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Abstract

Zero-shot learning (ZSL) refers to the problem of learning
to classify instances from novel classes (unseen) that are ab-
sent in the training set (seen). Most ZSL methods infer the
correlation between visual features and attributes to train
the classifier for unseen classes. They may have a strong
bias towards seen classes during training. Meta-learning has
been introduced to mitigate the basis, but meta-ZSL meth-
ods are inapplicable when tasks used for training are sam-
pled from diverse distributions. In this regard, we propose a
novel Task-aligned Generative Meta-learning model for Zero-
shot learning (TGMZ), aiming to mitigate the potentially bi-
ased training and to enable meta-ZSL to accommodate real-
world datasets that contain diverse distributions. Specifically,
TGMZ incorporates an attribute-conditioned task-wise distri-
bution alignment network that projects tasks into a unified
distribution to deliver an unbiased model. Our experiments
show TGMZ achieves a relative improvement of 2.1%, 3.0%,
2.5%, and 7.6% over state-of-the-art algorithms on AWA1,
AWA2, CUB, and aPY datasets, respectively. Overall, TGMZ
outperforms competitors by 3.6% in the generalized zero-shot
learning (GZSL) setting and 7.9% in our proposed fusion-
ZSL setting.

Introduction
Most current machine learning methods focus on classify-
ing instances into existing classes based on large amounts
of labeled data (Day and Khoshgoftaar 2017). Such meth-
ods cannot well handle real-world settings where there
are many classes yet insufficient instances to cover all the
classes (Wang et al. 2019b). Zero-shot learning (ZSL) aims
to classify novel (or unseen) classes based on the existing
(or seen) training set and has achieved significant success in
many fields, e.g., computer vision (Reed et al. 2016; Zhang
and Saligrama 2016), natural language processing (Firat
et al. 2016; Johnson et al. 2017), and human activity recog-
nition (Wang, Miao, and Hao 2017).

Typical ZSL algorithms learn the correlation between vi-
sual features and the corresponding attributes, e.g., hand-
engineering attributes (Shen et al. 2018; Liu et al. 2018b)
and textual description (Srivastava, Labutov, and Mitchell
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(b) Proposed Meta-ZSL.

Figure 1: Visualization of model representation θ of the con-
ventional and the proposed meta-ZSL using 1 class for query
sets. The conventional meta-ZSL (Finn, Abbeel, and Levine
2017) is biased towards class ‘building’, while the proposed
aligned task distributions can avoid such local optimality.

2018; Kumar et al. 2019), and utilize the semantic infor-
mation to infer the classification space for unseen classes.
Among ZSL algorithms, attribute-based algorithms classify
unseen classes based on visual-attribute embedding (Zhang
and Koniusz 2018; Liu et al. 2020a; Wang et al. 2019c; Al-
Halah and Stiefelhagen 2015), and generative methods em-
ulate the general data distributions of unseen classes condi-
tioned on attributes and synthesize instances for supervised
training of classifiers (Mishra et al. 2018; Zhu et al. 2019;
Zhang and Koniusz 2018). All the existing ZSL algorithms
only optimize models based on seen classes but fail to ex-
plicitly mimic ZSL settings that transfer knowledge from
seen classes to unseen classes at the training time. Conse-
quently, these algorithms are biased towards existing visual-
attribute correlation and fail to speculate the real classifica-
tion space for unseen classes.

To address the above issue, some work (Qin et al.
2019; Pal and Balasubramanian 2019; Soh, Cho, and
Cho 2020; Demertzis and Iliadis 2020; Nooralahzadeh
et al. 2020; Verma, Brahma, and Rai 2020) introduces
meta-learning, e.g., model-agnostic meta-learning frame-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8723



work (Finn, Abbeel, and Levine 2017), into ZSL, namely
meta-ZSL. Meta-ZSL splits existing training classes into
two disjoint sets, namely support and query sets, to mimic
seen and unseen classes. Then, it randomly picks up classes
from support and query sets to construct different tasks for
training. This way, meta-ZSL can learn to adapt from seen
classes to unseen classes explicitly and thus obtain an unbi-
ased model (Snell, Swersky, and Zemel 2017; Vinyals et al.
2016).

