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Abstract
Current multiple kernel clustering algorithms compute a par-
tition with the consensus kernel or graph learned from the
pre-specified ones, while the emerging late fusion methods
firstly construct multiple partitions from each kernel sepa-
rately, and then obtain a consensus one with them. How-
ever, both of them directly distill the clustering information
from kernels or graphs to partition matrices, where the sud-
den dimension drop would result in loss of advantageous de-
tails for clustering. In this paper, we provide a brief insight
of the aforementioned issue and propose a hierarchical ap-
proach to perform clustering while preserving advantageous
details maximumly. Specifically, we gradually group samples
into fewer clusters, together with generating a sequence of in-
termediary matrices of descending sizes. The consensus par-
tition with is simultaneously learned and conversely guides
the construction of intermediary matrices. Nevertheless, this
cyclic process is modeled into an unified objective and an al-
ternative algorithm is designed to solve it. In addition, the
proposed method is validated and compared with other rep-
resentative multiple kernel clustering algorithms on bench-
mark datasets, demonstrating state-of-the-art performance by
a large margin.

Introduction
Although kernel clustering algorithms, such as kernel k-
means, kernel spectral clustering, etc., have already achieved
satisfying performance in various applications, how to
choose the right kernel mapping and corresponding parame-
ters is still a tricky problem. More lethal is their incapability
of dealing with rapidly increasing multi-view data. Multi-
ple kernel clustering (MKC) methods address these prob-
lems by generating multiple kernels with a set of parame-
terized mapping functions corresponding to each data view,
and then exploring the complementary information to cat-
egorize samples into clusters. According to the time when
clustering details are utilized, they can be roughly separated
into two categories, i.e. early-fusion and late-fusion meth-
ods.

Early-fusion approaches directly learn a consensus ker-
nel or graph from multiple ones, afterwards generate the fi-
nal partition [Ren et al. 2020; Wen et al. 2020]. Mostly, the
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two processes are jointly optimized, as shown in Fig. 1(a)
and 1(b). In this group of methods, low rank optimization
techniques are widely adopted. For instance, Zhou et al. find
rows and columns of kernel will be both contaminated when
a sample is corrupted with noise, and employ L2,1 norm
regularization to capture such row-wise and column-wise
noises [Zhou et al. 2015]. Following multiple kernel learn-
ing (MKL) framework [Kloft, Rückert, and Bartlett 2010;
Kloft et al. 2011], a large number of algorithms assume that
the consensus kernel is a weighted combination of the pre-
specified kernels [Huang, Chuang, and Chen 2012; Kloft
et al. 2011; Liu et al. 2020a; Peng et al. 2019; Liu et al.
2020c]. Among them, various regularization terms, such as
local kernel alignment [Gönen and Margolin 2014], matrix-
induced regularization [Liu et al. 2016] and optimal neigh-
borhood kernel [Liu et al. 2017], are proposed to refine the
kernel weights. In addition, some multi-view spectral clus-
tering methods firstly construct graphs from kernels, and
then adopt graph-based techniques to learn the cluster as-
signments with the by-product unified graph [Kang et al.
2018; Zhan et al. 2019; Kang et al. 2019; Zhou et al. 2020].
Late-fusion algorithms firstly obtain multiple partitions from
each kernel independently with basic kernel clustering al-
gorithms [Liu et al. 2020b]. Then, the final clustering as-
signments are constructed based on them, as shown in Fig.
1(c). Long et al. introduce the concept of mapping functions
to make spaces of each view comparable, hence an opti-
mal clustering assignment can be made from multiple results
[Long, Yu, and Zhang 2008]. Wang et al. build the base par-
titions by performing kernel k-means on pre-specified ker-
nels, then maximize the alignment between consensus parti-
tion and the weighted combination of base partitions [Wang
et al. 2019].

