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Abstract

We propose to estimate the KL divergence using a relaxed
likelihood ratio estimation in a Reproducing Kernel Hilbert
space. We show that the dual of our ratio estimator for KL
in the particular case of Mutual Information estimation cor-
responds to a lower bound on the MI that is related to the so
called Donsker Varadhan lower bound. In this dual form, MI
is estimated via learning a witness function discriminating
between the joint density and the product of marginal, as well
as an auxiliary scalar variable that enforces a normalization
constraint on the likelihood ratio. By extending the function
space to neural networks, we propose an efficient neural MI
estimator, and validate its performance on synthetic examples,
showing advantage over the existing baselines. We demon-
strate its strength in large-scale self-supervised representation
learning through MI maximization.

1 Introduction

Mutual information (MI) is an ubiquitous measure of depen-
dency between a pair of random variables, and is one of the
corner stones of information theory. In machine learning,
the information maximization principle for learning repre-
sentation from unlabeled data through self-supervision (Bell
and Sejnowski 1995) motivated the development of many
MI estimators and applications (Hjelm et al. 2019; Noroozi
and Favaro 2016; Kolesnikov, Zhai, and Beyer 2019; Do-
ersch, Gupta, and Efros 2015; Oord, Li, and Vinyals 2018;
Hu et al. 2017). The information bottleneck (Tishby, Pereira,
and Bialek 1999; Kolchinsky, Tracey, and Wolpert 2017)
is another principle that triggered recent interest in mutual
information estimation. MI is also used to understand the
information flow in neural networks, in learning clusters
(Krause, Perona, and Gomes 2010) and in regularizing the
training of Generative Adversarial Networks (GANs) (Chen
et al. 2016).

In many of these machine learning applications and other
scientific fields, one has to estimate MI given samples from
the joint distribution of high dimensional random variables.
Since MI is defined as the Kullback-Leibler (KL) divergence
between the joint distribution and the product of marginals,
one can leverage non parametric estimators of f-divergences
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(Nguyen, Wainwright, and Jordan 2008; Nowozin, Cseke,
and Tomioka 2016; Sriperumbudur et al. 2009). Specifi-
cally of interest to us is the Donsker-Varadhan (DV) rep-
resentation of the KL divergence (Donsker and Varadhan
1976) that was used recently with neural networks estimators
(Belghazi et al. 2018; Poole et al. 2019). Other approaches
to estimating the MI are through finding lower bounds us-
ing variational Bayesian methods (Alemi et al. 2017, 2018;
Barber and Agakov 2003; Blei, Kucukelbir, and McAuliffe
2017), through geometric methods like binning (Kraskov,
Stogbauer, and Grassberger 2004a), k-nearest neighbors
(Kraskov, Stogbauer, and Grassberger 2004b), kernel density
(Kandasamy et al. 2015; Han et al. 2017), ensemble estima-
tion (Moon, Sricharan, and Hero 2017), jackknife approach
(Zeng, Xia, and Tong 2018), Gaussian copula (Singh and
Péczos 2017), to name a few.

In this paper, we propose a new estimator of MI that can
be used in direct MI maximization or as a regularizer, thanks
to its unbiased gradients. Our starting point is the Donsker-
Varadhan (DV) lower bound of the KL divergence that we
represent equivalently via a joint optimization that we call
1n-DV on a witness function f and an auxiliary variable 7
in Section 2. In Section 3, we show that when the witness
function f is learned in a Reproducing Kernel Hilbert Space
(RKHS) the -DV problem is jointly convex in both f and
7. The dual of this problem sheds the light on this estimator
as a constrained ratio estimation where 1 plays the role of
a Lagrange multiplier that ensures proper normalization of
the likelihood ratio. We also show how the witness function
can be estimated as a neural network akin to (Belghazi et al.
2018). We specify our estimator for MI in Section 4, and show
how it compares to alternatives in the literature (Nguyen,
Wainwright, and Jordan 2008; Belghazi et al. 2018; Poole
et al. 2019). The experiments are presented in Section 5. On
synthetic data, we validate our estimators by estimating MI
on Gaussian variables and by regularizing GAN training as
in (Chen et al. 2016). On real data, we explore our estimator
in deep MI maximization for learning representation from
unlabeled data. Figure 1 shows an overview of all the bounds
and related MI estimators discussed in this paper.

