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Abstract

Time-series clustering is an essential unsupervised technique
for data analysis, applied to many real-world fields, such as
medical analysis and DNA microarray. Existing clustering
methods are usually based on the assumption that the data
is complete. However, time series in real-world applications
often contain missing values. Traditional strategy (imputing
first and then clustering) does not optimize the imputation
and clustering process as a whole, which not only makes per-
formance dependent on the combination of imputation and
clustering methods but also fails to achieve satisfactory re-
sults. How to best improve the clustering performance on
incomplete time series remains a challenge. This paper pro-
poses a novel unsupervised temporal representation learning
model, named Clustering Representation Learning on Incom-
plete time-series data (CRLI). CRLI jointly optimizes the im-
putation and clustering process to impute more discrimina-
tive values for clustering and make the learned representa-
tions possessed good clustering property. Also, to reduce the
error propagation from imputation to clustering, we introduce
a discriminator to make the distribution of imputation values
close to the true one and train CRLI in an alternating train-
ing manner. An experiment conducted on eight real-world in-
complete time-series datasets shows that CRLI outperforms
existing methods. We demonstrate the effectiveness of the
learned representations and the convergence of the model
through visualization analysis. Moreover, we reveal that the
joint training strategy can impute values close to the true ones
in those important sub-sequences, and impute more discrim-
inative values in those less important sub-sequences at the
same time, making the imputed sequence cluster-friendly.

Introduction

Time series data is ubiquitous in real life, and there are many
application scenarios, such as medicine (de Jong et al. 2019),
gene expression analysis (de Souto et al. 2008), and finan-
cial markets (Azoff 1994). When the data lacks category
labels, data analysts typically will apply clustering meth-
ods (Paparrizos and Gravano 2015; Zhang et al. 2018; Madi-
raju et al. 2018; Ma et al. 2019) to extract interesting pat-
terns and valuable information from complex and massive
datasets (Aghabozorgi, Shirkhorshidi, and Wah 2015).
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However, real-world time series usually contain miss-
ing values due to uncontrollable factors (e.g., device failure
and communication errors), which violates the complete-
data assumption of most state-of-the-art clustering meth-
ods. Incomplete data make any inference more difficult (Ru-
bin 1976) and harms downstream applications’ perfor-
mance (Cheema and J. 2014; Cao et al. 2018). On the other
hand, incomplete time series clustering is essential for anal-
ysis in some domains, where the data is often corrupted, and
re-recording them is expensive and impractical. For exam-
ple, in precision medicine, it is meaningful to stratify the
patients and accordingly decide on the right type and time
point of therapy for an individual (de Jong et al. 2019). In
DNA microarray analysis, it is useful to cluster gene expres-
sion data to identify genes’ function (de Souto et al. 2008).
Under such circumstances, performing imputation first and
then clustering is a natural solution. However, this two-stage
strategy makes the clustering performance heavily depend
on the best combination of the imputation method and the
clustering method. In practical applications, there is usually
no category information to help pick the best combination.
Furthermore, two-stage approaches separate the imputation
and its downstream analysis, which may lead to sub-optimal
results (Che et al. 2018; Wells et al. 2013).

Deep learning is a data-driven method that can learn ef-
fective representations for various tasks and has achieved
great success in recent years. Madiraju et al. (Madiraju et al.
2018) and Ma et al. (Ma et al. 2019) successfully applied
deep learning to time series clustering and achieved state-
of-the-art performance. Also, Generative Adversarial Net-
works (GANs) have shown potential for handling missing
data (Yoon, Jordon, and Der Schaar 2018; Li, Jiang, and
Marlin 2019; Ma, Li, and Cottrell 2020). Most recently, Jong
et al. (de Jong et al. 2019) proposed a deep learning-based
method, named VaDER, for clustering time series with miss-
ing values. However, these methods do not effectively pre-
vent error propagation from imputation to clustering, lead-
ing to unsatisfactory performance. Moreover, VaDER uses
a generative variational auto-encoder framework to perform
the clustering, which requires a large amount of data to train
and performs poorly when the data amount is small. In this
paper, we propose a novel unsupervised incomplete time se-
ries clustering model, Clustering Representation Learning
on Incomplete time-series data (CRLI), which can gener-
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Figure 1: The general architecture of the Clustering Representation Learning on Incomplete time-series data (CRLI).

