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Abstract
Adversarial attack is a technique for deceiving Machine
Learning (ML) models, which provides a way to evaluate the
adversarial robustness. In practice, attack algorithms are arti-
ficially selected and tuned by human experts to break a ML
system. However, manual selection of attackers tends to be
sub-optimal, leading to a mistakenly assessment of model se-
curity. In this paper, a new procedure called Composite Ad-
versarial Attack (CAA) is proposed for automatically search-
ing the best combination of attack algorithms and their hyper-
parameters from a candidate pool of 32 base attackers. We
design a search space where attack policy is represented as
an attacking sequence, i.e., the output of the previous at-
tacker is used as the initialization input for successors. Multi-
objective NSGA-II genetic algorithm is adopted for finding
the strongest attack policy with minimum complexity. The
experimental result shows CAA beats 10 top attackers on 11
diverse defenses with less elapsed time (6 × faster than Au-
toAttack), and achieves the new state-of-the-art on l∞, l2 and
unrestricted adversarial attacks.

Introduction
DNNs are vulnerable towards adversarial attacks, which aim
to fool a well trained model by producing imperceptibly per-
turbed examples. This serious security implication quickly
attracted a lot of attention from the machine learning com-
munity. With in-depth study of adversarial examples, a lot of
attack algorithms are proposed to validate the adversarial ro-
bustness. Meanwhile, several open source toolboxes, such as
Cleverhans (Papernot et al. 2016), FoolBox (Rauber, Bren-
del, and Bethge 2017) or AdverTorch (Ding, Wang, and Jin
2019), are developed and integrating most existing attack al-
gorithms. All of them provide user friendly interface for at-
tacking a model conveniently and quickly.

However, even if well-designed toolboxes are developed,
it still needs a lot of user experience or manual tuning of
hyper-parameters for attacking a model, especially when we
do not know the details of the defense mechanism. This user-
dependent characteristic also makes it hard for instrumen-
talization of adversarial attacks. On the other hand, man-
ually selecting attackers is somewhat tendentious and sub-
optimal. It may arouse a mistakenly assessment of model
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Figure 1: Comparison between CAA and state-of-the-art
attackers on CIFAR-10 adversarial training model. CAA-
n represents the CAA attack with n restarts. Our method
achieves the best attack performance only with a small num-
ber of gradient evaluation.

security, e.g., a well-known false sense of security is gradi-
ent obfuscation, which leads to illusory defense for gradient-
based attacks.

In order to perform more comprehensive and stronger at-
tacks, we first propose to automate the attack process by
searching an effective attack policy from a collection of at-
tack algorithms. We name this procedure as Composite Ad-
versarial Attacks (CAA). To demonstrate the key idea of
CAA, an example is presented in Fig. 2. Suppose that there
are two candidate ways of attacks, i.e., Spatial attack (En-
gstrom et al. 2019) and FGSM attack (Goodfellow, Shlens,
and Szegedy 2014), the goal is choosing one or more of them
to compose a stronger attack policy. In Fig. 2 (b), the sim-
plest way is selecting the best single attack as the final pol-
icy. However, single attacker is always not strong and gen-
eralized enough as shown in previous works (Tramèr and
Boneh 2019). A more promising solution (Croce and Hein
2020) is to find multiple attackers, and then ensemble them
by choosing the best output constantly that can successfully
fool the model (Fig. 2 (c)). Although higher attack success
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rate can be obtained, the ensemble attack only provides the
output level aggregation, without considering the comple-
mentarity among different attacking mechanisms.

In our composite adversarial attack, we define an attack
policy as the serial connection of attackers, in which the
output of previous attacker is used as the initialization in-
put for successors. In Fig. 2 (d), four possible permutations
can be generated by two attackers. By using a search algo-
rithm to find the best permutation, we show that an FGSM
attack following Spatial attack can achieve 26% higher er-
ror rate than ensemble of the two attacks. The advantage of
our policy lies in two aspects: 1) By introducing identity at-
tack, CAA can skip any single attack in the sequence and
produce more sub-policies. We ensemble all of them during
attack to cover all the possible sub-policies. Therefore, our
CAA is the more generalized formulation and can represent
both single attack and ensemble attack. 2) A strong attack
can be produced via progressive steps. Previous works (Suya
et al. 2020) have found that some starting points close to the
decision boundary are better than the original seeds for op-
timizing the attacks. Similarly in CAA, we use preceding
attackers to create an example far enough from the original
seed and close enough to the boundary, such that subsequent
attacks are easier to find a stronger adversarial example.

