true if and only if
σ(p, l) = r.

To ensure that the variables dp,l,q and op,l,r indeed encode
deterministic functions, we add the following constraints:∧

p∈V

∧
l∈2P

[[∨
q∈V

dp,l,q
]
∧
[∧
q 6=q′∈V

¬dp,l,q ∨ ¬dp,l,q′
]]

(1)

∧
p∈V

∧
l∈2P

[[∨
r∈RX

op,l,r
]
∧
[∧
r 6=r′∈RX

¬op,l,r ∨ ¬op,l,r′
]]

(2)

Note that Formula (1) ensures that for every state p ∈ V and
symbol l ∈ 2P the variable dp,l,q is set to true for exactly
one q ∈ V , whereas Formula (2) ensures that for every state
p ∈ V and symbol l ∈ 2P the variable op,l,r is set to true
for exactly one r ∈ RX . For the remainder, let ΦRM be the
conjunction of Formulas (1) and (2).

Given a satisfying assignment I |= ΦRM
n , we can derive

a reward machine AI = (V, qI, 2
P , RX , δ, σ) by δ(p, l) = q

if and only I(dp,l,q) = 1, and σ(p, l) = r if and only if
I(op,l,r) = 1. Note that the reward machine AI is well-
defined due to the fact that I |= ΦRM

n . However, AI is not
(yet) related to the sample X or the set D of advice DFAs.

Consistency with Sample To encode consistency with a
sample in propositional logic, we introduce new auxiliary
variables xλ,q for (λ, ρ) ∈ Pref (X) and q ∈ V . Intuitively,
these variables capture the run of the prospective reward ma-
chine on (prefixes of) label sequences in X in the sense that
xλ,q is set to true if and only if the prospective reward ma-
chine reaches states q after reading λ. To obtain the desired
meaning, we add the following constraints:

xε,qI ∧
∧

p∈V \{qI}

¬xε,p (3)

∧
(λl,ρr)∈Pref (X)

∧
p,q∈V

(xλ,p ∧ dp,l,q)→ xλl,q (4)

∧
(λl,ρr)∈Pref (X)

∧
p∈V

xλ,p → op,l,r (5)

Intuitively, Formula (3) ensures that the reward machine
starts in the initial state qI, while Formula (4) ensures that the
variables xλ,q encode valid runs of the prospective reward
machine on prefixes of label sequences in X . Formula (5)
enforces that the prospective reward machine outputs the
correct rewards. For reference, we denote the conjunction
of Formulas (3), (4), and (5) by ΦXn .

Consistency with Advice DFAs Let us now fix an ad-
vice DFA D ∈ D, say D = (QD, ql,D, 2

P , δD,FD). We
now show how to constrain the variables dp,l,q and oq,l,r so
that the prospective reward machine is compatible with D.

We can then successively add similar constraints until the
prospective reward machine is compatible with all advice
DFAs from D.

The key idea of our encoding is to track the synchronized
runs of the prospective reward machine AI and the advice
DFA D. To this end, we introduce the following new aux-
iliary variables yDq,q′ for q ∈ V and q′ ∈ QD. Intuitively,
yDq,q′ is set to true if there exists a label sequence λ such that

AI : qI
λ−→ q and D : ql,D

λ−→ q′.
To obtain the desired meaning, we add the following con-

straints:

yDqI,q′l,D
(6)∧

p,q∈V

∧
l∈2P

∧
δD(p′,l)=q′

(yDp,p′ ∧ dp,l,q)→ yDq,q′ (7)

∧
p∈V

∧
δD(p′,l)=q′

q′ /∈FD

yDp,p′ → ¬
∨

r∈RX
r>0

op,l,r (8)

Note that Formula (6) ensures that the synchronized runs
of the prospective reward machine AI and the advice DFA
D start in their initial states, while Formula (7) enforces
that the variables yDq,q′ correctly track the synchronized runs.
Moreover, Formula (8) ensures that AI is compatible with
D by contraposition: if AI has moved to state p after read-
ing a label sequence λ and is now processing a new label l
but λl /∈ L(D) (indicated by D reaching a non-final state
q′ 6∈ FD), then the output must not be positive. We denote
the conjunction of Formulas (6), (7), and (8) by ΦD

n .
Finally, the formula ΦX,Dn is given by ΦX,Dn := ΦRM

n ∧
ΦXn ∧

∧
D∈D ΦD

n . With this, we obtain the following result.