2 Lower Bounds on KL Divergences and MI

Consider two probability distributions P and QQ, where PP is
absolutely continuous w.r.t. Q. Let p and ¢ be their respective



Lower Bounds on f-div DV n-DV [ours]
KL(P sup {E —Egef +1 sup {Ep [f] — log(Eq [ef sup {Ep[f] —e "Eg[ef] —n+1

(P,Q) fe?I?t{ p[f] —Eq feH{ p [f] (Eq [¢]) feH,neR{ [e/] J
f-MINE -MINE [ours]
sup {Ep., /(2 9)] = By, [e¥)] +1 sup {Ey, [£(2,9)]~Ep.p, [0 —nt1}

Estimators of f fn
I(X;Y)
DV-MINE a-MINE

SUD {]Epwy [f(m7 y)] - 10g (]Epmpy
f

[eﬂx’y)] )} sup {]Epwy [f (z,y)]-Ep, <Em [efmy)_n(y)} 777(y))+1}

fn

Figure 1: Overview of the paper. Top row shows several KL divergence lower bounds for two probability distributions P and Q.
By substituting P = p,,,, Q= p,p,, and defining f as a neural network, we obtain corresponding MI estimators. n—DV and

1n-MINE are the proposed bound and its derived estimator.

densities defined on X C R, Their KL divergence is defined

as KL(P,Q) = E,plog (q(i)) J p(z)log ( ) dr.
We are interested in the MI between two random Varlables
X.,Y where X is definedon X C R%_ and Y on ) C R%.
Let p;, be their joint densities and p,, p, the marginals of X
and Y respectively. The MI is defined as follows:

I(X;Y) = KL(pay, PxDy) )

which is the KL divergence between the joint density and
the product of marginals. Non-parametric estimation of MI
from samples is an important problem in science and machine
learning. In what follows, we review variational lower bounds
on KL to enable such estimation.

Variational Characterization of KL divergence. Let J7
be any function space mapping X to R. The first variational
characterization of the KL divergence goes back to (Donsker
and Varadhan 1976):

KL(P,Q) > DZ (P,Q) = sup{E,pf(z)
—log(Bgnge! ™) : f e}, ()

where the equality holds if and only if f* = log(p/q) € .

We refer to this bound as the DV bound.

The second variational representation was introduced in
(Nguyen, Wainwright, and Jordan 2008; Nowozin, Cseke,
and Tomioka 2016) and derived through convex duality to be
finally stated as follows:

KL(P,Q) > D (P,Q) = 1 + sup{E,pf(z)
—Eongef@ : fest}, 3)

with equality iif f* = log(p/q) € 4. We call this bound
the f-div bound (as in f-divergence).

From Eq. 2 and Eq. 3 we see that the variational bounds are
attempting to estimate the log-likelihood ratio f*=log(p/q),
and the tightness of the bound depends on the representa-
tion power of . In order to compare these two lower
bounds, observe that log(t) < ¢ — 1,¢ > 0. Therefore
log (ExNQef(I)) < E,~ge/® — 1, which means that for

any function space .7 we have:

KL(P,Q) > Dpy(P,Q) > DY (P,Q), )
from which we conclude that the DV bound is tighter than
the f-div bound.

Now, given samples {z;,i = 1...N,z; ~ P}, {y;,1 =
1...N,y;~Q}, estimating the KL divergence can be done
by computing the variational bound from Monte-Carlo simu-
lation. Specifically, for the DV bound we have the following

estimator:
log( Zef(yl ) .