Specifically, CAA is implemented with a search space
containing several choices and orders of attack operations.
For each attack operation, there are two hyper-parameters,
i.e., magnitude ε and iteration steps t. We adopt NSGA-II ge-
netic algorithm (Deb et al. 2002) to find the best attack pol-
icy which can break through the target model with highest
success rate but have the minimal complexity. Extensive ex-
periments show that CAA achieves excellent improvements
in two use cases: 1) CAA can be applied directly on the tar-
get model of interest to find the best attack policy (CAAdic)
and 2) learned policies can keep high success rate transferred
to attack multiple model architectures, under different tasks
(CAAsub). We evaluate CAAdic and CAAsub on 11 recent
proposed defenses on l∞, l2 and unrestricted setting. The
result shows our composite adversarial attack achieves the
new state-of-the-art in white-box scenario, with a significant
reduction of attack time cost.

Preliminaries and Related Work
Adversarial Attacks
Definition and Notation Let F : x ∈ [0, 1]D → z ∈
RK be a K-class image classifier, where x is an input image
in the D-dimensional image space, z represents the logits.
Suppose F is well performed and correctly classify x as its
ground truth label y. The purpose of adversarial attacks is
to find an adversarial example xadv which is close to the
original x under a certain distance metric but causes mis-
classification of the model: F(xadv) 6= y.

Regular Adversarial Examples Regular adversarial ex-
amples are with limited magnitude of perturbations, which
is always achieved by bounding the perturbations within the
ε-radius lp-ball around the input x. It can be formed by
F(xadv) 6= y s.t. ‖xadv − x‖p ≤ λ. Fast Gradient Sign
Method (FGSM) is a classic l∞ adversarial attack approach
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Figure 2: Illustration of single attack, ensemble attack and
our composite attack. S and F denote Spatial and FGSM
attack, respectively.

performing single step update on the original sample x along
the direction of the gradient of loss function. There are many
improved versions of FGSM using momentum based multi-
steps optimization (Dong et al. 2018), or random initializa-
tion of perturbations (Madry et al. 2017). l2-based attacks
such as DDNL2 (Rony et al. 2019) and C&W (Carlini and
Wagner 2017) find xadv which has the minimal l2 distance
to the its original examples. l1-based attackers guarantee the
sparsity of the perturbation, such as EAD (Chen et al. 2017).
However, l1-based attacks are not commonly used in practi-
cal attack setting. Therefore, we have not implemented CAA
under l1 constraint in this paper.

Unrestricted Adversarial Examples Unrestricted adver-
sarial example is a new type of adversarial example which is
not restricted to small norm bounded perturbations. In this
case, the attacker might change an input significantly with-
out changing the semantics. (Brown et al. 2018) first intro-
duces the concept of unrestricted adversarial examples and
raises a two-player unrestricted attack&defense contest. Re-
cently, there are lots of works aiming to construct such a
stronger unrestricted attack using generative models (Song
et al. 2018) or spatial transforms (Engstrom et al. 2019). In
this paper, we also implement unrestricted CAA with the
largest search space (19 attackers). We found that even ap-
plying very simple base attackers to form the search space,
the policy searched by our CAA still yields surprising attack
ability at unrestricted setting.

Automated Machine Learning
Our approach is inspired by recent advances in AutoML
and its sub-directions such as Neural Architecture Search
(NAS) and Hyper-Parameter Optimization (HPO). In Au-
toML, search algorithms are used for choice of algorithm,
feature pre-processing steps and hyper-parameters automat-
ically. Another similar direction is AutoAugment (Cubuk
et al. 2018), which automatically searches for improved data
augmentation policies. These automation technologies not
only make people get rid of the tedious process of algorithm
fine-tuning, but also greatly improve the effectiveness and
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efficiency of the learning system. In this work, we adopt
some search technologies in AutoML, and demonstrate that
searching better algorithms and parameters also help for the
adversarial attacks.