Theorem 1. LetX ⊂ (2P)+×R+ be sample andD a finite
set of advice DFAs that are compatible withX . Moreover, let
ΦX,Dn be as defined above. Then, the following holds:

1. If I |= ΦX,Dn , then the reward machine AI is consistent
with X and compatible with each D ∈ D.

2. If there exists a reward machine with n states that is con-
sistent with X and compatible with each D ∈ D, then
ΦX,Dn is satisfiable.

Convergence to an Optimal Policy
We now show that AdvisoRL is guaranteed to converge to
an optimal policy, given that it explores episode of sufficient
length. However, two complications arise from the fact that
some of the label sequences might not be admissible in the
sense that the underlying MDP does not permit these label
sequences (e.g., they are physically impossible). If this is the
case, there can in general be multiple (even infinitely many)
reward machines that are equivalent to the true underlying
reward machine (i.e., that agree on the admissible traces but
might differ on the traces that are not admissible). More-
over, the notion of compatibility needs to be restricted to the
admissible label sequences. Nonetheless, AdvisoRL guaran-
tees to learn an equivalent reward machine.
Lemma 1. Let M be a labeled MDP, let A be the
true reward machine encoding the rewards of M, and

9077

let D = {D1, . . . ,D`} be a set of advice DFAs.
Moreover, let nmax = max1≤i≤` {|Di|} and m =
max

{
2|M| · (|A|+ 1) · nmax, |M|(|A|+ 1)2

}
. Then, Advi-

soRL with eplen ≥ m almost surely learns a reward ma-
chine in the limit that is equivalent to A.

The correctness of AdvisoRL now follows from Lemma 1
and the correctness of the QRM algorithm (Icarte et al.
2018b). Lemma 1 also provides us with an upper bound on
the length of the episodes that AdvisoRL has to explore.
Theorem 2. Let M be a labeled MDP, A the true re-
ward machine encoding the rewards of M, and D =
{D1, . . . ,D`} a set of advice DFAs. Moreover, let m be as
in Lemma 1. Then, AdvisoRL with eplen ≥ m almost surely
converges to an optimal policy in the limit.

It is worth mentioning that if all label sequences are
attainable, the upper bound on episode length reduces to
max

{
|M|, 2(|A|+ 1) · nmax

}
.

5 Case Studies
In this section, we implement the AdvisoRL approach in two
case studies. We compare the three different methods:1

1. AdvisoRL: Our implementation uses the RC2 SAT
solver (Morgado, Dodaro, and Marques-Silva 2014) from
the PySAT library (Ignatiev, Morgado, and Marques-Silva
2018). A special case of AdvisoRL, when no advice is
given, is the JIRP-SAT algorithm (Xu et al. 2020).

2. HRL (hierarchical reinforcement learning): We use a
meta-controller for deciding the subtasks (represented by
encountering each label) and use the low-level controllers
expressed by neural networks (Kulkarni et al. 2016) for
deciding the actions at each state for each subtask. We
note that HRL may never be able to find an optimal pol-
icy (and this is the case even if it has access to the full true
reward machine, as noted by Icarte et al. (2018b)).

3. DDQN (deep reinforcement learning with double q-
learning): We adopt the double q-learning method of Has-
selt, Guez, and Silver (2016). The DDQN can access the
past 200 labels of the trajectory as well as the MDP state.
Figure 5 illustrates the advices we use with AdvisoRL in

the case studies: DFAs expressing “eventually α0, then even-
tually α1..., then eventually αn−1”, noted {α0α1 · · ·αn−1}.
(There is no restriction on using any other form of advice.)