However, current meta-ZSL approaches (Verma, Brahma,
and Rai 2020; Demertzis and Iliadis 2020; Soh, Cho, and
Cho 2020) directly integrate meta-learning and ZSL without
considering the limitations posed by diverse data distribu-
tions in ZSL. Thus, the learned models may be misguided
towards extremely different distributions Take ‘wolf’, ‘don-
key’, ‘zebra’, and ‘building’ from the real-world dataset,
aPY (Farhadi et al. 2009) (shown in Figure 1), for exam-
ple. The first three classes (‘wolf’, ‘donkey’, ‘zebra’) are
animals and are dissimilar to the class ‘building’. Suppose
the four classes are the query sets in four tasks. Conven-
tional meta-ZSL methods optimize the model representation
θ based on the largest component of the overall gradient of
the four tasks, i.e., 5L4. Thus, the model representation θ
will be biased towards the optimal solution to ‘building’ (θ∗4)
and become less discriminative on animal classes. There-
fore, it is necessary to align task distributions in meta-ZSL
to enable models to learn each class more moderately and
robustly, as illustrated in Figure 1 (b).

In this paper, we propose a novel Task-aligned Genera-
tive Meta-learning model for Zero-shot learning (TGMZ).
TGMZ uses attribute-conditioned Task adversarial AutoEn-
coder (TAE) to align distributions on multiple random tasks
with attribute side information. The TAE extracts visual and
attribute characteristics from original instances by encoding
data into aligned embedding in a unified distribution. Then, a
Meta conditional Generative Adversarial Network (MGAN)
simulates the unbiased distribution for unseen classes. Each
module in MGAN is modified with a meta-learning agent,
which optimizes model parameters. To prove the superiority
of our idea in handling diverse task distributions, we evalu-
ate our model in the ZSL setting and two more challenging
settings: generalized zero-shot learning (GZSL) and our pro-
posed fusion-ZSL setting. GZSL evaluates models on both
seen and unseen classes, and the fusion-ZSL setting evalu-
ates models on the fused datasets. Our contributions in this
work are summarized as follows:

• We propose a novel task-wise alignment generative meta-
model, i.e., TGMZ, for zero-shot learning. TGMZ uses
attribute-conditioned TAE to align task-wise distributions
and adopts MGAN to learn an unbiased model for classi-
fying instances for unseen classes to overcome the poten-
tial distribution disjointedness in meta-ZSL.

• We carry out extensive ZSL and GZSL experiments
on four benchmark datasets. The results exhibit that
our model significantly outperforms state-of-the-art algo-
rithms, demonstrating the superiority of TGMZ.

• We evaluate our model the effectiveness of TGMZ in han-
dling diverse task distributions under a novel fusion-ZSL

setting (i.e., combined dataset experiments). The embed-
ding spaces of the synthetic instances of our model are
more discriminative than state-of-the-art algorithms on
both single and combined datasets, demonstrating the ef-
fectiveness of task distribution alignment.

Related Work
Zero-shot Learning
The current ZSL algorithms fall into two main cate-
gories (Mishra et al. 2018): attribute-based ZSL and gener-
ative ZSL. Attribute-based algorithms aim to learn the map-
ping from visual space to the semantic space. They project
instances of unseen classes to attribute embedding and then
predict their class labels by finding the most similar class
attribute (Romera-Paredes and Torr 2015; Xian et al. 2016;
Zhang, Xiang, and Gong 2017; Liu et al. 2018a). For exam-
ple, Kodirov et al. (Kodirov, Xiang, and Gong 2017) propose
to apply an encoder-decoder structure to extract more fea-
ture information supervised by reconstruction loss. Chang-
pinyo et al. (Changpinyo et al. 2016) propose to align the
semantic space and image space, thus extracting more se-
mantic information in the embedding. Zhang et al. (Zhang
and Koniusz 2018) propose a well-established kernel-based
method with orthogonality constraints to better learn the
non-linear mapping relationship. Generative ZSL methods
classify unseen classes based on synthesizing instances ac-
cording to the attribute information (Verma and Rai 2017;
Chen et al. 2018b; Zhu et al. 2018; Mishra et al. 2018). For
example, Zhu et al. (Zhu et al. 2018) and Xian et al. (Xian
et al. 2018) apply a generative adversarial network (Goodfel-
low et al. 2014) with an auxiliary classifier to regularize the
generator to carry correct class information based on Fully
Connected Networks (FCNs) and Convolutional Neural Net-
works (CNNs). Kumar Verma et al. (Kumar Verma et al.
2018) adopt conditional autoencoder (Sohn, Lee, and Yan
2015) enhanced with a multivariate regressor to achieve gen-
eralized synthetic instances. Zhu et al. (Zhu et al. 2019) fur-
ther propose to optimize the conditional autoencoder with an
altering propagation using maximum likelihood estimation.
The conventional ZSLs only consider the visual-attribute
correlation of existing classes and tend to be biased towards
the known attribute mapping or data distribution.