ate cluster-friendly temporal representations for incomplete
data. Specifically, CRLI consists of two parallel branches
(see Figure 1). The upper branch employs a bidirectional re-
current neural network with an adversarial strategy to reduce
error propagation from imputation to clustering. Moreover,
to enable the learned representations to have good cluster-
ing properties, the lower branch of CRLI integrates the soft
K-means objective (Zha et al. 2002; Ma et al. 2019) into an
encoder-decoder network to generate cluster-friendly repre-
sentations. In this way, CRLI simultaneously optimizes the
imputation and clustering process in a single deep learning
framework. This joint training strategy not only alleviates
imputed bias introduced by imputation to improve cluster-
ing performance, but also makes the imputed values more
suitable for clustering. The main contributions of this work
can be summarized as follows:

* We propose an incomplete temporal clustering represen-
tation learning method for directly clustering time series
in the presence of missing values. Also, we introduce an
adversarial strategy to reduce the error propagation from
imputation to clustering, which boosts the clustering per-
formance.

* We couple the imputation and clustering process together
and optimize them simultaneously to generate cluster-
friendly representations of the incomplete temporal data
rather than in a two-stage manner. Additionally, we intro-
duce a fully connected layer between the imputation and
clustering process to alleviate the instability introduced by
joint optimization.

* Experiments conducted on eight real-world incomplete
time-series datasets show that CRLI achieves state-of-the-
art clustering performance. We provide a visualization
analyses to demonstrate the effectiveness of the learned
representations and show the convergence of the proposed
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model. Quantitative and qualitative analysis are also pro-
vided to reveal that joint training strategy can impute more
discriminative values to improve clustering performance.

Related Work

Incomplete time series clustering methods can be divided
into two methods: two-stage methods (imputation and then
clustering) and one-stage ones (joint optimization).

Two-stage Methods

A common methodology to cluster the incomplete time se-
ries is to first impute the missing values and then apply ex-
isting clustering methods to the complete data. The simplest
imputation is to replace the missing values with zero, mean,
or median values. Recently, many more complex methods
based on deep learning have been proposed. We only men-
tion some closely related approaches. Cao et al. (Cao et al.
2018) proposed BRITS, a bidirectional recurrent dynamical
system for imputing missing values without any specific as-
sumption on the underlying data generating process, mak-
ing their model quite general. Yoon et al. (Yoon, Jordon, and
Der Schaar 2018) and Luo et al. (Luo et al. 2018) proposed
a GAN-based generative framework for filling the missing
values.

Although these methods have achieved promising imputa-
tion performance, for incomplete clustering, imputing miss-
ing values first means imputation and clustering are indepen-
dent, degrading the performance. Moreover, the two-stage
method makes the overall clustering performance rely on
the best combination of imputation and clustering methods.
Howeyver, it is difficult to choose the best combination since
the category information is lacking in real-world applica-
tions.



One-stage Methods

A series of variants based on the classical Fuzzy C-Means
(FCM) algorithm has appeared to cluster incomplete data
without pre-imputation, in an end-to-end manner. Hathaway
et al. (Hathaway and Bezdek 2001) proposed modified ver-
sions of FCM with four strategies to deal with missing val-
ues. Zhang et al. (Zhang and Chen 2003) further introduced
the kernel method to FCM. Li et al. (Li, Gu, and Zhang
2010) transform the incomplete dataset into an interval-
valued one and then applied the interval FCM algorithm. Li
et al. (Li et al. 2017) further introduce the kernel method
to interval FCM. However, these raw-data based methods
are usually sensitive to outliers and noise (Ferreira and Zhao
2016). In addition, these methods are not designed for time
series, so they cannot effectively capture the non-linear tem-
poral dynamic characteristics. Recently, based on the varia-
tional auto-encoder clustering framework (VaDE) proposed
by Jiang et al. (Jiang et al. 2017), Jong et al. (de Jong et al.
2019) instantiated the auto-encoder as an RNN and pro-
posed an end-to-end model, VaDER, for clustering incom-
plete time series, integrating the imputation into the model
to reduce error propagation to the clustering. However, since
VaDER has no constraints on missing values on the encoder
side, it is likely to introduce errors into the clustering process
when encoding incomplete sequences into hidden represen-
tations, resulting representations with low quality. There-
fore, VaDER inevitably suffers from the negative impact of
missing values on the clustering process.