Although early-fusion and late-fusion MKC methods
achieve satisfying performances, both of them try to encode
the clustering information from kernels or graphs with size
Rn×n to partition matrices with size Rn×k, where n and k
are the number of samples and clusters, respectively. To see
this point in depth, we conduct a brief illustration on CCV
benchmark in Fig. 2. It can be clearly observed that a large
volume of details beneficial to clustering would be lost in
this sudden drop of dimension. A brief insight is also pro-
vided at the beginning of section 3. In order to balance the
partition information distilling and preserving, we propose a
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Figure 1: (a) and (b) visualize early-fusion methods with kernels and graphs, while (c) and (d) are the frameworks of late-fusion
approaches and the proposed algorithm, respectively. The gray squares or graphs and orange ones indicate the original data
and clustering results. Squares of other colors represent the intermediary data. Early-fusion methods obtain the final partition,
H, by learning a consensus kernel or graph, KC or GC , from the pre-specified ones, {Kp}mp=1 or {Gp}mp=1. On the contrary,
late-fusion methods construct base partitions, {Bp}mp=1, in one-way ticket from each kernel without considering the others,
and then integrate them into a final one, H. Different from these two approaches, the proposed algorithm extracts the partition
information into smaller matrices, {H(t)

p }m,s
p,t=1, iteratively, and learn the final partition, H, after one or more steps. In upper

cases, two-way arrow represents update of current matrices would affect the previous ones.

Hierarchical Multiple Kernel Clustering (HMKC) approach.
At the beginning, data samples are categorized into c1 clus-
ters by constructing an intermediary partition matrix H(1) ∈
Rn×c1 corresponding to each kernel, where n > c1 > k.
Based on the obtained H(1), a smaller intermediary partition
matrix H(2) ∈ Rn×c2 , in which n > c1 > c2 > k, are com-
puted to get c2 clusters. By repeating the aforementioned
process s times, beneficial clustering details can be distilled
into H(s) ∈ Rn×cs step by step. With {H(s)

p }mp=1 corre-
sponding to m kernels, the consensus partition H is simul-
taneously learned and conversely guides the construction of
intermediary matrices. We also jointly optimize the inter-
mediary matrices and the consensus partition by modeling
them in an unified objective. The above idea is visualized in
Fig. 1(d). Furthermore, an alternative algorithm is designed
to solve the resultant optimization problem and proven to be
convergent. Extensive experiments are conducted on bench-
mark datasets. It can observed that the proposed algorithm
outperforms other representative MKC algorithms.

Related Work

Kernel k-means

Given a collection of data observations {xi}ni=1 and a kernel
mapping φ(·), kernel k-means aims to group the samples
into k clusters via minimizing the sum-of-square loss, which

can be formulated as

min
A,c

n,k∑
i=1,j=1

Aij ‖φ (xi)− cj‖22 s.t.

k∑
j=1

Aij = 1 (1)

where A ∈ {0, 1}n×k is the cluster assignment of each sam-
ple and cj is the j-th cluster centroid.

In most cases, φ(xi) ∈ Rd where d � n or infinite. As
a result, Eq. (1) cannot be optimized directly. Therefore, we
equivalently rewrite its matrix-vector form as

min
A

Tr(K)− Tr
(
L

1
2 A>KAL

1
2

)
(2)

in which Kij = φ(xi)
>φ(xj), L = diag([n−11 , n−12 ,

· · · , n−1k ]) with nj =
∑n

i=1Aij . The discrete A makes the
upper equation hard to solve, and a common trick is to relax
it to take arbitrary values. By defining H = AL

1
2 , the above

problem can be transformed to

min
H

Tr
[
K
(
In −HH>

)]
s.t. H>H = Ik,H ∈ Rn×k,

(3)

which can be simplified as follows:

max
H

Tr
(
KHH>

)
s.t. H>H = Ik,H ∈ Rn×k. (4)

With the obtained partition matrix H, k-means clustering is
applied to compute the final clustering assignments.
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Figure 2: Eigenvalue distributions of the first kernel K1 and
consensus kernel Kβ obtained by MKKM on CCV. The
eigenvalues are sorted from large to small, and only the first
1000 out of 6773 ones are plotted. The bar plot shows the
times of each logarithmic eigenvalue to the first one. Mean-
while, the curve presents the calculative sum of the sorted
eigenvalues.