To better mimic the ZSL setting, previous studies (Wang
et al. 2019c; Verma, Brahma, and Rai 2020; Qin et al. 2019;
Nooralahzadeh et al. 2020) introduce meta-learning (Finn,
Abbeel, and Levine 2017) into ZSL to make the model more
suitable for transferring knowledge from seen classes to un-
seen classes. For example, Wang et al. (Wang et al. 2019c)
fuse meta-learning and attribute-based ZSL method to map
visual features to task-aware embedding. Soh et al. (Soh,
Cho, and Cho 2020) combine meta-learning with CNNs and
utilize a single gradient update to obtain a generic initial-
ization suitable for internal learning. Verma et al. (Verma,
Brahma, and Rai 2020) first introduce meta-learning-based
generative ZSL and apply meta-learner on each module
of generative ZSL. All the above methods combine meta-
learning with ZSL directly while neglecting the bias of meta-
learning caused by the diversity of task distributions.
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Domain Alignment
Most current studies on domain adaptation handle different
task distributions via single-source source-to-target align-
ment (Wilson and Cook 2020; Chen et al. 2018a; Wang,
Michau, and Fink 2020; Sankaranarayanan et al. 2018; Liu
et al. 2020b). For example, Gholami et al. (Wang, Michau,
and Fink 2020) use an adversarial autoencoder and a dis-
criminative discrepancy loss function to align two domains.
Guo et al. (Guo, Pasunuru, and Bansal 2020) extend single-
source domain adaptation to multiple sources based on the
distance discrepancy. Zhao et al. (Zhao et al. 2019) pro-
pose end-to-end adversarial domain adaptation for multiple
sources based on a pixel-level cycle-consistency loss. Wang
et al. (Wang et al. 2019a) enhance multi-source adversar-
ial alignment by introducing task-specific decision bound-
aries. The aforementioned work has not considered align-
ing domains using the attribute side information on multiple
sources without a fixed source-to-target relationship.

Summary
Compared with the related work, our contributions are three-
fold. First, we propose task-wise TAE, which extracts both
class and visual feature information for reconstruction, to
carry out task-wise distribution alignment. Second, we fuse
meta-learning and ZSL in a robust way. TAE uses attribute
side information to provide aligned embedding for ZSL and
to prevent meta-learner from optimizing the model to be bi-
ased due to disjoint task distributions. Third and the last,
differing from previous work that directly learns visual fea-
tures for classification, our model learns unbiased synthe-
sized embedding, which is more suitable for novel classes.

Methodology
Problem Definition and Overview
Suppose datasetD = {X,A, Y } contains visual featuresX ,
attribute vectors A, and class labels Y , and lowercase letters
x, a, y are instances from the respective sets.D contains two
disjoint subsets: training set Dtr and testing set Dts. The
goal of ZSL is to transfer knowledge from Dtr to Dts. Our
model aims to emulate the attribute-conditioned data distri-
bution to synthesize unseen classes’ instances and then train
a classifier supervised by the synthetic instances to predict
real instances from unseen classes.

Different from conventional ZSL settings, we divide the
training set Dtr into a support set Dsup and a disjoint query
setDqry to mimic seen and unseen classes, respectively, dur-
ing training. To carry out episode-wise training, we sam-
ple tasks {T1, T2, ..., Ti} following the N-way K-shot set-
ting in (Verma, Brahma, and Rai 2020). Given an arbitrary
task Ti = {DTisup,DTiqry}, we sample K classes with N im-
ages for each class from Dsup and Dqry , respectively. Our
method is inductive (Xian et al. 2019) so that no extra infor-
mation from Dts is used in the training.

Our training procedure consists of two phases: task dis-
tribution alignment and task-aligned generative zero-shot
learning. The former phase aligns the diverse sampled tasks

to a unified task distribution to ease the biased optimiza-
tion. The latter phase synthesizes instances in the aligned
distribution conditioned on attribute vectors and uses meta-
learner to train the model. We illustrate the details of the two
phases in the following subsections.