Case Study I: Officeworld Domain
This case study relies on the officeworld scenario as intro-
duced in Figure 1. We specify a more involved task than that
in the motivating example: go to location b, then d, then back
to b, and finally go to g. We run the AdvisoRL algorithm
with different sets of advice DFAs D.

Impact of advices Figure 2a shows the attained reward
of AdvisoRL for 8 sets of advice DFAs: ∅, {b}, {d}, {g},
{b,d,g}, {bd}, {bdb}, {bdbg}, and Figure 4a shows the op-
timal policy convergence training steps. We observe a clear

1All experiments were conducted on a Vivobook laptop with
1.80-GHz Core i7 CPU and 32-GB RAM

advice ∅ {b} {bd} {bdb} {bdbg}
steps [×103] 454.5 307.5 189.0 144.0 142.5

inference [s] 149.0 13.9 1.7 0.7 0.5
inferences 6.1 5.0 3.2 2.3 2.0

Table 1: Performance of AdvisoRL, for different advice.

impact of advices on the performance. It can be seen that the
closer the advice is to the ground truth, the faster the maxi-
mal reward is reached.

Table 1 shows the performance of AdvisoRL, for dif-
ferent advice DFAs. Measured over 30 independent sim-
ulation runs, the first row shows the median number of
thousands of training steps to convergence; the second row
shows the median time needed reward machines inference;
and the third row shows the average number of inferences.
With shorter individual inference time and fewer triggers
of the reward machine inference, the cumulative inference
time drops significantly when using advice, and becomes
negligible compared the RL simulation time with D ∈
{{bd}, {bdb}, {bdbg}}.

Figure 4b shows the cumulative inference time for
D ∈ {∅, {b}, {d}, {g}, {b,d,g}, {bd}, {bdb}, {bdbg}}. The
inference time with D = {g} increases probably because
providing the end goal without intermediate steps may be
counterproductive: we witness that many traces are added
to the sample X . However, AdvisoRL still converges to an
optimal policy with D = {g} in fewer training steps than
with D = ∅. Compared to AdvisoRL with D = ∅, Advi-
soRL with D = {b}, D = {bd} and D = {bdbg} achieves
optimal convergence in 68%, 42% and 31% of the training
steps, and with 9.3%, 1.1% and 0.34% cumulative inference
time, respectively.

We also assessed the performance of AdvisoRL in pres-
ence of incorrect advice. Our experiments showed that our
algorithm is robust in that it quickly eliminated the incorrect
advice and converged to an optimal policy.

Case Study II: Taxi Domain
This experiment is inspired by the OpenAI Gym environ-
ment Taxi-v3 (https://gym.openai.com/envs/Taxi-v3/), in-
troduced by Dietterich (1999). The agent, a taxi, navi-
gates on a grid with walls and boarding locations.The
agent starts on a random cell. A passenger starts on a
random boarding location. The set of actions is A =
{S,N,E,W,Pickup,Dropoff }. The action Pickup picks
up the passenger present at the agent’s current location and
has no effect if no passenger is present. The action Dropoff
drops off the passenger from the taxi to the agent’s current
boarding location, and has no effect if the taxi is empty or
not over any boarding location. The actions S,N,E,W cor-
respond to moving in the four cardinal directions.

We make some assumptions to simplify the problem: the
passenger always starts on location A, and the agent starts
on a random cell other than a boarding location. We specify
the task as carrying the passenger to location B. We define
eight labels: a, b, c, d for standing on an empty location (A,

9078

(a) AdvisoRL with advices (b) HRL (c) DDQN

Figure 2: Attained rewards of 30 independent simulation runs averaged for every 10 training steps each for case study I.

(a) AdvisoRL with advices (b) HRL (c) DDQN

Figure 3: Attained rewards of 30 independent simulation runs averaged for every 10 training steps each for case study II.

(a) Training steps for optimal
policy convergence.