Composite Adversarial Attacks
Problem Formulation
Assume that we have an annotated dataset {X,Y } and a
collection of attack algorithms with some unknown hyper-
parameters. In this paper, each attack algorithm is regard as
an operation A : x ∈ [0, 1]D → xadv ∈ [0, 1]D, which
transforms the input x to adversarial one xadv on the image
space. A has various choices under different attack settings.
For example, in white-box adversarial attack,A directly op-
timizes a perturbation δ within the ε-radius ball around the
input x, for maximizing the classification error:

A(x,F ; ε) = arg max
x+δ

L(F(x+ δ), y) s.t. ‖δ‖p ≤ ε, (1)

where L typically refers to the cross-entropy loss, ‖·‖p
presents the lp-norm and ε is the bound of the lp-norm. ε
can be viewed as a hyper-parameter of A. Besides, there
are many other attack settings, e.g., black-box attack (Uesato
et al. 2018; Andriushchenko et al. 2019), unrestricted adver-
sarial attack (Brown et al. 2018), etc. We represent them as
the attack operation A in a unified way.

Suppose we have a set of base attack operations, presented
as A = {A1,A2...Ak}, where k is the total number of at-
tack operations. The goal of composite adversarial attack is
to automate the adversarial attack process by searching for
the best composition of attack operations in A and hyper-
parameters of each operation, to achieve more general and
powerful attacks. In this work, we only consider two most
common hyper-parameters in attack algorithms: 1) the at-
tack magnitude ε (also equivalent to the maximal lp-norm
of the perturbation) and 2) optimization steps t for the at-
tack. To limit the search scope of two hyper-parameters, two
intervals are given: ε ∈ [0, εmax] and t ∈ [0, tmax], where
εmax and tmax are the max magnitude and iteration of each
attack predefined by users. In this paper, we do not search
for the attack step-size, as it is relevant to optimization step
t. Instead, all attacks that require step-size parameter (e.g.,
PGD) are modified to step-size-free version based on previ-
ous method (Croce and Hein 2020). Accordingly, the step-
size can be changed adaptively based on the optimization
step. Then we can define the policy s as the composition of
various attacks, which consists of N consecutive attack op-
erations:

s : AsN (As2(As1(x,F ; εs1 , ts1),F ; εs2 , ts2))...,F ; εsN , tsN ),
(2)

where {Asn ∈ A|n = 1, ..., N} is the sampled attacker from
A separately and {{εsn , tsn}|n = 1, ..., N} is the hyper-
parameter of each attack. With the combination of different
attack operations and hyper-parameters, we can obtain thou-
sands of possible policies.
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Figure 3: Illustration of re-projection module in composite
adversarial attack under lp-norm constraint.

Constraining lp-Norm by Re-Projection
The attack policy presented in Eq. 2 is a general form, which
has no constraint on the global perturbation. When the at-
tack sequence becomes longer, the computed perturbation
of each attack algorithm is accumulated, causing the final
perturbation on the original input to be large. To solve this
problem, we insert a re-projection module between two con-
secutive attack algorithms. In Fig. 3, the re-projection mod-
ule first determines whether the ε accumulated on previous
attackers is larger than the εglobal of the policy. If it is, the ac-
cumulated perturbation will be clipped or rescaled to make
the lp-norm bounded in εglobal. With this modification, we
can use composite adversarial attacks for any lp-norm con-
ditions.

Search Objective
Previous works commonly use Attack Success Rate (ASR)
or the Robust Accuracy (RA) as the objective to design their
algorithms. However, these objectives can be achieved at the
expense of more elapsed time. For example, recent proposed
works (Gowal et al. 2019; Tashiro 2020) use some tricks
such as random restart or multiple targets to get higher suc-
cess rate, with sacrificing the running efficiency. It makes
their algorithms extremely slow (even more time-consuming
than some black-box attacks). In this work, we emphasize
that a good and strong attacker should be both effective and
efficient. To meet this goal, we design our objective with
minimizing two terms, i.e., robust accuracy and complexity.