Proposed Method

Here we introduce our model named Clustering Represen-
tation Learning on Incomplete time-series data (CRLI) to
improve the incomplete time series clustering performance.
The general structure of CRLI is illustrated in Figure 1. On
the upper branch, the generator imputes the missing values
and obtains the imputed data. The discriminator then takes
the imputed data as input and outputs the probability that the
variable at each time step is an observed value. On the lower
branch, the last hidden states of the generator are concate-
nated and fed into a fully-connected layer to get latent rep-
resentations. After that, to obtain cluster-friendly represen-
tations for incomplete temporal data, we integrate a soft K-
means objective into an encoder-decoder network to recon-
struct the original input data. The whole training process of
CRLI is trained end-to-end, optimizing the imputation and
clustering simultaneously.

Learning Clustering Representations on
Incomplete Temporal Data

dataset Do

Given a multivariate time series
{X1,Xs,..., XN}, each time series X; € RT*? is de-
noted as X; = (x1,72,...,27), where z; € R and
d is the input dimension of each time step. In our miss-
ing case, there is also a corresponding indicator set M =
{Mi,Ms, ..., My}, and each indicator M; is denoted as
M; = (mq,ma,...,mr), where m; € {0,1}%. When the
component of z; is missing, we set the corresponding com-
ponent of m; to 0 and vice versa.
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To capture the dynamics of the time series, we set the gen-
erator architecture of CRLI to a recurrent neural network
(RNN). A standard recurrent network (Rumelhart, Hinton,
and Williams 1986) can be formulated as follows:

hy = tanh(Wyhy—y + Wy, + b) (D

where W5, W, and b are parameters, and h;_1 is the hidden
state of the previous time step. However, the value of =, can-
not directly be fed into the RNN since it could contain miss-
ing values. Hence, we use an imputed value u;. Formally,
the revised RNN can be updated as follows:

Ty = Wimpht—l + bzmp 2)
ur=my O xs+ (1 —my) © Iy (3)
hy = tanh(Wyhi—1 + Wyug +b) 4)

where Wiy, and b;y,;, are learnable parameters, and © de-
notes the element-wise product. Eq. (2) denotes the model
is trained to predict the value z; with previous hidden state
hi—1. Eq. (3) replacing the missing components in z; with
the corresponding elements of predicted values Z;. Eq. (4)
denotes the RNN can deal with the missing values with the
imputed value u;. Once the model reads the entire input se-
quence, we can get the corresponding predicted sequence X
by Eq. (2), which can be denoted as X = {&1, &a,...,27}.
To deal with the situation where the first value of the se-
quence may be missing, we introduced an identifier as the
starting signal of the RNN. Therefore, the identifier and the
predicted loss of all time-series samples are defined as fol-
lows:

S =Wss

1 N N
Epre = N Zi:l ||(X7 - X7) © M7)Hg

(&)
(6)

where s € R! is a constant value and W, € R?*! is a adapt-
able weight matrix used to transfer s to the same dimension
as x;. Here, we only give the updating process when the gen-
erator is unidirectional RNN for simplicity. It should note
that, to reduce the error of the imputed value, following (Cao
et al. 2018), the generator is instantiated by a bidirectional
RNN in our experiments. The backward RNN only needs
to reverse the input sequence order and then use it as input.
We used two different identifiers (Sforward and Spackward)
for the forward and backward RNN so that CRLI knows the
different directions.

As shown in Figure 1, the generator reads the entire in-
complete input sequence and then encode it to its represen-
tation, so that we can also regard it as an encoder. Therefore,
the generator (denoted as fge/enc) can be rewritten as fol-
lows:

H; = fgen/enc(Xi7Mi> (7
Eq. (7) denotes that the generator takes an incomplete time
series sample and its missing indicator as input, and directly
encodes it into a latent temporal representation without any
pre-imputation. Specifically, H is the concatenation of the
last hidden state of the forward and backward RNN. To en-
able H capture the original time series’s informative fea-
tures, we fed it to a decoder network (denotes as fye.) to



reconstruct the incomplete time series X. We use masked
Mean Square Error (MSE) as the reconstruction loss, which
is defined as follows:

1 <N
‘Crec = N Zi:l H(Xz - fdeC(Hi)) © Ml”% (3)

Eq. (8) denotes that we only reconstruct the observed com-
ponents of X, regardless of missing ones. However, the
learned representations H may not suitable for the clustering
task. Hence, following (Zha et al. 2002; Ma et al. 2019), we
encourage H to form cluster structures by a soft K-means
objective, defined as follows:

Li—means = Tr(HTH) — Tr(FTHTHF) st. FTF =1

©))
where H € R"N_ b and N are the dimensions of the rep-
resentation and training batch size, respectively. F' € RN *¥
denotes the cluster indicator matrix, & is the number of clus-
ters. Since the learning of H is dynamic instead of static,
the training process of Eq. (9) consists of updating F' and
H iteratively. When fixing F', updating H can follow the
standard stochastic gradient descent (SGD), encouraging the
representations to form cluster structures. While fixing H,
according to the Ky Fan theorem, F' can be obtained by com-
puting the k-truncated singular value decomposition (SVD)
of H.

However, we found empirically that directly applying
Eq. (9) to optimize H reduces the stability of CRLI, harming
the clustering performance. Since cluster-friendly represen-
tation H is not necessarily beneficial to the imputation pro-
cess, jointly optimizing the same H in the imputation and
clustering process may lead to more difficult optimization.
Hence, as shown in Figure 1, before we apply Eq. (8) and
Eq. (9) to H, H is fed to a fully connected layer to allevi-
ate model instability. We will show its effectiveness in the
experimental part.

Adversarial Strategy

The clustering process relies on the representations gener-
ated by the generator. However, the generator inevitably in-
troduces imputation bias when the input series has missing
values, such that it will propagate errors from imputation
to clustering, hindering clustering performance. To this end,
we introduce an adversarial strategy to reduce this error.

Given a time series X; € RT*4, according to Eq. (3),
there is an imputed sequence U; (u1,ug,...,ur)
and its corresponding missing indicator sequence M; =
(mq, ma,...,myp). For a bidirectional RNN, U; is the av-
erage of the imputed sequence of the forward and backward
RNN. We can know which values in U; are predicted and
which values are real with M;. We use this to train a dis-
criminator D and then use it to teach the generator in turn,
so that the distribution of the predicted values is closer to
the distribution of the true one. Note that D is reliable since
it reads the real values and the predicted values at the same
time. Formally, D is trained by minimizing the following
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loss function:

Lais = — [Elog(D(Xrear)) +Elog(1 — D(X,re))] (10)

Xreat~U XpTeNU

1 <N
— 3 2, [MiClog(D(Ui))

+ (1 = M;)olog(1 — D(U;))] (11

where D(-) denotes the predicted indicator probability
M; € RT*? of the discriminator, indicating the discrimina-
tor detects the real or predicted of each value in X;. Eq. (10)
denotes the discriminator maximizes its output for real val-
ues while minimizes its output for predicted values. In this
way, discriminator learns to know what’s actually-observed
value and what’s imputed value in an imputed sequence.

By fooling the discriminator D, CRLI is trained to gener-
ate imputed values closer to the distribution of real values.
The adversarial loss of CRLI can be defined as follows:

1 N
Eadv = N Zi:l(l - Ml)GIOg(l - D(Ul))

Hence CRLI tries to maximize the discriminator output for
imputed values. We alternately update the parameters of the
discriminator and the rest of the CRLI.

12)

Overall Loss Function

Finally, the overall training loss Loz of CRLI is defined
by:

[/CRLI = ‘Cpre + ‘Crec + £adv + A% Ek—means (13)

where A is the coefficient. Eq. (13) enables CRLI directly
to learn the cluster-friendly temporal representations on in-
complete time series. L. captures the temporal dynam-
ics of the incomplete time series. L,... aims to capture in-
formative features that can reconstruct original samples.
L —means encourages the learned representations to form
cluster structures. L4, reduces the error propagation from
imputation to clustering. The detailed training method of
CRLI is presented in Algorithm 1.

Algorithm 1 CRLI Training Method

Input: Incomplete time series dataset: D; Number of clus-
ters: K'; Maximum iteration: M axiter
Output: Cluster result: S
1: Orthogonal initialize cluster indicator matrix F'.
2: for iter = 1to MazIter do
3: (1) Discriminator optimization
4 Update discriminator D using SGD based on
Eq. (11).
(2) CRLI optimization (fixed D)
Update representations H using SGD based on
Eq. (13).
Update F' by computing the k-truncated SVD of H.
end for
Apply K-means to the learned representations H.
return Clustering result S.