Multiple Kernel k-means
Following the MKL framework, multiple kernel k-means
(MKKM) assumes the consensus kernel Kβ as a weighted
combination of the pre-specified ones [Huang, Chuang, and
Chen 2012], and minimize

min
H,β

Tr
[
Kβ

(
In −HH>

)]
s.t. β>1 = 1,H>H = Ik,H ∈ Rn×k

(5)

in which Kβ =
∑m

p=1 β
2
pKp.

The Proposed Algorithm
In the following, we provide a brief insight on the clustering
detail loss of current MKC algorithms when constructing the
consensus partition. The results are obtained on CCV dataset
which is collected from 20 clusters and thoroughly described
in Table 1.

Early-fusion MKC algorithms try to construct the consen-
sus kernel or graph by exploring the complementary infor-
mation among the pre-specified ones. For the learned con-
sensus kernel, most of them simultaneously perform ker-
nel k-means to obtain the partition matrix with size Rn×k.
Meanwhile, the graph methods produce the partition matrix
of the same size by employing spectral clustering (normal-
ized cut), which has been proven to be a special case of
weighted kernel k-means [Dhillon, Guan, and Kulis 2004].
So, we only analyze the properties of kernel k-means here
due to the space limit. Specifically, we take MKKM as an
instance and present the eigenvalue distribution of the con-
sensus kernel Kβ on the left of Fig. 2. As claimed in section
4.2 of [Schölkopf, Smola, and Müller 1998], the eigenvec-
tor corresponding to a larger eigenvalue carries more dis-
criminative information. By selecting the eigenvectors cor-
responding to top-k eigenvalues, kernel k-means preserves
most of the discriminative details in a kernel. In an ideal ker-
nel for clustering, eigenvalues except the top-k are supposed
to be 0 [Kalman 1996; Zhang 2015]. However, it can be

observed that there are around 100 more eigenvalues larger
than 1, apart from the biggest 20 ones. If taking the eigen-
value to roughly measure the volume of discriminative in-
formation in a corresponding eigenvector, we can see that
the resulting partition matrix only keeps 55% kernel details.

Most early-fusion MKC approaches adopt kernel k-
means to compute multiple partitions separately [Liu et al.
2019; Wang et al. 2019]. Therefore, we visualize the eigen-
value distribution of the first kernel matrix on the right of
Fig. 2. Similar results are observed that there are almost 500
eigenvalues larger than 1, while the top-20 eigenvectors keep
about 60% kernel discriminative details. As a result, the mul-
tiple independent partition matrices are of low quality, act-
ing as the bottleneck of performance improvement. We can
summarize two observations as follows:

1. The discriminative details advantageous for clustering in a
kernel with size Rn×n, whether consensus or original one,
can be encoded in a proportion of eigenvectors by classi-
cal kernel methods, such as kernel k-means and spectral
clustering.

2. Directly adopting a partition matrix with size Rn×k would
lose a large volume of the kernel discriminative informa-
tion.

To balance the partition information distilling and pre-
serving, we firstly group data samples into c1 clusters by
employing intermediary matrices with size Rn×c1 , where
n > c1 > k, to extract the clustering details from kernels. In
specific, p-th intermediary matrix H

(1)
p can be constructed

by performing kernel k-means on Kp as

max
H

(1)
p

Tr
(
KpH

(1)
p H(1)>

p

)
s.t. H(1)>

p H(1)
p = Ic1 , H(1)

p ∈ Rn×c1 .

(6)

Furthermore, we find c1 might take values which are greatly
larger than k, such k2 or even k3, especially when data
samples are generated from a small number of distribu-
tions. This abrupt drop of dimension would cause the loss
of important partition information. Therefore, we construct
a new kernel H

(1)
p H

(1)>
p , afterwards group samples into c2

clusters via kernel k-means and compute the intermediary
matrix H

(2)
p ∈ Rn×c2 . By repeating this process s times,

data samples are gradually grouped into {ct}st=1 clusters,
together with generating a sequence of intermediary matri-
ces H

(t)
p ∈ Rn×ct , where n > c1 > · · · > cs > k. Without

loss of generality, we formulate the relation between H
(t−1)
p

and H
(t)
p as

max
H

(t)
p

Tr
(
H(t−1)

p H(t−1)>
p H(t)

p H(t)>
p

)
s.t. H(t)>

p H(t)
p = Ict , H(t)

p ∈ Rn×ct .