Next we elaborate the two objective terms. The first term
RA is the accuracy of the target model on generated adver-
sarial examples. It also reflects the strength of the attackers.
As for the second term complexity, we use the number of
gradient evaluation as the complexity metric. For a regular
attack algorithm, the number of gradient evaluation repre-
sents the number of times an attack algorithm computing
the gradient of the target model during the attack process,
and it equals to the optimization step t typically. Therefore,
we can formulate the overall objective function as:

L = −
∑
x

[F(s(x)) 6= y] + α
N∑
i=0

tsi , (3)

where s(x) represents the output of the attack policy for in-
put x, N is the length of the attack policy, and α is a co-
efficient to compromise the attack strength and complexity.
Then, we can apply a search algorithm to find an optimal at-
tack policy s∗ from thousands of possible policies, by mini-
mizing the objective L:

s∗ = min
s
L. (4)
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Figure 4: Output visualization of a specific attack policy. For
instance, the first row is an l∞ policy consists of consec-
utive FGSM, PGD-Linf and CW-Linf attack. Each column
presents the output of each attacker component. For unre-
stricted attacks, ε is unlimited, so we set ε = 1.

Search Space
Our search space is divided into two parts: 1) searching for
choices and orders of attack operations; 2) searching for
magnitudes ε and steps t of each attack operation. For an at-
tack policy consisting ofN base attack operations, the attack
operations search forms a problem space of ‖A‖N possi-
bilities. Additionally, each operation is also associated with
their magnitude and step. We discretize the range of magni-
tudes ε and steps t into 8 values (uniform spacing) so that
we can simplify the composite adversarial attacks search as
a discrete optimization problem. Finally, the overall search
space has total size of (8× 8× ‖A‖)N .

In this paper, three types of policy spaces, i.e., Sl∞ , Sl2
and Sunrestricted are constructed. We implement six l∞-
attackers and six l2-attackers in space Sl∞ and Sl2 respec-
tively. In unrestricted case, we use a larger search space with
19 implemented attack algorithms. Besides, all of Sl∞ , Sl2
and Sunrestricted also adopt an IdentityAttack to represent
the identity operation. An output visualization of attack pol-
icy in each search space is shown in Fig. 4.

Search Strategy
The search strategy plays an important role in finding the
best attack policy. In our problem setting, the scale of search
space is relatively small. And the cost of policy evaluation
is much less than other task such as NAS. This allows us
to use some high-performance search algorithms. We com-
pare three widely used methods, i.e., Bayesian Optimiza-
tion (Snoek, Larochelle, and Adams 2012), Reinforcement
Learning (Zoph and Le 2016) and NSGA-II Genetic Algo-
rithm (Deb et al. 2002). The detailed implementation and
comparison are shown in Appendix B. Although Bayesian
Optimization and Reinforcement Learning are widely con-
sidered to be efficient in the field of AutoML, in this prob-
lem, we found that they are more time-consuming and slow
to converge. In contrast, NSGA-II is faster since there is no
need for an additional model optimization processes during
the search period. It only needs a few iterations of the popu-
lation updating to find an optimal solution quickly.

Detailly, NSGA-II needs to maintain a finite set S of all
possible policies and a policy evaluation function that maps

Algorithm 1 Attack policy search using NSGA-II

Require: Pool of candidate attackers A; Population size P ;
Require: Maximum number of generations G

1: P0 ← Ø . Initialized population with size of K
2: t← 0
3: for i← 1 to K do
4: for j ← 1 to N do
5: Random sample Aj from A
6: Random sample εj ∼ [0, εmax], tj ∼ [0, tmax]
7: end for
8: s← AN (A1(x,F ; ε1, t1)...),F ; εN , tN )
9: P0 ← P0 ∪ s

10: end for
11: for t < G do . Run search with Eq. 3 for evaluation
12: Pt+1 ← NSGA-II(Pt) . Update the populations
13: t← t+ 1
14: end for
15: return best attack policy s∗ from Pt

each policy s ∈ S onto the set of real numbers R. In this
work, we use Eq. 3 as the policy evaluation function. NSGA-
II algorithm explores a space of potential attack policies
in three steps, namely, a population initialization step that
is generating a population P0 with random policies, an ex-
ploration step comprising crossover and mutation of attack
policy, and finally an exploitation step that utilizes the hid-
den useful knowledge stored in the entire history of evalu-
ated policies and find the optimal one. The whole process
is shown in Alg. 1. In the remainder of this work, we adopt
NSGA-II algorithm for the policy search.