AN

@O ®3




Imputer| Cluster | Ali-vl  Ali-v2  Ali-v3  Blood Chen Vote Liang Pysionet | Best avg Rank avgRI p-value
KS 0.5 0.69 0.75 0.59 059 057 055 0.5 0 11.3 0.59 5.4e-4
DEC 0.85 0.77 0.77 0.67 051 0.83 0.64 0.52 1 59 0.69 3.5e-3
ZERO | IDEC 0.72 0.79 0.77 0.67 05 084 0.7 0.52 0 5.6 0.69 2.9e-3
DTC 0.47 0.74 0.73 0.72 056 057 0.64 0.5 0 9.4 0.62 2.7e-3
DTCR | 0.85 0.47 0.63 0.5 0.51 0.5 0.82 0.64 2 10.3 0.61 3.3e-2
KS 0.63 0.7 0.75 0.62 058 0.69 0.64 0.5 0 9.6 0.64 6.8e-4
DEC 0.46 0.51 0.51 067 077 081 042 0.51 1 10.6 0.58 1.0e-2
GAIN | IDEC 0.62 0.6 0.64 0.65 049 0.76 042 0.51 0 11.6 0.59 2.3e-5
DTC 0.49 0.54 0.48 0.55 05 063 056 0.66 0 12.6 0.55 8.6e-4
DTCR | 0.56 0.78 0.72 0.51 0.51 0.5 0.75 0.73 0 8.8 0.63 1.5e-2
KS 0.5 0.6 0.72 0.69 054 0.62 038 0.5 0 10.5 0.59 4.8e-4
DEC 0.85 0.77 0.81 0.62 0.65 0.81 0.64 0.51 1 55 0.71 1.8e-2
BRIT | IDEC 0.82 0.83 0.74 0.64 0.61 0.87 0.7 0.5 0 59 0.71 2.8e-2
DTC 0.47 0.7 0.7 0.75 054 0.69 0.64 0.5 0 9.8 0.62 1.8e-3
DTCR | 0.82 0.48 0.69 0.59 05 076 0.68 0.52 0 10.6 0.63 8.8e-3
VaDER 0.47 0.49 0.29 0.67 0.5 058 0.7 0.7 0 10.8 0.55 1.2e-2
CRLI 085 093 092 085 063 091 067 0.76 6 2 0.81 -

Table 1: Rand Index (RI) comparisons on 8 real incomplete time series datasets

Experiments

We collected eight real-world incomplete time-series
datasets from various existing works in several domains (Al-
izadeh et al. 2000; Bianchi, Mikalsen, and Jenssen 2017;
Chen et al. 2002; Liang et al. 2005; Silva et al. 2012)(Dua
and Graff 2017)'and conducted experiments on these
datasets to evaluate performance. The statistics of these 8
datasets are shown in Section A of the Supplementary Mate-
rial. Following (Xie, Girshick, and Farhadi 2016; Guo et al.
2017; Madiraju et al. 2018; Ma et al. 2019), we train the
model on the training set and evaluate it on the test set.
As mentioned above, we employ the adapted bidirectional
multi-layer RNN as the generator (namely, encoder). The
decoder is a single-layer RNN. The discriminator is a 5-
layer RNN, and the number of units of each layer is fixed
to {32, 16, 8, 16, 32}, respectively. We use Gated Recurrent
Units (GRU) in the RNN (Cho et al. 2014). The number of
layers of the encoder is I € {1,2}. The number of units of
each layer in the encoder is & € {50,100}. The last hid-
den states of encoder are concatenated and then sent to a
fully-connected layer to obtain the representations. The de-
coder takes the learned representation as its initial state and
the forward identifier Sforwara as the starting drive signal to
perform iterative prediction, i.e., the output at time ¢ — 1 is
fed as the input at time ¢. The A in Eq.(13) € {1e-3, 1e-6, le-
9}. The batch size is 32. The experiments are run on the Ten-
sorFlow (Abadi et al. 2016) platform using an Intel Core i7-
6850K, 3.60-GHz CPU, 64-GB RAM and a GeForce GTX
1080-Ti 11G GPU. The Adam (Kingma and Ba 2015) opti-
mizer is employed with an initial learning rate of 5e-3.