(7)

With the learned matrix {H(s)
p }mp=1 for m pre-specified ker-

nels, we also perform kernel k-means on each one to obtain a
consensus partition and employ an vector β ∈ Rm to adjust

8673



their weights, which can be formulated as

max
H,β

m∑
p=1

βp Tr
(
H(s)

p H(s)>
p HH>

)
s.t. β>β = 1,H>H = Ik,H ∈ Rn×k,

(8)

Utilizing Eq. (6), (7) and (8) into an unified objective, we
can obtain the proposed final objective as

max
H,{Hp}mp=1,β,γ

m∑
p=1

γ(1)p Tr
(
KpH

(1)
p H(1)>

p

)
+

s∑
t=2

m∑
p=1

γ(t)p Tr
(
H(t−1)

p H(t−1)>
p H(t)

p H(t)>
p

)
+

m∑
p=1

βpTr
(
H(s)

p H(s)>
p HH

)
s.t. H>H =Ik, H ∈ Rn×k, H(t)>

p H(t)
p = Ict ,

H(t)
p ∈ Rn×ct , n > c1 > · · · > cs > k, β>β = 1,

βp ≥ 0, β ∈ Rm, γ(t)>γ(t) = 1, γ(t)p ≥ 0, γ(t) ∈ Rm,

(9)

in which β and γ(t) are the weights corresponding to each
kernel. It is worth to note that no hyper-parameters are em-
ployed, for we treat all partition information distilling pro-
cesses equally. Overall, the partition information are firstly
distilled from kernel matrices, Kp, to H

(1)
p , then to H

(2)
p , ...,

to H
(s)
p , finally fused in H. With the dimensions reducing in

steps, the relative important similarity information advanta-
geous for clustering is gradually gathered and used to update
the consensus partition matrix, H. Utilizing all steps into an
unified objective, the update of H will guide the information
distilling processes, achieving an ideal performance at last.

Optimization
Optimization Strategy
The alternative optimization strategy is adopted to optimize
the resultant objective. In specific, every unknown variable
is solved and ensured to be globally optimal with the others
fixed in each step, as shown in Eq. (10) - (18).
i) Optimizing {H(1)

p }mp=1. Given Kp, H
(2)
p , γ(1)p and γ(2)p ,

the optimization reduces to

max
H

(1)
p

Tr
[
H(1)

p H(1)>
p

(
γ(1)p Kp + γ(2)p H(2)

p H(2)>
p

)]
s.t. H(1)>

p H(1)
p = Ic1 , H(1)

p ∈ Rn×c1 .

(10)

ii) Optimizing {H(t)
p }s−1t=2 . Given H

(t−1)
p , H

(t+1)
p , γ(t)p and

γ
(t+1)
p , Eq. (9) w.r.t H

(t)
p can be solved as

max
H

(t)
p

Tr
[
H(t)

p H(t)>
p

(
γ(t)p H(t−1)

p H(t−1)>
p

+ γ(t+1)
p H(t+1)

p H(t+1)>
p

)]
s.t. H(t)>

p H(t)
p = Ict , H(t)

p ∈ Rn×ct .

(11)

iii) Optimizing H
(s)
p . With fixed H

(s−1)
p , H, γ(s)p and βp,

the optimization can be optimized as

max
H

(s)
p

Tr
[
H(s)

p H(s)>
p

(
γ(s)p H(s−1)

p H(s−1)>
p + βpHH>

)]
s.t. H(s)>

p H(s)
p = Ics , H(s)

p ∈ Rn×cs .

(12)

iv) Optimizing H. Given {H(s)
p }mp=1 and β, H can be opti-

mized via

max
H

Tr

[
HH>

m∑
p=1

(
βpH

(s)
p H(s)>

p

)]
s.t. H>H = Ik, H ∈ Rn×k.