Experiments
Experiment Setup
In order to validate the performance of our CAA, the
searched attack policies on Sl∞ , Sl2 and Sunrestricted are
evaluated on 11 open source defense models. We run l∞ and
l2 attack experiments on CIFAR-10 and ImageNet (Deng
et al. 2009) datasets. We perform unrestricted attack on
Bird&Bicycle (Brown et al. 2018) datasets. The robust accu-
racy is recorded as measurement to make comparison with
10 recent top attackers. In the implementation, we take all
the results of sub-policies and ensemble them as similar to
(Croce and Hein 2020).

Details of Search Space The candidate pool of CAA
consists of 32 attack operations, i.e., six l∞-attacks, six
l2-attacks, 19 unrestricted attacks and the last IdentityAt-
tack (i.e., identity operation). A detailed summary of imple-
mented attack algorithms is shown in Tab. 1. We borrowed
the codes of some algorithms from open source attack tool-
box, such as Foolbox (Rauber, Brendel, and Bethge 2017)
and Advertorch (Ding, Wang, and Jin 2019). The implemen-
tation and citation of each base attacker can be found in Ap-
pendix A.

Data Configuration For CIFAR-10, we search for the best
policies on a small subset, which contains 4,000 examples
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Sl∞ Sl2 Sunrestricted

MI-LinfAttack
MT-LinfAttack
FGSMAttack

PGD-LinfAttack
CW-LinfAttack

SPSAAttack
IdentityAttack

DDNAttack
CW-L2Attack
MI-L2Attack

PGD-L2Attack
MT-L2Attack
SquareAttack
IdentityAttack

17 CorruptionAttacks
SpatialAttack
SPSAAttack

IdentityAttack

Table 1: The implemented attack algorithms in search space
Sl∞ , Sl2 and Sunrestricted respectively.

randomly chosen from the train set. Total 10,000 examples
in test set are used for the evaluation of the searched policy.
For ImageNet, as the whole validation set is large, we ran-
domly select 1000 images for policy search and 1000 im-
ages for evaluation from training and testing database re-
spectively. For Bird&Bicycle, we use all 250 test images for
evaluation, and 1000 randomly selected training images for
attack policy search.

Summary of Experiments We investigate four cases: 1)
BestAttack, searching for best single attacker in candidate
pool; 2) EnsAttack, searching for the ensemble of multi-
ple attackers; 3) CAAdic, directly searching CAA policy on
given datasets; and 4) CAAsub, searching by attacking ad-
versarial training CIFAR10 model as substitute and trans-
ferred to other models or tasks. For fairness, we compare
our method with previous state-of-the-art attackers on 11
collected defense models: Advtrain (Madry et al. 2017),
TRADES (Zhang et al. 2019), AdvPT (Hendrycks, Lee, and
Mazeika 2019), MMA (Ding et al. 2019), JEM (Grathwohl
et al. 2019), PCL (Mustafa et al. 2019), Semi-Adv (Car-
mon et al. 2019), FD (Xie et al. 2019), AdvFree (Shafahi
et al. 2019), TRADESv21 and LLR2. Next we leverage mul-
tiple architectures (VGG16 (Simonyan 2014), ResNet50 (He
et al. 2016), Inception (Szegedy et al. 2015)) and datasets
(MNIST (LeCun et al. 1998), CIFAR-100, SVHN) to inves-
tigate the transferability of CAA in black-box and white-box
settings. Finally, we do some ablation study on the effect
of different policy search algorithms and the attack policy
length N . We also analyse the difference between searched
policies of non-target and target attack. Some insights can
be found in these ablation experiments.

Comparison With State-of-the-Art
Tab. 2 shows the l∞-based attack result of four variants, i.e.,
CAAsub, CAAdic, EnsAttack and BestAttack on CIFAR-10
dataset. Most works study the model robustness in this set-
ting, so we can collect more defenses for evaluation. The
compared attackers are 150-step ODI-PGD with 10 ODI-
step and 20 restarts, 100-step PGD&APGD with 10 restarts,
FAB and AA. The hyper-parameters of FAB and AA are
consistent with the original paper (Croce and Hein 2020).
All these attackers have the total number of gradient evalua-