&)
The Mutual Information Neural Estimator (MINE) (Belghazi
et al. 2018) considered Eq. 5 with the hypothesis class .77
being a neural network. For the f-div bound we have a simi-
lar estimator (for which a convex version with an RKHS 57
was introduced by (Nguyen, Wainwright, and Jordan 2008)):

fexx

1 1
D (P,Q) =1+ sup NZf(%)*ﬁZ@f(yi)- (6)
i=1 i=1

While DV bound is tighter than the f-div bound, in order
to learn the function f using stochastic gradient optimization,
f-div is a better fit because the cost function is linear in the
expectation, whereas in the DV bound, a log non-linearity
is applied to the expectation. This non-linearity introduces
biases in the mini-batch estimation of the cost function as
noted in (Belghazi et al. 2018). In the following, we show
how to alleviate this problem and remove the non-linearity at
the price of an additional auxiliary variable that will enable
better estimation of the DV bound.

An n-trick for the DV Bound. We start with the following
elementary Lemma, that gives a variational characterization

of the log. All proofs are given in the Appendix A.
Lemma 1. Letz > 0, we have: log(x) = min, e~ "z+n—1.

Using Lemma 1 we can now linearize the log in the DV
bound, Eq. 5.
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Lemma 2 (n-Donsker-Varadhan). Let S be any function
space mapping X to R:

KL(P,Q)>D;"(P,Q)=—inf{L(f,n):fe# , neR} (7)

L(f,n) = ¢ "Eonge! ™ —Epupf(x) +1 -1,  (8)
We refer to this bound as n-DV bound. Note that for n=0 we
recover the f-div bound.

Using Lemma 2, we can now rewrite the estimator for the
DV bound in Eq. 5 as follows:

N
zeﬂw > )1,
=1

which enables unbiased stochastic gradient optimization of
the function f. We note that similar variational tricks of non-
linearities have been devised for g(n) = /7 in (Argyriou,
Evgeniou, and Pontil 2008; Bach, Jenatton, and Mairal 2011).

1nfe m—

©))

3 What Do KALE Learn?

KALE from (Gretton, Sutherland, and Jitkrittum 2019) refers
to KL Approximate Lower-bound Estimators introduced ear-
lier (DV, n-DV, and f-div). In this section we show that
KALE estimates, whose witness functions are estimated in
RKHS, learn likelihood ratio estimates r in the maximum
mean discrepancy sense. Considering the dual of the KL
lower bounds optimized in RKHS , we establish that like-
lihood ratio r appears naturally as the dual variable of the
witness function f. See Figure 2 for an illustration.

For simplicity, we consider RKHS with a finite dimen-
sional feature map, i.e., 7 = {f|f(z) = (w,®(z)),® :
X — R™ w € R™}. Now for f € 2, the loss given in
Eq. 8 for n-DV can be rewritten as follows:

L(f,n) £ L(w,n)

e "Ez~qe

— (w,®(x))

—(w,Epp®(z)) + 17— 1.

Following (Nguyen, Wainwright, and Jordan 2008), we con-
sider the following regularized loss .£(w,n) = L(w,n) +
Q(w), and the corresponding sample-based formulation

ZL(w,n) = L(w,n) + Q(w), where

A oo Y L X
L(w,n) = N Zew’@(yi))* w57 Z (i) )+n—1,
i=1 i=1

and Q(w) is a convex regularizer, e.g., Q(w) = 3 Hw||§ . The

71-DV primal is defined as:

1n-DV-P : min L(w, ) + Q(w), (10)
w,1

Let (w*,n*) € argmin,, , L(w,n)4+Q(w) be the empirical
estimator. The KALE estimate is: ﬁgg (P, Q)= —L(w*,n*).
In the following, we show that . (w, n) is jointly convex in
(w,n) and derive its dual, which will shed light on the nature
of the likelihood ratio estimate and the role of 7.