(13)

v) Optimizing γ(t). γ(t) are the weights across m views at
t distilling stage. In the first stage, Kp and H

(1)
p are known.

In t = 2 · · · s stage, H
(t−1)
p and H

(t+1)
p are known. The

optimization problem w.r.t. γ(t) can be solved as

max
γ(t)

ν(t)>γ(t)

s.t. ν(1)p = Tr
(
KpH

(1)
p H(1)>

p

)
ν(t)p = Tr

(
H(t−1)

p H(t−1)>
p H(t)

p H(t)>
p

)
γ(t)>γ(t) = 1, γ(t)p ≥ 0,γ(t) ∈ Rm.

(14)

vi) Optimizing β. Given H and {H(s)
p }mp=1, β is able to be

optimized as

max
β

ν>β

s.t. νp = Tr
(
HH>H(s)

p H(s)>
p

)
β>β = 1, βp ≥ 0,β ∈ Rm.

(15)

The four optimization problems, from i) to iv), belong to
one type and can be generalized as

max
U

Tr
(
UU>B

)
s.t. U>U = Ic, U ∈ Rn×c,

(16)

which can be easily solved via singular value decomposition
(SVD) on B [Wang et al. 2019]. With B = ScΣcV

>
c , where

Sc ∈ Rn×c, Σc ∈ Rc×c and Vc ∈ Rn×c, the solution can be
computed as U = ScV

>
c . Meanwhile, the last two equations

are equivalent to

max
α

ν>α s.t. α>α = 1, αp ≥ 0,α ∈ Rm (17)

whose closed-form solution is

αp = νp/

(
m∑

p=1

ν2p

) 1
2

. (18)

A trick can be adopted in the above optimization process
with defining two procedures, i.e. forwarding and back prop-
agation. Forwarding indicates updating the variables in such
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Algorithm 1: Hierarchical multiple kernel clustering
Input: kernel matrices {Kp}mp=1, clustering number

k and layer sizes {ct}st=1

Initialize: {H(t)
p }m,s

p,t=1, H, {γ(t)}st=1 and β
while not convergence do

update {H(t)
p }m,s

p,t=1 by solving Eq. (10) - (12)
update H by solving Eq. (13)
update {γ(t)}st=1 by solving Eq. (14)
update β by solving Eq. (15)

end
Output: partition matrix H.

order: H
(1)
p → H

(2)
p → · · · → H

(s)
p → H, i.e. blue ar-

rows in Fig. 1(d), while back propagation refers to updating
them in the inverse order, i.e. orange arrows in Fig. 1(d).
We perform forwarding and back propagation alternately,
which updates the variables more efficiently than only ap-
plying forwarding in whole optimization. At last, the opti-
mization procedure is outlined in Algorithm 1.

Convergence and Complexity Analysis
For ease of expression, we formulate the objective in Eq. (9)
as

max
{H(t)

p }st=1,H,{γ(t)}st=1,β

J ({H(t)
p }st=1,H, {γ(t)}st=1,β)

(19)
It is obvious that

J ({H(t)
p }

s (r)
t=1 ,H

(r), {γ(t)}s (r)
t=1 ,β

(r))

≤J ({H(t)
p }

s (r+1)
t=1 ,H(r), {γ(t)}s (r)

t=1 ,β
(r)),

(20)

where superscript r indicates the optimization at round r.
Eq. (20) holds, because an optimal solution can be obtained
when fixing the other variables. The similar inequality holds
at each step, leading to

J ({H(t)
p }

s (r)
t=1 ,H

(r), {γ(t)}s (r)
t=1 ,β

(r))

≤J ({H(t)
p }

s (r+1)
t=1 ,H(r+1), {γ(t)}s (r+1)

t=1 ,β(r+1)).
(21)

Therefore, the objective monotonically increases at each
round. Meanwhile, it is obvious that the whole optimization
objective is upper-bounded. As a result, the alternative algo-
rithm is guaranteed to converge to a local maximum.