Task Distribution Alignment
In this phase, we regularize task distributions into a uni-
fied distribution along with the training of TGMZ. We con-
sider three requirements for TAE: (i) the encoder of TAE
should be capable of aligning task-wise distributions; (ii)
TAE should regularize encoder based on the visual-attribute
correlation; (iii) the embedding should extract visual and
class characteristics from the original features.

TGMZ relies on episode-wise training (Wang et al. 2019c;
Verma, Brahma, and Rai 2020) to jointly handle multiple
tasks in each iteration while optimizing the model. The first
requirement enables the encoder to align multiple sampled
task distributions synchronously and to be optimized along
with generative networks in the second phase. The second
requirement enables TAE to utilize attribute side informa-
tion during regularization, thus enriching the attribute infor-
mation in the embedding to better fits the ZSL setting. The
third requirement ensures optimizing embedding based on
the original visual and class information, which can increase
the authenticity of the synthetic instances.

Our proposed TAE consists of three components: Task
Encoder qθte(e|x), Task Decoder pθtd(x|e), Task Discrimi-
nator fθtdis(e, a) → m, and Task Classifier fθcls(e) → y,
where e denotes the encoded visual features, i.e., aligned
embedding for task distributions; x, a, y denote the original
visual features, attribute vectors and class labels; θ denotes
the parameter for the corresponding module. The task en-
coder aims to project tasks into an embedding e that fol-
lows a unified distribution; the task decoder helps recon-
struct original instances; task classifier aims to predict class
labels. Specifically, we adopt a multi-label classifier as the
discriminator fθtdis(e, a)→ m for TAE and assign pseudo-
labelsm for tasks to differentiate task distributions, i.e., ∀Ti,
mTi = i.

For each task Ti, we design loss functions Ltdis and Ltc
to optimize θtdis and other modules θtc, respectively:

min
θtc
Ltc = Eei∼qθte(ei|xi) [− log pθtd(xi|ei)]

−Lce(fθtdis(ei, ai),mi) + Lce(fθcls(ei), yi)
(1)

max
θtdis
Ltdis = −Lce(fθtdis(ei, ai),mi)

s.t. xi ∼ Ti, θtc = {θte, θtd, θcls}
(2)

where Ti denotes a sampled task; xi is an arbitrary sam-
ple from Ti; ei, ai,mi, yi are the corresponding encoded
embedding, attribute vector, pseudo-label, and ground-truth
class label for instance xi, respectively; Lce denotes the
Cross Entropy loss function.

The second item in Ltc and the loss Ltdis construct a two-
player minimax game between the task discriminator and the
task encoder. They jointly enable the model to meet the first
two requirements. On the one hand, the task encoder learns
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Figure 2: Architecture of the proposed TGMZ. a is the attribute vector. Discriminator∗, Generator∗ and Classifier∗ denote the
modules that are updated by meta-learner.

to encode diverse tasks into the embedding to confuse the
multi-label discriminator with the pseudo-labels m; on the
other hand, the task discriminator attempts to distinguish dif-
ferent task distributions. After such adversarial training, the
task encoder will learn to align multiple diverse tasks into
a unified distribution to fool task discriminator—the tasks
that share the similar distribution will easily confuse task
discriminator, and the unique tasks that follow the different
distributions will be aligned into a unified distribution, mak-
ing TAE satisfy the first requirement. Also, the alignment
within tasks can also be carried out when the tasks contain
multiple classes. Since task encoder learns to make differ-
ent tasks be similar distributions, we can construct different
tasks to align the classes within tasks. For example, given
four classes (a, b, c, d), if each task contains two classes, we
may construct task pairs for episodes by {(a, b), (c, d)}, and
{(a, c), (b, d)}. During training, task alignment module will
learn to align distributions (a, b) to (c, d), (a, c) to (b, d). Fi-
nally, after enough episodes, (a, b, c, d) will be aligned in a
unified distribution.

Besides, the attribute-conditioned discriminator distin-
guishes synthetic instances based on attribute vectors. Since
attribute vectors are invisible to the task encoder, the task en-
coder will be regularized to infer the attribute information of
classes from visual features to meet the second requirement.
The other two terms in Ltc are the reconstruction loss and
auxiliary classification loss. The former forces the encoder-
decoder to reconstruct original visual features, while the lat-
ter makes the task encoder extract class information during
the encoding, which fulfills the third requirement.