Convex Estimate in RKHS. In Lemma 3 we first establish
the convexity of the 17-DV loss function.
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Lemma 3. .% and . are Jjointly convex in w and n.

1n-DV Dual is a Constrained Likelihood Ratio Estima-
tion. Given a ratio estimate 7 of p/q, the KL divergence is
computed as Eq7 log(7) (Mohamed and Lakshminarayanan
2016), which can be easily estimated using samples from Q.
In Theorem 1, proven in Appendix A, we show that the
dual problem (denoted D), corresponding to the primal min-
imization problem (denoted P) of -DV, reduces to a con-
strained likelihood ratio estimation problem (denoted C).

Theorem 1. Let Q*(.) be the Fenchel conjugate of )(.). The
1n-DV bound restricted to an RKHS amounts to the following

regularized convex minimization problem:
P = — (miny, ,, L(w,n) + Q(w)), with its dual form (D):

1) (Eqr — 1)+Q" (A(r)),
Esnp®(z) — Eyqr(y)®(y). (11)

Noticing that n—1 plays the role of Lagrangian multiplier, it
is equivalent to the likelihood ratio estimation problem (C):

min Eqr(y) log (r(y)) +Q° (Ecnp®(z) — Eynor(y) 2 (y))
such that E,qr(y) = 1. (12)

Therefore, we have P=D =C. Let (w*,n*) be an optimizer
of P. Let r* be an optimizer of D, then the KL estimate is:

Egrl —
N ;{mr}R mnax orlog (r)+(n

where A(r) =

DZy(P,Q) = Eqgr*log (r*) = —L(w*,n*),
and the KALE witness function f*(z') = (w*, ®(z')) is
F(@') = (Bonp®(2) — Eyngr”™ (y) @ (y), 2(2')) -

The regularizer Q(w) = 3 |lw||* can now be given the
following interpretation based on the results of Theorem
1. Recall the definition of the MMD (Gretton et al. 2012)
between distributions using an RKHS:

MMDg (P, Q) = [[Eznp®(z) — Eyg®(y)l.  (13)

Replacing the Fenchel conjugate 2*(.) by its expression in
Theorem 1, we see that 7-DV is equivalent to the following
dual (n-DV-D):

1
+ —~MMD3

min Egrlog (r) + o

(n—1) (Eqr —1) (rq,p)
(14)

or as a constrained ratio estimation problem (n-DV-C):

1
—MMD3 (rq,p) s.t.E,ugr(y) = 1.

min Eqrlog (r)+ )
15)

Hence, it is clear now that the 1-DV optimization problem
is equivalent to the constrained likelihood ratio estimation
problem r given in Eq. 15, where the ratio is estimated using
the MMD distance in the RKHS between rq and p. It is also
easy to see that p/q is a feasible point and for the universal
feature map MMDg (rq,p) = 0 iif » = p/q, therefore, for
a universal kernel, p/q is optimal and we recover the KL
divergence for r = p/q. When comparing n-DV-D (Eq. 14)
and n-DV-C (Eq. 15), we see that n—1 plays the role of a
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Figure 2: Comparison of dual formations of n—DV and f—div in RKHS. Here, r is an estimator for density ratio p/q and
MMDg (P, Q) = ||Ezp®(z)—E,q®P(y)||. Both duals have a relative entropy term, but f—div bound does not impose a
normalization constraint on the ratio, which biases the estimate, while n— DV uses 7 as Lagrangian multiplier to impose the

constraint Eg[r] =1 and ensure density normalization.