1https://github.com/google/unrestricted-adversarial-examples
2https://github.com/deepmind/deepmind-research/tree/master/

unrestricted advx

tion (complexity) larger than 1000. In contrast, our CAAsub
has lower complexity (800), and breaks the model with a
higher error rate. It implies that even a substitute attack
policy may have high time efficiency and reliability. Direct
search on the task of interest can further improve the per-
formance. From the last row of the table, stronger attack
policies are founded by CAAdic, with the average decrease
of 0.1% on the robust accuracy. We also evaluate two op-
tional schemes in Fig. 2, named BestAttack and EnsAttack.
The final searched policy of BestAttack is MT-LinfAttack,
which is the strongest attacker in Sl∞ case. However, the re-
sult shows the best single attacker is not competitive in front
of existing methods. EnsAttack searches a policy with an en-
semble of MT-Linf, PGD-Linf and CW-Linf attacks. Com-
pared to BestAttack, EnsAttack merges multiple attacks and
achieves better results. But it is still worse than CAA policy.
It implies that CAA are empirically better than ensemble of
attackers. For l2-based attack on CIFAR-10, our method also
yields excellent performance.

The result on ImageNet is shown in Tab. 3. We show that
CAA gains greater improvement on ImageNet, compared to
CIFAR-10. In particular, CAAsub achieves 38.30% accuracy
attacking l∞ adversarially trained models, with around 2%
improvement over state-of-the-art. It implies that CAA is
more suitable for attacking complex classification tasks. Im-
ageNet classification has more categories and larger image
input size. Also, we found the adversarial examples gener-
ated by base attackers are more diverse on ImageNet. For
such a complex task, there is more room for the attack strat-
egy design.

For unrestricted attack, we choose the benchmark of
Bird&Bicycle proposed in unrestricted adversarial exam-
ples contest (Brown et al. 2018). The top two defense mod-
els LLR and TRADESv2 on leaderboard are used for eval-
uation. For fairness, we only use warm-up attacks in con-
test as our search space Sunrestricted, and avoid the attacks
that the defense model has never seen before. Both LLR and
TRADESv2 get nearly 100% robust accuracy on Corruption,
Spatial and SPSA attacks. But after composing these attacks
by CAA, the robust accuracy of LLR and TRADESv2 is
rapidly dropped to around zero. The result shows that ex-
isting unrestricted adversarial defense models are severely
overfitting to the single test attackers. In unrestricted attack
setting, there is no good defense against our CAA. There-
fore, we think there is still a lot of work to do for achieving
the truly unrestricted adversarial robustness.

Analysis of Searching Policy We visualize the searched
best policy on Sl∞ , Sl2 and Sunrestricted in Tab. 2. The pre-
sented policy is searched by attacking adversarially trained
model on CIFAR-10 classification task. In all l∞, l2 and un-
restricted attack scenarios, CAA tends to choose strong at-
tacks. Take policy of Sl∞ as an example, CAA chooses the
strongest MT-LinfAttack as the first and the second posi-
tion attack, and abandons the weaker attackers, such as one-
step FGSM. Therefore, we think a well selected candidate
attacker pool is critical to the performance of CAA. An-
other foundation is that CAA prefers some policies with the
combination of diverse base attackers. It means that a policy
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Visualization of CAAsub proxy attack policies

Sl∞ [(’MT-LinfAttack’, ε=8/255, t=50), (’MT-LinfAttack’, ε=8/255, t=25), (’CWLinfAttack’, ε=8/255, t=125)]
Sl2 [(’MT-L2Attack’, ε=0.5, t=100), (’PGD-L2Attack’, ε=0.4375, t=125), (’DDNAttack’, t=1000)]
Sunrestricted [(’FogAttack’, ε = 1, t = 1), (’FogAttack’, ε = 1, t = 1), (’SPSAAttack’, ε=16/255, t=100)]

CIFAR-10 - l∞ - ε = 8/255 AdvTrain TRADES AdvPT MMA JEM PCL Semi-Adv Complexity

PGD (Madry et al. 2017) 51.95 53.47 57.21 50.04 9.21 8.12 61.83 1000
FAB (Croce and Hein 2019) 49.81 51.70 55.27 42.47 62.71 0.71 60.12 1350
APGD (Croce and Hein 2020) 51.27 53.25 56.76 49.88 9.06 7.96 61.29 1000
AA (Croce and Hein 2020) 49.25 51.28 54.92 41.44 8.15 0.28 59.53 4850
ODI-PGD (Tashiro 2020) 49.37 51.29 54.94 41.75 8.62 0.53 59.61 3200
BestAttack on Sl∞ 50.12 52.01 55.23 41.85 9.12 0.84 60.74 900
EnsAttack on Sl∞ 49.58 51.51 55.02 41.56 8.33 0.73 60.12 800
CAAsub on Sl∞ 49.18 51.19 54.82 40.87 7.47 0.0 59.45 800
CAAdic on Sl∞ 49.18 51.10 54.69 40.69 7.28 0.0 59.38 -