(b) Cumulative inference time,
on a logarithmic scale.

Figure 4: Distribution of 30 independent simulation runs on
each set of advice DFAs with AdvisoRL on case study I.

q0 q1 q2 · · · qn
α0

¬α0

α1

¬α1 ¬α2

αn−1

>

Figure 5: Advice DFA format used in our case study. The
short notation for such DFAs would be α0α1 · · ·αn−1.

B, C, D respectively), and e, f, g, h for standing on a location
with the passenger on it (A, B, C, D respectively).

Results Figure 3a presents performances by using 6 dif-
ferent set of advice DFAs: ∅, {e}, {a}, {b}, {f}, {eabf}. Op-
timal reward is reached only with advices {a} and {eabf}.

With D = ∅, only one reward machine is inferred, pre-
venting counterexamples to be registered and new inference
to be triggered. This is because the label f (having the pas-

q0 q1
(f, 1)

(a) D = ∅

q0 q1 q2
(a, 0) (f, 1)

(b) D = {a}
Figure 6: The inferred reward machine in all runs of the taxi
domain. Omitted transitions are self-looping transitions.

senger on B) is in the sequence if and only if the agent suc-
ceeds in the task. Hence the reward machine inferred without
advice (Figure 6a) is the smallest possible that will correctly
classify every attainable label sequence.

The label a, being triggered when the passenger is picked
up from A, is helpful to AdvisoRL because it helps the agent
track the passenger’s location. The advice a lets the reward
machine include this label (Figure 6b).

This case study showcases the limitations of the algorithm
without advice (which corresponds to the JIRP algorithm
from (Xu et al. 2020)) when the reward function is Marko-
vian while the MDP dynamics is non-Markovian. The min-
imal reward machine that it infers is of no help to improve
the RL performance. On the other hand, well-chosen advices
can help the solver infer a helpful reward machine.

6 Conclusion
We have presented AdvisoRL, a novel RL algorithm that is
guided by high-level human advice. In our evaluation, we
have demonstrated that AdvisoRL outperforms the existing
techniques and is robust to incorrect advice.

For future work, we will extend AdvisoRL to different
kinds of advice (e.g., mandating a positive reward to be
given for certain label sequences).

9079

Acknowledgements
This work was partially supported by the grants ARL
W911NF2020132, ONR N00014-20-1-2115, and ARO
W911NF-20-1-0140.

References
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe Reinforcement Learn-
ing via Shielding. In AAAI, 2669–2678. AAAI Press.

Bacchus, F.; Boutilier, C.; and Grove, A. J. 1996. Rewarding
Behaviors. In AAAI/IAAI, Vol. 2, 1160–1167. AAAI Press /
The MIT Press.

Brafman, R. I.; Giacomo, G. D.; and Patrizi, F. 2018.
LTLf/LDLf Non-Markovian Rewards. In AAAI, 1771–1778.
AAAI Press.

Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In IJCAI, 6065–6073. ijcai.org.

Dietterich, T. G. 1999. Hierarchical Reinforcement Learn-
ing with the MAXQ Value Function Decomposition. CoRR
cs.LG/9905014. URL https://arxiv.org/abs/cs/9905014.

Dietterich, T. G. 2000. Hierarchical Reinforcement Learning
with the MAXQ Value Function Decomposition. J. Artif.
Intell. Res. 13: 227–303.

Furelos-Blanco, D.; Law, M.; Russo, A.; Broda, K.; and Jon-
sson, A. 2020. Induction of Subgoal Automata for Rein-
forcement Learning. In AAAI, 3890–3897. AAAI Press.

Gaon, M.; and Brafman, R. I. 2020. Reinforcement Learning
with Non-Markovian Rewards. In AAAI, 3980–3987. AAAI
Press.

Hasanbeig, M.; Jeppu, N. Y.; Abate, A.; Melham, T.; and
Kroening, D. 2019. DeepSynth: Program Synthesis for Au-
tomatic Task Segmentation in Deep Reinforcement Learn-
ing. CoRR abs/1911.10244.