We summarize the episodic loss function Lalign for task
alignment on multiple tasks {T1, T2, ..., Ti} as follows:

min
θtc

max
θtdis

i∑
j=1

Eej∼qθte(ej |xj),xj∼Tj [− log pθtd(xj |ej)]

−Lce(fθtdis(ej , aj),mj) + Lce(fθcls(ej), yj)

(3)

Task Aligned Generative Zero-shot Learning
We learn a general data distribution to generate instances for
unseen classes using MGAN. Specifically, we adopt the en-
coded embedding of original tasks, i.e., aligned tasks, as in-
put for MGAN. Let T̂i = {T̂ supi , T̂ qryi } be the encoded em-
bedding of Ti and the subsets, T̂ supi and T̂ qryi , be the embed-
ding of DTisup,DTiqry , respectively. Suppose the aligned tasks
follows a unified distribution T̂i ∼ p(T̂ ), and p(T̂ ) repre-
sents the task distribution over the support and query sets.
For MGAN, we apply a Generator fθg (z, a)→ ê, a Discrim-
inator fθdis(e, a) → [0, 1] and a Classifier fθcls(e) → y,
where z is the random noise from a normal distribution
and ê denotes synthetic instances. The discriminator predicts
real instances as 1 and fake instances as 0. The classifier
in MGAN shares the same weights as the task classifier in
TAE, which provides a warm-start initialization for training
(we use the same notation for the classifiers). Each module
of MGAN is integrated with a meta-leaner, and the training
is a two-step procedure based on gradient descent optimiza-
tion.

MGAN follows a two-step procedure. First, meta-learner
computes task-specific optimal parameters based on the sup-
port sets, i.e., T̂ supi without updating model parameters
θ. Differing from conventional meta-learning, we seek the
overall optimal parameters for all the tasks in support sets
rather than searching a set of optimal model parameters for
each task (Verma, Brahma, and Rai 2020) to achieve bet-
ter stability in optimizing generative models. Second, meta-
learner computes the gradients of optimizing the overall op-
timal parameters towards query sets, i.e., T̂ qryi , and then
summarizes the gradients to update model parameters θ; this
enables the model to learn transferable parameters from seen
classes to unseen classes.

The training relies on the task-specific loss function Lzsl
to compute gradients on the support and query sets for ob-
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Algorithm 1 TGMZ Training Procedure

Require: Dtr: training dataset
Require: lrtc, lrtdis: learning rates
Require: α1, α2, β1, β2: step sizes

1: Initialize θtc, θtdis, θgc, θdis
2: Split Dtr into disjoint subsets Dsup and Dqry
3: while not done do
4: Sample tasks {T1, T2, ..., Ti} from Dsup and Dqry
5: Update θtdis ← Adam(Ltdis, lrtdis)
6: Update θtc ← Adam(Ltc, lrtc)
7: for j ∈ [1, i] do
8: T̂j ← fθte(Tj)
9: Evaluate5θdisLzslT̂ supj

(θdis) w.r.t T̂ supj ∈ T̂j
10: Update θ

′

dis = θdis + α1 5θdis LzslT̂ supj

(θdis)

11: Evaluate5θgcLzslT̂ supj

(θgc) w.r.t T̂ supj ∈ T̂j
12: Update θ

′

gc = θgc − α2 5θgc LzslT̂ supj

(θgc)

13: Update θdis ← θdis + β1
∑
T̂j 5θdisL

zsl
T̂ qryj

(θ
′

dis)

14: Update θgc ← θgc − β2
∑
T̂j 5θgcL

zsl
T̂ qryj

(θ
′

gc)

taining the overall optimal parameters. Therefore, we start
by introducing the task-specific loss function Lzsl as fol-
lows:
min
θgc

max
θdis

ET̂i [fθdis(ei, ai)]− Eai,z∼N (0,σ)[fθdis(êi, ai)]

+Lce(fθcls(êi), yi)
s.t. êi ∼ fθg (z, ai), θgc = {θg, θcls}

(4)
where êi is a synthetic instance conditioned on ai; z is the
random noise from Normal Distribution N (0, σ); Lce is the
Cross Entropy loss function.