Table 2: The table is divided into two parts. The lower part presents the reported RA(%) of l∞-based attack on diverse CIFAR-
10 defenses. Each column presents the result on a specific defense and the last column presents the complexity of the attack
algorithm. The upper part of the table presents the best attack policies found by our method.

formed with MI-Linf and PGD-Linf attack always yields lit-
tle improve, because the difference among them are subtle
(with the same principle and objective function). In contrast,
in the best policy of Sl∞ , CAA selected a more diverse mar-
gin loss based CW-Linf attack to assist cross entropy loss
based attackers, which promotes the attack performance.

Attack Transferability
We study the transferability of CAA in two scenarios: 1)
black-box setting and 2) white-box setting. In black-box set-
ting, we cannot obtain the gradient of the target model. In-
stead, we use CAA to search a policy on substitute model
and generate adversarial examples to attack the target model.
In white-box setting, gradient evaluation is allowed, so pol-
icy searched on substitute tasks or models are used for gen-
erating adversarial examples directly on the target model.

Black-Box Transferability of CAA Here we discuss if
CAA can be used for searching black-box transfer attacks.
We slightly modify the original CAA to meet this require-
ment. Specifically, we use an attack policy s to attack sub-
stitute model at adversarial example generation stage. Then
these adversarial examples is tested on target model. The
robust accuracy on target model is regarded as the evalua-
tion score of the policy s. Except for this, the entire search
process remains unchanged. We name this variation as
CAAtrans. In the attack transferability experiment, we use
three types of models (VGG16, Inceptionv3 and ResNet50)
with different architectures, and all of them are defended
by standard adversarial training. The result is recorded in
Tab. 4. The first column presents the experiment setting. For
example, R→V means that we use ResNet50 as substitute
model to attack VGG16.

We show that CAA gains better performance in most
transfer attack settings. Especially, it significantly increases
the attack strength when VGG16 is used for substitute

model, causing the decrease of 3% on target model accu-
racy. The result suggests that an automatic search process
also helps for discovering a more black-box transferable at-
tack policy, not limited to white box scenarios. From the vi-
sualization of searched transferable policy in Appendix D,
we found that CAAtrans does not adopt some “strong” at-
tacks, since such attacks may have poor transferability. Op-
positely, attacks like FGSM or MI-Linf attack are chosen as
better transferable component in the policy, which explains
why CAAtrans could improve the attack transferability.

White-Box Transferability of CAA Here we seek to un-
derstand if it is possible to transfer attack policies in white-
box case, namely, policies searched on substitute tasks or
models are used for attacking the target model. A detailed
experiment is presented in Appendix C. From the result, we
highlight that the searched policies on CIFAR-10 still trans-
fer well to many model architectures and datasets. There-
fore, we believe that CAA does not “overfit” to the datasets
or model architectures and it indeed finds effective policies
that catch the true weakness and can be applied to all kinds
of such problems. However, there is no guarantee that the at-
tack policies are transferred across defenses. One empirical
practice to improve the transferability across defenses is us-
ing stronger and more diverse attack algorithms in candidate
pool. A reference is in Tab. 2, by using six strong attackers
in Sl∞ , CAAsub has achieved satisfactory results on multi-
ple defense models.

Ablations
Analysis of the Policy Length N We conduct a series of
experiments to explore if a longer policy, which can adopt
more and diverse base attackers, exhibits stronger attack
ability. We choose five policies with length of 1, 2, 3, 5 and
7. Fig. 5 shows the curve of robust accuracy with the pol-
icy length. The CAA equals to find the best base attacker in

8889



CIFAR-10 - l2 - ε = 0.5 AdvTrain MMA

DDN (Rony et al. 2019) 69.86 66.21
FAB (Croce and Hein 2019) 69.46 66.33
AA (Croce and Hein 2020) 69.26 66.09
CAAsub on Sl2 69.22 65.98
CAAdic on Sl2 69.20 65.95