Hasselt, H. v.; Guez, A.; and Silver, D. 2016. Deep Re-
inforcement Learning with Double Q-Learning. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial In-
telligence, AAAI’16, 2094–2100. AAAI Press. URL http:
//dl.acm.org/citation.cfm?id=3016100.3016191.

Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.; and McIlraith,
S. A. 2018a. Advice-Based Exploration in Model-Based Re-
inforcement Learning. In Canadian Conference on AI, vol-
ume 10832 of Lecture Notes in Computer Science, 72–83.
Springer.

Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.; and McIlraith,
S. A. 2018b. Using Reward Machines for High-Level Task
Specification and Decomposition in Reinforcement Learn-
ing. In ICML, volume 80 of Proceedings of Machine Learn-
ing Research, 2112–2121. PMLR.

Icarte, R. T.; Waldie, E.; Klassen, T. Q.; Valenzano, R. A.;
Castro, M. P.; and McIlraith, S. A. 2019. Learning Reward
Machines for Partially Observable Reinforcement Learning.
In NeurIPS, 15497–15508.

Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Ora-
cles. In SAT, 428–437. doi:10.1007/978-3-319-94144-8 26.
URL https://doi.org/10.1007/978-3-319-94144-8 26.
Jothimurugan, K.; Alur, R.; and Bastani, O. 2019. A Com-
posable Specification Language for Reinforcement Learning
Tasks. In NeurIPS, 13021–13030.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenen-
baum, J. 2016. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation. In
NeurIPS’2016, 3675–3683.
Löding, C.; Madhusudan, P.; and Neider, D. 2016. Ab-
stract Learning Frameworks for Synthesis. In TACAS, vol-
ume 9636 of Lecture Notes in Computer Science, 167–185.
Springer.
Morgado, A.; Dodaro, C.; and Marques-Silva, J. 2014.
Core-Guided MaxSAT with Soft Cardinality Constraints.
In O’Sullivan, B., ed., Principles and Practice of Con-
straint Programming - 20th International Conference, CP
2014, Lyon, France, September 8-12, 2014. Proceedings,
volume 8656 of Lecture Notes in Computer Science, 564–
573. Springer. doi:10.1007/978-3-319-10428-7\ 41. URL
https://doi.org/10.1007/978-3-319-10428-7\ 41.
Neider, D. 2012. Computing Minimal Separating DFAs and
Regular Invariants Using SAT and SMT Solvers. In ATVA,
volume 7561 of Lecture Notes in Computer Science, 354–
369. Springer.
Neider, D. 2014. Applications of automata learning in veri-
fication and synthesis. Ph.D. thesis, RWTH Aachen Univer-
sity. URL http://darwin.bth.rwth-aachen.de/opus3/volltexte/
2014/5169.
Neider, D.; and Jansen, N. 2013. Regular Model Check-
ing Using Solver Technologies and Automata Learning. In
NASA Formal Methods, volume 7871 of Lecture Notes in
Computer Science, 16–31. Springer.
Parr, R.; and Russell, S. J. 1998. Reinforcement learning
with hierarchies of machines. In Advances in neural infor-
mation processing systems, 1043–1049.
Shallit, J. O. 2008. A Second Course in Formal Lan-
guages and Automata Theory. Cambridge University Press.
ISBN 978-0-521-86572-2. URL http://www.cambridge.org/
gb/knowledge/isbn/item1173872/?site\ locale=en\ GB.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
MDPs and Semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning. Artif. Intell. 112(1-2):
181–211.
Xu, Z.; Gavran, I.; Ahmad, Y.; Majumdar, R.; Neider, D.;
Topcu, U.; and Wu, B. 2020. Joint Inference of Reward Ma-
chines and Policies for Reinforcement Learning. In ICAPS,
590–598. AAAI Press. URL https://aaai.org/ojs/index.php/
ICAPS/article/view/6756.

9080