For Eq. (10)-(13), SVD technique is adopted on matri-
ces of size Rn×n, requiring O(n3) complexity. Eq. (14) and
Eq. (15) are calculated with multiplication of matrices and
require O(n2) and O(n) complexities, respectively. Over-
all, the computational complexity is O(n3). By the way, all
comparative methods in experiments are ofO(n3) complex-
ity, guaranteeing the fairness of comparison.

Experiment
Experiment Settings
Datasets. We evaluate the proposed algorithm on eight
widely used MKC benchmark datasets, including AR10P1,

1featureselection.asu.edu/old/datasets.php

Dataset Number of
Samples Kernels Clusters

AR10P 130 6 10
BBCSport 544 6 5
CCV 6773 3 20
Flower17 1360 7 17
Flower102 8189 4 102
Heart 270 13 2
Ionosphere 351 33 2
Plant 940 69 4

Table 1: Specifications of the used datasets.

BBCSport2, CCV3, Flower174, Flower1025, Ionosphere6,
Heart7 and Plant8. Their details are shown in Table 1.
Comparative Methods. Thirteen algorithms are chosen
from the MKC literatures for comparison. Specifically, A-
MKKM (baseline) obtains the consensus kernel by linearly
combining all base kernels with the same weights and then
performs kernel k-means on it. SB-KKM (baseline) per-
forms kernel k-means on all kernels and selects the best one.
We also select seven classical algorithms, including CSRC
[Kumar, Rai, and III 2011], MKKM [Huang, Chuang, and
Chen 2012], RMSC [Xia et al. 2014], RMKC [Zhou et al.
2015], RMKKM [Du et al. 2015], MKKM-MR [Liu et al.
2016] and ONKC [Liu et al. 2017]. Additionally, we choose
three recently proposed methods in high-quality conferences
and journals, i.e. LFAM [Wang et al. 2019], SPC [Kang
et al. 2019], MVCC [Zhan et al. 2019] and SPMKC [Ren
and Sun 2020]. Their source codes are publicly available and
we directly use them without revision in comparison. Mean-
while, we open the source code of HMKC on Github9.
Parameter Settings. Only the sizes of the intermediary
matrices, {H(t)

p }st=1 are supposed to be given manually.
In the following, we consider two experimental settings.
The first is called HMKC-1 with employing 1-layer of
intermediary matrices, {H(1)

p }mp=1 ∈ Rn×c, where c is
searched from [2k, 3k, · · · , 20k]. While the second one is
named HMKC-2 with employing 2-layer of intermediary
matrices, {H(1)

p }mp=1 ∈ Rn×c1 and {H(2)
p }mp=1 ∈ Rn×c2 ,

in which c1 ≥ c2 and c1, c2 are grid searched from
[2k, 3k, · · · , 20k]. In specific, the search region is restricted
to [2k, 3k, · · · , 10k] for AR10P since it has relatively small
number of samples in each cluster. Note that the aforemen-
tioned k refers to the number of clusters. For the other com-
parative methods, we perform the grid search on the param-
eters recommended in corresponding papers and report the
best results.

2mlg.ucd.ie/datasets/segment.html
3www.ee.columbia.edu/ln/dvmm/CCV/
4www.robots.ox.ac.uk/∼vgg/data/flowers/17/
5www.robots.ox.ac.uk/∼vgg/data/flowers/102/
6archive.ics.uci.edu/ml/datasets/Ionosphere
7archive.ics.uci.edu/ml/datasets/Statlog+(Heart)
8www.imageclef.org/2013/plant
9https://github.com/liujiyuan13/HMKC-code release
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Algorithm AR10P BBCSport CCV Flower17 Flower102 Heart Ionosphere Plant