We optimize the task-specific loss function in an adversar-
ial manner. In each episode, Lzsl fist optimizes the discrimi-
nator θdis based on the first two items to enables the discrim-
inator to distinguish real and synthetic instances precisely.
Then, Lzsl optimizes the generator and the classifier, i.e.,
θgc, to synthesize instances with class information and to
confuse attribute-conditioned discriminator according to the
last two items. Finally, the generator emulates the real data
distribution based on attribute vectors for unseen classes.

Let 5θdisLzslT̂i (θdis) be the gradient of Lzsl for mod-
ule θdis (subscript of 5) conditioned on parameter θdis (in
brackets) and data T̂i. Similarly, we signify 5θgcLzslT̂i (θgc)
as the gradient for θgc under the same condition. On this
basis, we sort out the process of finding the overall task-
specific optimal parameters for T̂ as follows:

θ
′

dis = θdis + α1 5θdis
∑

T̂j∼p(T̂ )

LzslT̂ supj

(θdis) (5)

θ
′

gc = θgc − α2 5θgc
∑

T̂j∼p(T̂ )

LzslT̂ supj

(θgc) (6)

where α1, α2 denote the step sizes for the optimization.

Dataset #Attribute Dim #Image #Seen/Unseen
AWA1 85 30,475 40/10
AWA2 85 37.322 40/10
CUB 1024 11,788 150/50
aPY 64 15,339 20/12

Table 1: Dataset statistics. # denotes number.

With optimal parameters for seen classes of sampled
tasks, the meta-learner updates each module as follows:

θdis ← θdis + β1 5θdis
∑

T̂j∼p(T̂ )

LzslT̂ qryj

(θ
′

dis) (7)

θ
′

gc ← θgc − β2 5θgc
∑

T̂j∼p(T̂ )

LzslT̂ qryj

(θ
′

gc) (8)

where β1, β2 denote step sizes for transfer learning from
seen classes to unseen classes.

Eq. 7 and Eq. 8 illustrate the episode-wise optimization
for TGMZ, with the detailed algorithm procedure described
in Algorithm 1.

Experiment
Experiment Setup
We conduct extensive experiments on four benchmark
datasets: AWA1 (Lampert, Nickisch, and Harmeling 2009),
AWA2 (Xian et al. 2019), CUB (Welinder et al. 2010), and
aPY (Farhadi et al. 2009). AWA1, AWA2, and CUB are ani-
mal datasets. In particular, CUB consists of fine-grained bird
species that are hard to discriminate; aPY comprises highly
diverse classes, e.g., buildings and animals. We use hand-
engineering attribute vectors in AWA1, AWA2, and aPY,
and use 1024-dimensional embedding attributes extracted by
Reed et al. (Reed et al. 2016) in the CUB dataset, which
shows superior performance than the original attributes. We
divide the datasets into seen and unseen classes following
the proposed split (PS) (Xian et al. 2019) and adopt visual
features from pre-trained ResNet-101, according to Xian et
al. (Xian et al. 2019). The dataset statistics and train/test split
are shown in Table 1.

We compare our method with fifteen state-of-the-art algo-
rithms in ZSL and GZSL and four representative algorithms
in fusion-ZSL. Note that we provide the reproduced ZSML,
GZSL, ABP, and DEM results in our experiments. In the
ZSL and fusion-ZSL settings, we evaluate our model using
Linear-SVM (Verma, Brahma, and Rai 2020) and Softmax
(i.e., two fully connected layers followed by batch normal-
ization). Since SVM is time-consuming, we only use Soft-
max as the classifier to evaluate our model in the GZSL set-
ting. More details about Dataset Description, Model Archi-
tecture, Parameter Setting and Convergence Analysis can be
found in Supplementary Material.