ImageNet - l2 - ε = 3 AdvTrain AdvFree

DDN (Rony et al. 2019) 38.1 34.65
FAB (Croce and Hein 2019) 36.93 34.46
AA (Croce and Hein 2020) 36.3 34.11
CAAsub on Sl2 35.18 33.95
CAAdic on Sl2 35.07 33.89

ImageNet - l∞ - ε = 4/255 AdvTrain FD

APGD (Croce and Hein 2020) 42.87 23.18
FAB (Croce and Hein 2019) 41.24 21.86
AA (Croce and Hein 2020) 40.03 21.54
CAAsub on Sl∞ 38.30 19.41
CAAdic on Sl∞ 38.21 19.27

Bird&Bicycle - unrestricted LLR TRADESv2

Common Corruptions 100.0 100.0
Spatial (Engstrom et al. 2019) 100.0 99.5
Boundary (Brendel et al. 2017) 100.0 95.0
SPSA (Uesato et al. 2018) 100.0 100.0
CAAdic on Sunrestricted 7.9 4.0

Table 3: RA (%) under l2 and unrestricted attacks, experi-
mented on ImageNet, CIFAR-10 and Bird&Bicycle datasets.

the candidate pool when N = 1, so that the performance
is the worst in this case. With the increase of N , the attack
policy becomes stronger in all l∞, l2 and unrestricted set-
tings. We found that the policy length has the smallest effect
on l2-attack settings. It is reasonable that more base attack
just means more optimization steps for l2-attack. In contrast,
N greatly influences the performance on unrestricted attack.
The accuracy quickly drops to around zero in unrestricted
setting when using a searched attack policy larger than 3.

Different Search Methods Tab. 5 presents the perfor-
mance and search time of four optimization methods, i.e.,
Random Search, Bayesian Optimization, Reinforcement
Learning and NSGA-II Genetic Algorithm. The detailed im-
plementation of each method is listed in Appendix B. Ran-
dom Search, with 100 random policies for trials and the

(𝑎) 𝑙! (𝑏) 𝑙" 𝑐 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

Figure 5: Effect of the policy length on attack performance
in l∞, l2 and unrestricted settings.

Models BestAttack EnsAttack CAAdic

R→ V 64.75 63.93 63.85
R→ I 67.34 66.05 66.21
V→ R 67.21 65.23 64.98
V→ I 63.42 61.33 60.81
I→ R 65.29 64.98 64.38
I→ V 59.82 58.54 58.32

Table 4: Black-box transfer attack results on CIFAR-10. R,
V and I represent ResNet, VGG and Inception respectively.

Search Methods Performance Search time

Random Search-100 52.09 8 Hours
Reinforcement Learning 51.44 5 GPU/d
Bayesian Optimization 50.02 5 GPU/d
NSGA-II 49.18 3 GPU/d

Table 5: Comparison of different optimization algorithms
for the attack policy search.

best one chosen, is regarded as a baseline. Compared to
the baseline, all heuristic algorithms find better policies. Al-
though Bayesian Optimization and Reinforcement Learn-
ing are widely considered to be efficient in searching of
large space, in this problem, we found they are more time-
consuming and prone to fall into local optimal. In con-
trast, NSGA-II finds better policies with the lower cost of
3 GPU/d, and achieves better performance.

Target vs. Non-Target Attack Target attack is an applica-
tion scenario where attackers fool the model to output target
label they specified. Otherwise, it is called non-target attack
that no target labels are given. We experiment our CAA un-
der target settings in Appendix C. For target attack, CAA
searches a policy with less random initialization. It indicates
that attackers without a random initialization are more suit-
able for target setting. Also, compared to margin loss, base
attackers with cross entropy loss are favoured by CAA. Poli-
cies of CAA also gains improvement in target attack.

Conclusion

We propose an automatic process of learning attack policies
formed by a sequence of base attackers for breaking an ML
system. By comparing our searched policy with 10 recent
attackers on 11 diverse defense, we show that our method
achieved better attack success rate with less running time.
It empirically demonstrates that searching better algorithms
and hyper-parameters also helps for the adversarial attacks.

We think the foremost extension of our work is how to
defense attackers which can automatically search for the
strongest attack algorithm. From this point of view, we are
going to study the adversarial training method based on our
CAA in future work.
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