Lagrangian that ensures that rq is indeed a normalized distri-
bution. In practice, we solve the primal problem (P), while
the dual problem (D) and its equivalent constrained form
(C) explains why this formulation estimates the KL diver-
gence and reveals 7 as a Lagrangian multiplier, enforcing a
normalization constraint. Let r* be the solution, then:

Dy (P, Q) ) =L, (16)
KALE’s witness function f* in Theorem 1 shares similarity
with the witness function with the MMD. It is MMD witness
function of a rescaled distribution Q with likelihood ratio
r*. Ratio estimation via MMD matching for covariate shift
appeared in (Gretton et al. 2009; Sugiyama et al. 2008).

Comparison to f-div. We also restrict f-div bound to an
RKHS, which is equivalent to the following ratio estimation
(follows from the proof of Theorem 1 by eliminating max
on 7, and setting n=0), and is consistent with the results of
(Nguyen, Wainwright, and Jordan 2008) (see Eq. 51 therein):

= Eqr*log (r

+ ! MMD?
2\ @

Let r* be the optimum, then the KL divergence can be esti-
mated as follows:
DY (P,Q) )+ (1 -Eert). A7)

Comparing D, (P, Q) and D* (P, Q) we see that they both
have a relative entropy term but the f-div bound does not
impose the normalization constraint on the ratio, which biases
the estimate.

Empirical Estimation. Note that in Theorem 1, if we
replace the loss L by its empirical counterpart L from Eq. 9,
the equivalent Dual takes the following form:

ZCD (z4)

) 1
subject to: N Z ri =1,

f-div : 1Tn>1%)1 Egrlog (r) + (1 — Eqgr) (rq,p)-

= Eqr*log(r

Zrllog (r;) + Q%(

min —
ri>0 N

(18)
and the KALE is given by'

Zr log (r

DDVlP’Q

N
Zﬁ‘b(yi))
NS
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From RKHS to Neural Estimation. One shortcoming of
the RKHS approach is that the method depends on the choice
of feature map . We propose to learn ® as a deep neural
network, as in MINE (Belghazi et al. 2018). Given samples
x; from P, y; from Q, the KL estimation becomes:

Dg\l\}(Pa Q) = - (m(%nf@(wﬂil) )

which can be solved using BCD on (w,n, ®). Note that
if ®(-) is known and fixed, then optimization problem in
Eq. 19 becomes convex in 77 and w. We refer to this bound as
1n-DV—convex.

19)

Algorithm 1 n»-MINE (Stochastic BCD )

Inputs: X,Y dataset X € RVX4 Y ¢ RVN*dy such
that (z; = X, ,y; =Y ) ~ Dy
Hyperparameters: o, oy (learning rates), n. (number
of critic updates)
Initialize 7), 6 parameter of the neural network fy
for i = 1...Maxiter do
for j=1...n.do
Fetch a minibatch of size N (z;, y;)
Fetch a minibatch of size N (z;, 3;)

Evaluate L(fg,n)
Stochastic Gradient step on 8: 6 < 0 — «
end for
Update n:n < n — «
end for -
Output: fy,n, ﬁDV(X, Y)
e~ ML Z Lelo (@e.9:) — 41

~ Py
~ PzPy

AL(fo.m)
00

AL (fo.m)

n on

* SN folxi,yi) —

Observations about what Neural KL/MI Estimators
Learn: 1) Ratio estimation via Feature Matching. KL di-
vergence estimation with variational bounds boils down to a
ratio estimation using a form of MMD matching. 2) Choice
of Feature/Architecture. The choice of feature space or archi-
tecture of the network introduces bias in ratio estimation; also
observed in (Tschannen et al. 2019). 3) Ratio Normalization.
1-DV bound introduces a normalization constraint on the
ratio ensuring a better estimate.