Zero-shot Learning
In the ZSL setting, we evaluate our model using linear-SVM
and Softmax (Table 2). Compared with extensive state-of-
the-art algorithms, our model achieves 2.1%, 3.0%, 2.5%
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Method AWA2 AWA1 CUB aPY
ψESZSL (Romera-Paredes and Torr 2015) 58.6 58.2 53.9 38.3
ψLATEM (Xian et al. 2016) 55.8 55.1 49.3 35.2
ψSYNC (Changpinyo et al. 2016) 46.6 54.0 55.6 23.9
ψDEM (Zhang, Xiang, and Gong 2017) 67.1 68.4 51.7 35.0
SAE (Kodirov, Xiang, and Gong 2017) 54.1 53.0 33.3 24.1
Gaussian-Kernal (Zhang and Koniusz 2018) 61.6 60.5 52.2 38.9
*TAFE-Net (Wang et al. 2019c) 69.3 70.8 56.9 42.2
APNet (Liu et al. 2020a) 68.0 68.0 57.7 41.3
ψGFZSL (Verma and Rai 2017) 67.0 69.4 49.2 38.4
ψSP-AEN (Chen et al. 2018b) 58.5 - 55.4 24.1
GAZSL (Zhu et al. 2018) 70.2 68.2 55.8 41.3
ψSE-GZSL (Kumar Verma et al. 2018) 69.2 69.5 59.6 -
ABP (Zhu et al. 2019) 70.4 69.3 58.5 -
ZVAE (Gao et al. 2020) 69.3 71.4 54.8 37.4
ψ*ZSML (Verma, Brahma, and Rai 2020) 76.1 73.5 68.3 35.0
ψ*TGMZ-SVM 73.2 70.9 70.0 44.6
ψ*TGMZ-Softmax 78.4 75.1 66.1 45.4

Table 2: ZSL average per-class Top-1 accuracy results. Attribute-based methods are shown at the top and generative methods
are at the bottom. * denotes meta-ZSL method. ψ denotes using CNN-RNN feature for CUB dataset.

and 7.6% relative improvements on AWA1, AWA2, CUB,
and aPY, respectively. Both SVM and Softmax can achieve
state-of-the-art performance, with TGMZ-Softmax outper-
forming the other algorithms on three datasets and TGMZ-
SVM exhibiting the best performance on the CUB dataset.
The results show that Softmax can well fit diverse classes
while SVM is more suitable for classifying similar classes.

Meta-ZSLs, including TAFE-Net, ZSML, and TGMZ,
achieve the best performance among the algorithms in the
same categories, indicating the effectiveness of incorporat-
ing meta-learning. Although most generative methods ob-
tain worse performance than attribute-based methods on
aPY, TGMZ’s outperformance demonstrates the advantages
of TAE in generative methods.

Fusion Zero-shot Learning
In this experiment, we use the fused dataset to validate the
model’s ability to handle datasets with diverse task distribu-
tions in the ZSL settings: AWA1&aPY, AWA2&APY, and
AWA1&AWA2&aPY (AWA&aPY). Figure 3 shows the av-
erage per-class Top-1 accuracy results in the fusion-ZSL set-
ting. Our model achieves the best performance among the
compared algorithms, achieving 5.5%, 7.9%, and 3.6% im-
provement on AWA1&aPY, AWA2&aPY, and AWA&aPY,
respectively. The improvement demonstrates TGMZ’s capa-
bility to handle diverse task distributions and the advantages
of the task alignment.

Generalized Zero-shot Learning
We report our model’s performance on four datasets using
three evaluation metrics (Xian et al. 2019), namely aver-
age per-class Top-1 accuracy for unseen (U), seen (S), and
the harmonic mean (H), where H = 2∗U∗S

U+S . Compared
with state-of-the-art results, our model yields 3.7%, 2.8%,
and 2.5% improvement in harmonic mean score on AWA2,
CUB, and aPY, respectively. Also, our model obtains the

Figure 3: Fusion-ZSL average per-class Top-1 accuracies.

best performance on the unseen classes of AWA1, AWA2,
and CUB. With respect to GZSL results, our model can ef-
fectively infer the potential visual-attribute correlation for
unseen classes and prevent being biased towards the seen
correlation. Overall, our model exhibits consistent perfor-
mance improvement in different settings (as shown in Table
2, Table 3, and Figure 3), demonstrating the robustness and
the superiority of TGMZ.