Comparison with State-of-the-art Methods

We compare CRLI with a one-stage method (state-of-the-
art incomplete time-series deep clustering, VaDER (de Jong
et al. 2019)) and some two-stage methods. For two-
stage methods, we first impute missing values with two

"http://archive.ics.uci.edu/ml/, last accessible on 2021/3/15
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SOTA imputation methods (i.e., BRITS (Cao et al. 2018),
GAIN (Yoon, Jordon, and Der Schaar 2018)) and the com-
monly used zero imputation method (ZERO). Then we ap-
ply existing SOTA clustering methods (i.e., KS (Paparri-
zos and Gravano 2015), DEC (Xie, Girshick, and Farhadi
2016), IDEC (Guo et al. 2017), DTC (Madiraju et al. 2018),
DTCR (Ma et al. 2019)). More comparisons with traditional
clustering methods are available in section C' in Supple-
mentary Material. All the following results are obtained by
running their published code (If a method provides a com-
bination of parameters, we go through all the parameters;
if not, we use its default parameter values).The details of
these methods are described in section B of the Supplemen-
tary Material. We repeat the experiments 5 times and record
the average results and corresponding standard deviations
as measurements for stability. The detailed comparisons are
presented in section C' of the Supplementary Material due
to space limitation. Following recent works (Ma et al. 2019;
Zhang et al. 2018), we use Rand Index (RI) (Rand 1971) to
evaluate clustering performance. The Rl is defined as:

RI — TP+TN
n(n—1)/2

where T'P (True Positive) is the number of pairs of time se-
ries that are correctly assigned in the same cluster, I'N (True
Negative) is the number of pairs that are correctly assigned
in different clusters and n is the size of the dataset.

Due to space limitations, more metrics, including Normal-
ized Mutual Information (NMI), Cluster Purity (PUR), and
Cluster Accuracy (ACC), are provided in section C' of the
Supplementary Material. Note that CRLI also achieves the
lowest average rank of 2.5, 1.6 and 1.9 on those metrics,
respectively.

As shown in Table 1, CRLI achieves the best performance
in terms of the highest number of best results 6, the lowest
average RANK of 2, and the highest average RI of 0.8140.
In two-stage methods, involving a large number of combina-
tions, the best results can be achieved on some datasets, but

(14)
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Figure 2: The learned representations of SOTA deep time
series clustering methods on dataset Vote.

it is challenging to pick the best combination when there is a
lack of labels in real scenarios. Also, we observed the same
phenomenon as in (De Souto, Jaskowiak, and Costa 2015)
that sometimes a simple imputation strategy can achieve
comparable results as complex ones.

Compared with the two-stage method, CRLI achieved
better overall clustering performance, which shows that
jointly optimize the imputation and clustering process in-
deed improve the performance of clustering on incomplete
time series. As for the existing one-stage method (VaDER),
CRLI is superior to it on 7 out of 8 datasets, indicating that
our approach can effectively reduce the error from imputa-
tion propagation to clustering, boosting the performance. As
mentioned before, VaDER is a generative clustering frame-
work. It performs well on relatively large datasets (the train-
ing sizes of Blood and Physionet are all greater than 400),
while performing poorly on small ones. To statistically an-
alyze the performance, we perform a pairwise comparison
for each method against CRLI. Specifically, we conduct the
Wilcoxon signed-rank test (Demsar 2006) to measure the
significance of the difference. As shown in the last row of
Table 1, CRLI is significantly better than all of the other
methods at p < 0.05 level.
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Ablation Study

To verify the effectiveness of each component of CRLI, we
show a comparison between the full CRLI model and its four
ablation models: 1) CRLI without feature learning (namely,
directly applying K-means to the imputed data, denoted as
w/o fd); and 2) CRLI without the fully-connected layer (w/o
fc); 3) CRLI without the adversarial strategy (w/o adv); 4)
CRLI without the joint optimizing strategy (namely, it first
performs imputation and then does the clustering, denoted as
w/o jointly). Table 2 shows that the full CRLI is significantly
superior to all of its ablations at p < 0.05 level, demonstrat-
ing the effectiveness of all its components. The detailed re-
sult is reported in Section D of the Supplementary Material.

- w/ofd w/ofc w/oadv w/ojointly CRLI
Best 0 0 0 0 8
Rank 2.8 43 2.6 3.6 1

Ri 0.64 0.51 0.65 0.58 0.81
p-value 1.3e-2 6.6e-5 3.8e-3 3.0e-3 -

Table 2: Rand Index(RI) ablation study of CRLI
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Figure 3: Convergence comparison of two datasets. The x-
axis denotes the number of training epochs, and the y-axis
denotes the corresponding test RI score.