I(VII Esti)mator Loss to minimize . Constraints

bound

g)\;l)\/HNE log (% Zf\il ef(z""g”) — % Zf\;l f(zi,y:) f isa DNN
e e s of L 55 S
> RO TR R .
vy L3 (£ v og(a(i) - & S o) -1 RO
Rl)foNCE Ly (bg LN @) _ f(a, yi)> fis a DNN
e S I o Rt ST isaDNN; g € R
v RS ) _ S w0t pans | g

Table 1: Given iid samples from marginals ; ~ p, and §; ~ p, and samples from the joint (2;,y;) ~ Dzy, We list some MI
estimators, corresponding variational bounds, associated losses, and constraints on the function space. MI estimators include
biased and unbiased DV-MINE from DV (Belghazi et al. 2018), f-MINE from f-div (Nguyen, Wainwright, and Jordan 2008;
Nowozin, Cseke, and Tomioka 2016), InfoNCE (Oord, Li, and Vinyals 2018), a-MINE from DV (Poole et al. 2019) and n-MINE,

1n-MINE-convex from n— DV (ours).

4 7-DV Mutual Information Estimation
We now specialize the KL estimators given in Section 3 for
the task of MI estimation. Given a function space .7 defined
on X x Y,

[(X:Y) > IgH(X:Y) 2 I75,(X;Y)

= sup K, f(z,y) — Emepyef(r’y),
fext

(20)

where 155 = sup pe 0 Bp,, f(2,y) — log (B, Ep, ef @),
Equivalently, with the n-trick we can rewrite

I . — x,
I3y :_femji”f,ne nEpwpyef(r y)—Epwyf(ﬂﬁ, y)+n—1.
Now, given iid samples from marginals x; ~ p,, and g; ~
Dy, for i = 1... N, and samples from the joint (x;,y;) ~
Day, fOr @ 1...N, we can estimate the MI as follows

bgg (Pa,y» P=Dy) given in the expression below:

1 N 1 N
— inf e E fl@a,gi) _ § i Ui —1.
felgi”,ne N izle ] i=1 f(m ,y)—’_n

When 7 is an RKHS, 7 can be seen as a Lagrangian ensur-
ing that the ratio estimation r(x, y) of % is normalized to
one when integrated on p,p,, i.e., nis a Lagrangian associ-
ated with the constraint [, 7(2, y)p.(z)py (y)dedy = 1.
Table 1 is a review of other variational bounds for MI based
on f-div, DV, and -DV bounds; a-MINE from (Poole et al.
2019) is discussed next.

We establish in Appendix C that the DV bound can be
made tighter and we land on a-MINE estimator from (Poole
et al. 2019) that we refer to as 174, (X;Y). We then de-
rive the following hierarchy of lower bounds: I(X;Y) >
I7(X5Y) > LAy (X;Y) > T74,(X;Y). We discuss in
Appendix C that while this may suggest a tighter bound, than
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1-DV, it is prone to higher estimation errors since a-MINE
estimates a function a(y) as it can be seen in Table 1, while
1n-DV estimates a scalar.

Sample Complexity. We discuss in Appendix B the sam-
ple complexity of 7-MINE and show that by a reduction of
the DV bound to f-div bound, the convergence results from
(Nguyen, Wainwright, and Jordan 2008) apply and we have
a sample complexity of O(1/vN).

Algorithm 1 outlines steps of n-MINE for MI estimation.

5 Experiments

Proposed n-MINE MI estimator is compared to existing base-
lines on few applications using synthetic and real data.

MI estimation. We compared different MI estimators on
three synthetically generated Gaussian datasets [SK training
and 1K testing samples]. Each evaluated MI estimator was
run 10 times and average performance (4 standard devia-
tion) is shown at the top of Fig. 3. Clearly, MI estimation in
high dimensions is a challenging task, where the estimation
error for all methods increases as the data dimensionality
grows [red line shows true MI value]. Nevertheless, the pro-
posed n-MINE achieves on average more accurate results
compared to existing baselines. Moreover, the convex for-
mulation of n-MINE has overall a better performance and
fast convergence rate. This estimator has a linear witness
function defined as f(-) = (w, ®(-)) using pre-trained fixed
feature map ®(-) from regular n-MINE. In the experiments
that follow, we compare the proposed estimator 1-MINE to
DV-MINE, as a main baseline approach.