ACC

A-MKKM 38.46 65.99 19.74 51.03 27.29 82.22 61.25 61.70
SB-KKM 49.23 76.65 20.08 42.06 33.13 76.30 70.09 51.60
CSRC 36.92 67.65 23.40 51.69 35.19 80.37 75.78 54.57
MKKM 37.69 66.36 18.01 45.37 21.96 53.33 63.82 56.38
RMSC 34.62 86.03 16.29 52.57 32.97 83.33 84.62 55.53
RMKC 43.85 66.36 19.74 52.35 33.55 82.22 66.10 61.70
RMKKM 32.31 53.13 17.11 53.16 29.61 76.30 65.81 55.32
MKKM-MR 43.08 66.36 22.47 60.00 40.27 83.33 61.25 62.87
ONKC 48.46 67.65 23.12 59.85 41.26 83.70 63.82 64.89
LFAM 46.92 72.61 26.66 59.63 44.61 82.22 68.09 62.77
SPC 38.46 83.09 - 57.50 - 75.93 71.23 60.43
MVCC 43.85 74.26 22.10 51.47 37.23 82.96 55.56 55.64
SPMKC 54.62 40.81 13.54 35.81 - 57.04 72.93 53.94
HMKC-1 56.15 89.52 36.57 66.91 46.84 86.67 86.32 64.68
HMKC-2 60.00 90.99 37.37 71.18 50.32 86.30 86.89 67.02

NMI

A-MKKM 34.57 53.92 17.16 50.19 46.32 32.40 3.29 26.82
SB-KKM 51.44 59.39 17.73 45.14 48.99 20.49 10.35 17.18
CSRC 36.90 55.41 20.96 52.63 53.73 28.53 15.99 21.82
MKKM 38.92 54.67 15.52 45.35 42.30 0.02 5.12 20.02
RMSC 29.70 73.89 13.79 56.35 53.36 34.51 36.52 23.83
RMKC 44.38 54.30 17.16 50.42 49.74 32.40 7.02 26.82
RMKKM 27.96 28.48 12.54 53.31 48.55 20.49 9.33 19.71
MKKM-MR 42.62 54.67 18.62 57.11 57.38 35.22 3.29 28.29
ONKC 51.86 54.74 19.19 56.85 57.39 36.22 31.13 31.13
LFAM 47.11 54.99 19.85 57.83 57.58 32.40 1.15 27.64
SPC 39.02 65.49 - 61.32 - 19.67 0.35 29.65
MVCC 38.56 51.52 15.97 56.26 52.35 34.54 0.63 20.85
SPMKC 58.39 7.31 8.11 40.78 - 10.95 1.64 19.28
HMKC-1 54.46 72.73 31.64 63.37 60.40 42.98 39.11 34.11
HMKC-2 60.32 76.72 32.71 65.45 62.47 43.40 40.55 36.43

Table 2: The performance comparison of multiple kernel clustering algorithms in recent literature.

Experiment Results
In order to show the effectiveness and the superiority over
algorithms in MKC literatures, we compare the proposed
method with the other thirteen ones on eight widely used
benchmark datasets. Correspondingly, two common metrics,
including accuracy (ACC) and normalized mutual informa-
tion (NMI), are adopted to measure the performances. The
results are shown in Table 2, where ’-’ indicates the results
of corresponding algorithms are unavailable due to the long
execution time. We have the following observations:

Effectiveness. Some MKC algorithms perform worse
than the baselines, A-MKKM and SB-KKM. For instance,
MKKM has 45.37% accuracy on Flower17 which is 5.66%
lower than A-MKKM. However, both the proposed HMKC-
1 and HMKC-2 outperform the baselines consistently across
all datasets. This illustrates the proposed algorithm is effec-
tive in exploring the complementary information of multiple
kernels to boost clustering performance.

Superiority. Although, comparing with the best of the
second best results, HMKC-1 shows little performance
drops, such as 0.21% accuracy on Plant, 3.93% NMI on
AR10P and 1.16% NMI on BBCSport, it shows obvious pro-
motion on the other datasets. Moreover, HMKC-2 consis-
tently and largely outperforms the other algorithms across
all datasets. Especially, the proposed algorithm exhibits ex-

cellent performances on CCV, Flower17 and Flower102,
where around 5/10% increases are obtained. In addition,
SPC is of high complexity, and its results on big datasets,
such as CCV and Flower102, are unavailable in limited ex-
ecution time. This indicates the superiority of our methods
again. Overall, the proposed method outperforms the recent
algorithms by a large margin, achieving the state-of-the-art
performance.