Visualization Analysis

Through visualization, we analyze the benefits of the cluster-
friendly representations and illustrate the convergence of our
model. We use t-SNE (Der Maaten and Hinton 2008) to map
the learned representations into 2D and plot it.



Metric RMSE RI
Method BRITS CRLI Raw_data BRITS CRLI
50words 0.67(0.19)  1.44(0.29) | 0.941(0.01) 0.952(0.00) 0.952(0.00)
Adiac 0.93(0.47)  6.78(2.14) | 0.921(0.02) 0.937(0.00) 0.934(0.00)
ArrowHead 1.36(0.50)  2.01(0.43) | 0.556(0.00) 0.503(0.01) 0.575(0.01)
Beef 2.12(1.23)  2.90(0.99) | 0.651(0.01) 0.648(0.01) 0.651(0.00)
BeetleFly 1.33039)  3.03(0.16) | 0.479(0.02) 0.516(0.01) 0.528(0.02)
BirdChicken 1.94(1.15)  3.88(0.85) | 0.474(0.00) 0.474(0.00) 0.474(0.00)
Car 1.24(0.73)  3.04(1.12) | 0.702(0.05) 0.678(0.02) 0.698(0.01)
CBF 337(020)  3.21(0.08) | 0.704(0.01) 0.699(0.01)  0.710(0.01)
Chlorine 1.15(0.08)  3.10(0.17) | 0.528(0.00) 0.528(0.00) 0.528(0.00)
CinC 2.19(0.80)  3.96(0.24) | 0.693(0.01) 0.685(0.01) 0.695(0.00)
Coffee 1.11(0.36)  4.43(1.21) | 0.484(0.00) 0.484(0.00) 0.506(0.01)
Computers 5.80(0.37)  6.40(1.03) | 0.502(0.01) 0.510(0.00) 0.509(0.00)
Cricket_X 3.52(0.25)  4.07(0.60) | 0.855(0.01) 0.855(0.00) 0.859(0.00)
Cricket_Y 2.89(0.34)  3.05(0.22) | 0.858(0.01) 0.856(0.00) 0.861(0.00)
Cricket Z 353(0.32)  4.15(0.89) | 0.858(0.01) 0.855(0.00)  0.863(0.00)
Diatom 1.64(0.68)  2.00(0.38) | 0.926(0.00) 0.925(0.00) 0.927(0.00)
DPO.AgeGroup | 0.59(0.25)  1.04(0.04) | 0.764(0.00) 0.763(0.00)  0.763(0.00)
DPO.Correct | 0.58(0.28)  0.92(0.05) | 0.505(0.00) 0.504(0.00)  0.504(0.00)
DPTW 0.85(0.50)  1.07(0.09) | 0.774(0.02) 0.777(0.00) 0.775(0.00)
Earthquakes | 13.02(0.13) 10.49(0.37) | 0.499(0.03) 0.504(0.01) 0.511(0.01)
Average 2.492 3.548 0.684 0.683 0.691
AVG RANK 1.1 1.9 22 2.3 1.4
p-value - - 1.0SE-02  3.19E-02 -

Table 3: RMSE & clustering RI comparison on the first 20 synthetic incomplete data sets of UCR archive. (the values in

parentheses present standard deviations)

Dataset Total RMSE | RMSE in [35,45] | RMSE in [100, 110] RI
Ground_truth 0 0 0 0.50
BRITS-imputed 0.85 0.57 0.63 0.50
CRLI-imputed 5.22 5.18 0.62 0.62

Table 4: RMSE & clustering RI on imputed Gun_Point dataset

Comparison of the Learned Representations We visu-
alize the learned representations of several SOTA deep time
series clustering methods (including DTC (Madiraju et al.
2018), DTCR (Maet al. 2019), VaDER (de Jong et al. 2019),
CRLI, and its two ablations). For the representations of DTC
and DTCR, we firstly apply the BRITS (Cao et al. 2018) to
complete the data, and then use these two methods to obtain
the representations. As shown in Figure 2, although all meth-
ods learned the clustering prototype except VaDER, CRLI
performs better in terms of smaller intra-class and larger
inter-class distances. Comparing CRLI with its two abla-
tions, it can be seen that the joint training strategy that simul-
taneously optimizes the imputation and clustering, and the
adversarial strategy that alleviates errors propagation from
imputation to clustering, boost the performance of CRLIL