MI-regularized GAN. We investigate GAN training im-
provements with MI, especially its diminishing mode col-
lapse, as addressed in (Belghazi et al. 2018) in Section 5.1.
(Belghazi et al. 2018) uses a 25-Gaussian dataset to show
improvements on GAN clustering by using MI objective for
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Figure 3: Performance of different MI estimators on synthetic Gaussian data. Left: MI estimation. Data was sampled from 2-, 10-
and 20-dimensional Gaussian distributions with random means and random symmetric, positive-definite covariance matrices (i.e.,
random dependencies, which is a difficult scenario). As we increase data complexity, difference between estimators decreases,
although we observed that n-MINE (or its convex extension) on average performed better than baseline methods, converging to
the true MI [red line] faster. Right: M1 for GAN regularization. Top row: unconditional GAN baseline fails at capturing all 25
modes in the Gaussian mixture. Middle row: MI-regularized conditional GAN using DV-MINE (Belghazi et al. 2018) converges
after 140K steps of the generator. We found this estimator to be sensitive to the hyper-parameters and unstable. Bottom row:
Ml-regularized conditional GAN using n-MINE; the model converges in 50K steps.

regularization. As in InfoGAN (Chen et al. 2016), the con-
ditional generator G is supplied with random codes c along
with noise z; we maximize the mutual information between
I(G(z,¢), ¢) using n-MINE estimators. In Fig. 3, we estab-
lish that n-MINE recovers all modes within fewer steps than
DV-MINE and with a more stable training.
Self-supervised: Deep InfoMax. In unsupervised or self-
supervised learning, the objective is to build a model without
relying on labeled data but using an auxiliary task to learn
informative features that can be useful for various down-
stream tasks. Here, we evaluate the effectiveness of the pro-
posed n-MINE estimator for unsupervised feature learning
using the recently proposed Deep InfoMax method from
(Hjelm et al. 2019). For feature representation we used an
encoder similar to DCGAN (Radford, Metz, and Chintala
2015), shown in Fig. 4.a and evaluated results on CIFAR10
and STL10 datasets (STL10 images were scaled down to
match CIFAR10 resolution).

The encoder is trained by maximizing MI I(2’,y’) be-
tween features from one shallow layer ! (z' = E)(z)) and a
deeper layer k (y' = Ey(y)). We examined different layer
combinations and found that the encoder composed of only
the first two convolutional layers give the best performance on
the downstream tasks. As shown in Fig. 4.b the encoder fea-
tures are passed through additional trainable neural network
layers, whose job is to build a classifier f(z’,y’), discriminat-
ing cases when z’ are ' are coming from the same image and
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cases when 2’ are ¢’ are unrelated. Finally, we attach a linear
layer to the pre-trained and now fixed encoder (see Fig. 4.c)
to perform supervised training. Table 2 presents the results
for two MI estimators: n-MINE and DV-MINE, whose loss
functions are listed in Table 1. As can be seen, 7-MINE-based
pre-training performs competitively with DV-MINE, achiev-
ing overall better results on both datasets, showing practical
benefits of the proposed approach.

Self-Supervised: Jigsaws with MI. The self-supervision
Jigsaw pretext task (Noroozi and Favaro 2016) aims at solv-
ing an image jigsaw puzzle by predicting a scrambling per-

Test
C10 S10
Train DV n Sup. DV n Sup.
Cl10 775 748 842 551 564 -
S10  67.5 68.3 - 61.8 633 613