Validation on Intermediary Matrix. CRSC[Kumar, Rai,
and III 2011] also use base partitions of each view to con-
struct the final partition with updating them concurrently.
But it fails to relax the base partitions into Rn×c where c >
k. HMKC-1 exceeds it by 19.23% on AR10P, 21.87% on
BBCSport, 13.17% on CCV, 15.22% on Flower17, 11.65%
on Flower102, 6.30% on Heart, 10.54% on Ionosphere and
10.11% on Plant respect to accuracy. Meanwhile, the first
kernel matrix K1 of CCV, the corresponding intermediary
H1, H2 and the final partition H in the proposed HMKC-2
are visualized in Fig. 3. It can be seen that a more and more
clear clustering structure is presented along with the clus-
tering process. The two observations validate that adopting
the intermediary matrices of decreasing sizes is able to keep
more advantageous details for clustering.

Multiple Layers. Comparing the results in Table 2, it can
be observed that HMKC-2 has consistent performance im-
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Figure 3: Visualization of kernel matrix, the proposed intermediary matrices and final partition of in HMKC-2 model.
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Figure 4: (a). ACC variation of the proposed HMKC-1 model at 2k ≤ c ≤ 20k; (b). ACC variation of the proposed 2-layer
model at 2k ≤ c ≤ 20k; (c). The objective value by epoch at c1 = 20k and c2 = 2k; (d). The number of epochs at different
c1 and c2. Note that, k represents the number of clusters and legend ”Second best” refers to the best result of the second best
algorithm in recent literature.

provements over all datasets and metrics. Nevertheless, we
construct a HMKC-1 model with c = 2k. By adding a layer
intermediary matrices one k bigger each step, 19 models are
built finally. These models are tested on CCV, and the results
are presented in Fig. 4(c). The performance shows a rela-
tively large increase, around 2% in NMI at first. Although
a sudden drop is observed at 18 layers, it rises up steadily
when increasing the number of layers. In all, the two above
observations illustrate that adopting multiple layers of inter-
mediary matrices in the proposed algorithm will increase the
performance.

Parameter Study and Convergence
In order to investigate the parameter stability of the proposed
algorithm, we perform grid search on CCV. Specifically, we
vary parameter c of HMKC-1 model from 2k to 20k. Cor-
responding accuracies are shown in Fig. 4(a). It can be ob-
served that the proposed algorithm consistently outperforms
the baselines, including A-MKKM and SB-KKM, and the
best result of the second best algorithm in a wide parame-
ter range. Also, the performance on CCV steadily increases
while enlarging the size of intermediary matrices, verifying
the effectiveness of the proposed intermediary matrix again.
Fig. 4(b) presents the performance variation of HMKC-2
model when parameter c1 and c2 vary from 3k to 20k and 2k
to 20k, respectively. We can find the proposed algorithm ex-
hibits large performance promotions over the baselines and
the second best algorithm across all parameter ranges. Sim-

ilar to HMKC-1 model, the accuracy also rises up with em-
ploying larger c1 and c2. This well verifies that better per-
formances can be obtained by designing larger intermediary
matrices to keep more advantageous partition details in clus-
tering. Fig. 4(c) shows the performances when increasing the
layer number of intermediary matrices. Although some im-
provements are observed on bigger layer numbers, we rec-
ommend to use the HMKC-2 model in clustering tasks for
its aforementioned stability and the relatively low complex-
ity compared with models with 3-19 layers.

Fig. 4(d) presents the variation of objective value on CCV
at c1 = 20k and c2 = 2k. It can be seen that the objec-
tive monotonically increases, and quickly converges with 14
iterations. In fact, the algorithm converges in less than 15 it-
erations across all datasets in most cases, making it practical
in real-word applications.

Conclusion
Both early-fusion and late-fusion MKC methods suffer from
information loss when encoding the clustering details from
kernels or graphs with size Rn×n to partition matrix with
size Rn×k. To address this issue, We propose a hierarchi-
cal algorithm. The proposed method is tested on benchmark
datasets and outperforms the comparative algorithms, show-
ing state-of-the-art performance by a large margin. We will
explore the relationship between eigenvalues of kernel ma-
trix with sizes of the intermediary matrices.
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