Convergence Analysis We investigate the convergence
analysis of VaDER, CRLI, and its ablation (CRLI w/o fc) by
reporting the test RI score with increasing training epochs.
As shown in Figure 3, on the dataset Vore, VaDER’s Rl score
no longer improves after the 100th epoch, and there is no
change at all on the Ali-vI, which implies that it may suffer
overfitting. The sizes of the training sets of these datasets
are less than 400. In particular, Ali-v] has only 29 training
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samples. Therefore, there is not enough data to train VaDER
since it’s a generative clustering framework. On the other
hand, due to adversarial training in CRLI, the training pro-
cess is unstable at first, but eventually, it is relatively stable
after the 300th epoch. As mentioned in Proposed Method,
to alleviate the instability introduced by jointly optimizing
the imputation and clustering process, we do not directly
apply the clustering loss term to the representations of the
generator, but apply the it after feeding the representations
into a fully connected layer. With the fully connected layer,
CRLI is more stable and has better performance.

Analysis of the Imputed Data

We experimentally investigate the characteristics of the im-
puted data to see why our joint training method can achieve
better clustering performance. We firstly randomly drop the
values of the first 20 data sets in the UCR time series data
set archive (Chen et al. 2015) 2with a missing rate of 20%.
Then, we adapt CRLI and BRITS methods to complete the
data set, and use Root Mean Square Error (RMSE) to mea-
sure the imputation error. Finally, to compare the impact of

Zwww.cs.ucr.edu/amonn/time_series_data/, last accessible on

2021/3/15
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Figure 4: Comparison of imputed Gun_Point dataset

the imputed data on the clustering accuracy, we apply Dy-
namic Time Warping(DTW) (Berndt and Clifford 1994) +
K-means (Hartigan and Wong 1979) to the imputed com-
plete data and the raw data respectively to record the RI. The
experiment was repeated 5 times, and we report the average
performance and standard deviation.

As shown in Table 3, although CRLI is not as good as
BRITS in imputation, its clustering performance is signifi-
cantly better (p < 0.05 level) than BRITS, and even better
than DTW+K-means on the raw data. It indicates that the
gradient backpropagated from clustering process enable the
imputation process to impute more discriminative values for
clustering.

To explore the effect of the clustering process on imputa-
tion, we use the famous Gun_Point (Lines et al. 2012) dataset
to visualize the imputation curve. A Gun_Point example de-
notes the movement of centroid of the actor’s right hand
when the actor lifts his hand, points to a target for around
a second and then lowers his hand. The dataset consists of
two classes, denoting whether the actor uses a replicate gun
or his index finger to point the target. The most discrimi-
native sub-sequence of Gun_Point is considered at the pe-
riod when actors lower their hands, since usually there will
be a dip if actors hold no gun (Lines et al. 2012) (Figure 4
(2)). Hence, we drop the values of the [100, 110] period (an
important time period), and the [35, 45] period (a less im-
portant period). We then apply CRLI and BRITS to impute
such a missing dataset and record clustering performance on
imputed dataset and RMSE in both missing period respec-
tively. We train both methods on the dropped train set and
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evaluate on the dropped test set. We apply DTW + K-means
on the imputed test set to record the RI.

As shown in Table 4 and Figure 4, CRLI achieves compa-
rable RMSE at the important sub-sequence, while RMSE in
the less important part is much higher than BRITS, result-
ing similar curves in [100, 110] that close to the ground truth
and discriminative curves in [35, 45] that separate sequences
of different classes. The results reveal that CRLI not only
can identify the important sub-sequence and imputes realis-
tic values in such period to maintain the discrimination of
original data, but also learns to impute discriminative values
in the less important part to make it more separable. RI re-
sults on imputed dataset and complete dataset indicates that
the CRLI-imputed sequences are more cluster-friendly.

Conclusions

We proposed the CRLI method to address challenging is-
sues in real-world time-series applications, namely, cluster-
ing incomplete time series. CRLI jointly optimizes the im-
putation and clustering process, enabling it to learn cluster-
friendly representations for time-series with missing values
without pre-imputation. Moreover, we employ an adversar-
ial strategy to prevent error propagation from the imputation
to clustering. The effectiveness of CRLI is verified on eight
real incomplete time-series datasets. We provide a visualiza-
tion analysis to demonstrate the effectiveness of the learned
representations and show the convergence of the proposed
model. We also provide quantitative and qualitative analysis
to reveal that joint training can impute more discriminative
values to improve clustering performance.
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