Table 2: Classification accuracy (topl) results on CIFAR10
(C10) and STL10 (S10) for unsupervised pre-training task
with DV-MINE and n-MINE using encoder in Fig. 4.b. For
reference we list results for supervised (CE) training using
full encoder in Fig. 4.a. n-MINE-based pre-training achieves
better results, outperforming supervised model on S10.
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Figure 4: (a) Encoder architecture and classification accuracy (top1) on CIFAR-10 dataset for different pre-trained encoders.
Each number represents test accuracy of the system trained by maximizing MI between features from layers pointed by the
corresponding arrows. Interestingly, the highest accuracy was obtained by pre-training encoder composed of just the first two
convolutional layers (see (b) and (c) for details of this process). (b) Model pre-training by maximizing MI between features from
different layers [additionally transformed by a neural net, aimed at constructing witness function f(-)]. (c) After pre-training, we
fix encoder and attach a trainable linear layer to perform supervised tasks.
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Figure 5: (a) Jigsaw CE training. (b) Jigsaw MI training. (c)
ImageNet Classification CE training.

mutation 7. From image X with x ={xz1...x9} 3x3 jigsaw
patches, and permutation y = m; : [1,9] — [1,9], scram-
bled patches x, = {Z,(1)...2x,(9)} generate the puzzle.
Each patch is fed to encoder £ which must learn meaning-
ful representations so a classifier C'; can solve the puzzle
by predicting the scrambling order 7; (Noroozi and Favaro
2016) (see Fig. 5.a). While this standard formulation relies
on a CE-based classification of the permutation, we pro-
pose to use MI Jigsaw, where an encoder F is trained to
maximize I(E(z,); ;) by using MI estimators DV- and
1n-MINE, as seen in Fig. 5.b. A patch preprocessing similar
to (Kolesnikov, Zhai, and Beyer 2019) avoids shortcuts based
on color aberration, patch edge matching, etc.; for details of
our implementation, see Appendix E. All models are built on
a 10% subset of ImageNet (128K train., SK val., 1K classes)
as proposed by (Kolesnikov, Zhai, and Beyer 2019). This is
a larger set than Tiny ImageNet (200 classes) used in many
publications. E is a ResNet50 for all our experiments. In
our ImageNet target classification task, &2 from CE and MI
Jigsaw trainings are frozen (at 200 epochs) and followed by
linear classifier C' (Fig. 5.c); an adequate setup for comparing
encoders as argued by (Kolesnikov, Zhai, and Beyer 2019).
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DV-MINE  n-MINE CE
topl 8513 11.0+11 129+03
topS 20.0+£25 241+22 281+0.6

topl0 27.8+3.1 327+22 37.7£06

Table 3: ImageNet (10% subset) classification accuracies (in
%). DV-MINE and n-MINE use fixed Encoder from MI train-
ing. CE uses a CE Jigsaw Encoder. Means =+ std. deviations
over 8 models from different initialization are reported.

Table 3 reports best accuracies for all models on target
task for C's trained for exactly 200 epochs. For all results,
FE is trained from Jigsaw task (CE or MI) and frozen, with
only C trained as in (Kolesnikov, Zhai, and Beyer 2019). DV-
and 7n-MINE share the same f architecture. n-MINE gives
better accuracy performance compared to DV-MINE. CE
model trained from a Jigsaw-supervised encoder F provides
an upper-bound for supervised performance for £ from the
Jigsaw task. Despite CE being better than - and DV-MINE,
n-MINE does a respectable job at learning a representation
space for the target task, better than DV-MINE. Details of the
Jigsaw experiments are given in Appendix E.

6 Conclusion

In this paper, we introduced a new lower bound on the KL di-
vergence and demonstrated how it can improve the estimation
of MI using neural networks. Theoretically, we proved that
the dual of our n-DV formulation reduces to a constrained
likelihood ratio estimation. In practice, the stability of 7-
MINE is due to its unbiased gradient. We tested our estimator
n-MINE on synthetic data and applied it on various real-
world tasks where MI can be used as a regularizer, or as an
objective in self-supervised learning. We used n-MINE in
unsupervised learning of representations through MI maxi-
mization and by solving Jigsaw puzzles.
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