Synthetic Feature Embedding Analysis

Figure 4 provides a visualization of the synthetic features
of ZSML and our model on AWA2 and the combined
AWA&aPY dataset. The original features are projected
with t-Distributed Stochastic Neighbor Embedding (t-SNE).
ZSML can only generate discriminative distributions on a
few classes in AWA&aPY, indicating it is biased towards
some classes. In contrast, our model can synthesize more
discriminative feature space than ZSML on both AWA2 and
AWA&aPY. The discriminative embedding space demon-
strates the effectiveness of our method in preventing meta-
learner from being biased towards certain classes.
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Method AWA2 AWA1 CUB aPY
U S H U S H U S H U S H

ψESZSL (Romera-Paredes and Torr 2015) 5.9 77.8 11.0 6.6 75.6 12.1 12.6 63.8 21.0 2.4 70.1 4.6
ψLATEM (Xian et al. 2016) 11.5 77.3 20.0 7.3 71.7 13.3 15.2 57.3 24.0 0.1 73.0 0.2
ψSYNC (Changpinyo et al. 2016) 10.0 90.5 18.0 8.9 87.3 16.2 11.5 70.9 19.8 7.4 66.3 13.3
ψDEM (Zhang, Xiang, and Gong 2017) 30.5 86.4 45.1 32.8 84.7 47.3 19.6 57.9 29.2 11.1 75.1 19.4
SAE (Kodirov, Xiang, and Gong 2017) 1.1 82.2 2.2 1.8 77.1 3.5 7.8 54.0 13.6 0.4 80.9 0.9
Gaussian-Kernal (Zhang and Koniusz 2018) 18.9 82.7 30.8 17.9 82.2 29.4 21.6 52.8 30.6 10.5 76.2 18.5
*TAFE-Net (Wang et al. 2019c) 36.7 90.6 52.2 50.5 84.4 63.2 41.0 61.4 49.2 24.3 75.4 36.8
APNet (Liu et al. 2020a) 54.8 83.9 66.4 59.7 76.6 67.1 48.1 59.7 51.7 32.7 74.7 45.5
ψf-CLSWGAN (Xian et al. 2018) 57.9 61.4 59.6 61.4 57.9 59.6 43.7 57.7 49.7 - - -
GAZSL (Zhu et al. 2018) 35.4 86.9 50.3 29.6 84.2 43.8 31.7 61.3 41.8 14.2 78.6 24.0
ψSE-GZSL (Kumar Verma et al. 2018) 58.3 68.1 62.8 56.3 67.8 61.5 41.5 53.3 46.7 - - -
GDAN (Huang et al. 2019) 32.1 67.5 43.5 - - - 39.3 66.7 49.5 30.4 75.0 43.4
ABP (Zhu et al. 2019) 55.3 72.6 62.6 57.3 67.1 61.8 47.0 54.8 50.6 - - -
ZVAE (Gao et al. 2020) 57.1 70.9 62.5 58.2 66.8 62.3 43.6 47.9 45.5 32.0 52.2 39.7
ψ*ZSML (Verma, Brahma, and Rai 2020) 58.9 74.6 65.8 57.4 71.1 63.5 60.0 52.1 55.7 36.3 46.6 40.9
ψ*TGMZ 64.1 77.3 70.1 65.1 69.4 67.2 60.3 56.8 58.5 34.8 77.1 48.0

Table 3: GZSL average per-class Top-1 accuracy results. * denotes meta-ZSL method. U and S represent the accuracy score for
seen and unseen classes, respectively. H denotes the harmonic mean of U and S. ψ denotes using CNN-RNN feature for CUB.
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(b) Our AWA2. (c) ZSML’s AWA&aPY. (d) Our AWA&aPY.

Figure 4: Synthetic feature embedding analysis.

(a) Impact of σ.

(b) Impact of Instance #.

Figure 5: Hyper-parameter analysis.

Hyper-parameter Ablation Study
We carry out an ablation study for σ and the number of syn-
thetic instances. By default, we set σ = 1 and the sam-
ple number to 100. The ZSL results of SVM and Softmax
on four datasets (Figure 5) shows the parameter selection
merely affect SVM, while Softmax is only slightly affected
by most parameters and is largely impaired when the sample
number is 50 on AWA2. Softmax achieves the best perfor-
mance when σ = 1 and gradually becomes better when pro-
vided a larger sample number. Thus, our model is generally
robust on diverse parameters.

Conclusion
In this paper, we introduce a task-aligned meta generative
model to mitigate the potential biases in visual-attribute cor-
relation learning for zero-shot learning. We propose a task-
wise distribution alignment method to enhance the current
zero-shot learning and evaluate our model on four popu-
lar benchmark datasets to demonstrate TGMZ’s strong ca-
pability to learn diverse task distributions under three ZSL
settings. To better illustrate the learned features, we visual-
ize the data space of the synthetic features, which is more
discriminative than the state-of-the-art generative meta-ZSL
method in most classes.
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