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Abstract

The increasing of pre-trained models has significantly facil-
itated the performance on limited data tasks with transfer
learning. However, progress on transfer learning mainly fo-
cuses on optimizing the weights of pre-trained models, which
ignores the structure mismatch between the model and the
target task. This paper aims to improve the transfer perfor-
mance from another angle - in addition to tuning the weights,
we tune the structure of pre-trained models, in order to bet-
ter match the target task. To this end, we propose TransTailor,
targeting at pruning the pre-trained model for improved trans-
fer learning. Different from traditional pruning pipelines, we
prune and fine-tune the pre-trained model according to the
target-aware weight importance, generating an optimal sub-
model tailored for a specific target task. In this way, we trans-
fer a more suitable sub-structure that can be applied during
fine-tuning to benefit the final performance. Extensive exper-
iments on multiple pre-trained models and datasets demon-
strate that TransTailor outperforms the traditional pruning
methods and achieves competitive or even better performance
than other state-of-the-art transfer learning methods while us-
ing a smaller model. Notably, on the Stanford Dogs dataset,
TransTailor can achieve 2.7% accuracy improvement over
other transfer methods with 20% fewer FLOPs.

Introduction

The remarkable performance achieved by deep Convolu-
tional Neural Networks (CNNs) largely relies on the mas-
sive labeled data (Krizhevsky, Sutskever, and Hinton 2012).
However, in real-world scenarios where gaining sufficient
labeled data through manual labeling is time-consuming and
labor-exhausting, we are inevitably confronted with tasks
owning only limited labeled data. This situation has moti-
vated the research on transfer learning (Pan and Yang 2009),
aiming at transferring the knowledge from a related and data
sufficient source domain to a resource-constrained (mainly
refer to data resource) target domain.

Recently, much effort has been made to tune the pre-
trained model to improve transfer learning. Typically, a pre-
trained model refers to a model that has been trained with a
large-scale dataset (e.g., ImageNet2012 (Deng et al. 2009))
and can serve as a good feature extractor for downstream
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Figure 1: Illustration of the two mismatches during transfer
learning.

tasks. A simple yet effective method called fine-tuning
(Yosinski et al. 2014) is the most widely used paradigm,
which starts with a pre-trained model and further tunes the
model weights with the limited target data to achieve transfer
learning. In addition, many other regularization methods de-
signed new loss functions to optimize the weights of the pre-
trained model, seeking to achieve better knowledge transfer
(Li, Grandvalet, and Davoine 2018; Li et al. 2019).
However, these existing methods may still fail to deliver
an optimal solution for transfer learning because they only
tune the weights of the pre-trained model. The model struc-
ture, which is also of vital importance to the final task per-
formance, is ignored since the structure of the pre-trained
model is always fixed either in fine-tuning or other trans-
fer schemes. As shown in Figure 1, basically the pre-trained
model being transferred may contain two mismatches to the
target data: weight mismatch and structure mismatch. The
weight mismatch mostly comes from the feature divergence
between two tasks and the structure mismatch results from
the different data scale (i.e., the target task needs a different
structure since its data scale is smaller than the source). Pre-
vious methods focused on tuning the weights can only tackle
the weight mismatch issue while ignoring the structure mis-



match problem.

This paper attempts to improve transfer learning from
a new angle - in addition to tuning the weights, we also
tune the structure of the pre-trained model, in order to ad-
dress the structure mismatch problem. Specifically, we ap-
ply model pruning techniques (Han et al. 2015) to achieve
our goal. Model pruning techniques have been extensively
studied in recent years. The key idea is to remove the unim-
portant weights of a model without incurring much accuracy
drop. Adopting pruning techniques is based on the follow-
ing two insights: (1) Usually the target task is smaller than
the source task and does not need the same model capacity
as the pre-trained model provides. (2) Too many parame-
ters may cause overfitting during fine-tuning on the limited
target data. These observations motivate us to prune the pre-
trained model to fit the target task. However, directly using
traditional pruning algorithms is infeasible because the ex-
isting approaches aim at pruning the weights with minimal
harm to the original task (source task) rather than the target
task. In other words, the weight with high importance to the
source task may be insignificant to the target task, given the
fact that although there exists some similarity between the
two domains, they typically exhibit differences.

To address this issue, we propose TransTailor, targeting
at generating an optimal sub-model tailored for a specific
target task. Through a learning-based method and a trans-
formation process, TransTailor is able to automatically gen-
erate the weight importance for the target data without re-
lying on heuristics, which is then utilized to prune the pre-
trained model. After pruning, the computed weight impor-
tance is further incorporated into the fine-tuning process to
guide the optimization of weights, in order to better recover
the transfer performance of the pruned model. We conduct
this pipeline iteratively until we find the optimal sub-model.
The major advantage of our approach is that both the pruning
and fine-tuning process are based on the target-aware weight
importance, which helps to obtain an optimal target-related
sub-model. This sub-model can be considered as the signif-
icant structure to be transferred in order to improve perfor-
mance. Extensive experiments on multiple pre-trained mod-
els and datasets demonstrate that TransTailor outperforms
the traditional pruning methods and achieves competitive or
even better performance compared with other state-of-the-
art transfer learning methods while using a smaller model.

In addition, we would like to highlight that it is not im-
portant how much the model can be pruned or accelerated.
Instead, the key objective we want to achieve is the task-
related optimal sub-net, disregarding its size. In the exper-
iment section, we will analyze the pruned parts of various
optimal sub-models generated by TransTailor and summa-
rize some interesting findings.

This paper makes the following contributions:

e We introduce the idea of pruning the pre-trained model
for improved transfer learning. In addition to tuning the
model weights, we also tune the model structure to fit the
target task as much as possible.

e Based on the idea, we propose TransTailor, in which
two techniques, target-aware pruning and importance-
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aware fine-tuning, are sequentially executed to respec-
tively prune and fine-tune the pre-trained model according
to the properties of the target data.

e We conduct extensive experiments based on public
datasets and model architectures. The evaluation results
demonstrate the effectiveness of TransTailor.

Related Work
Transfer Learning

Transfer learning aims to transfer the information learned
from a source task to a target task (Pan and Yang 2009). Our
work focuses on inductive transfer learning, where the label
space of the target task varies from that of the source task.
In this context, pre-trained models, which are trained with
large-scale datasets (e.g., ImageNet2012), have been widely
used to conduct fine-tuning or other regularization-based
methods. For example, Yosinski et al. (Yosinski et al. 2014)
proposed to freeze the shallow layers and only tune deep lay-
ers of the pre-trained model to achieve transfer learning. Xu
et al. (Li, Grandvalet, and Davoine 2018) proposed L?-SP,
which integrates the Euclid distance from the target weights
to the starting point as part of the loss, aiming to reduce
the distance between source weights and target weights. Li
etal. (Liet al. 2019) proposed a novel regularization method
DELTA to extract the discriminative features from the out-
puts of the outer layer by a new supervised attention algo-
rithm. Different from these methods that are devoted to tun-
ing weights, we seek to improve transfer learning by tuning
both the weight and the structure of the pre-trained model.

Model Pruning

Model pruning is a promising solution to accelerate CNNs
by removing unimportant weights (Han et al. 2015; Wen
et al. 2016; Lebedev and Lempitsky 2016; Liu, Guo, and
Chen 2019; Zhang et al. 2020; Liu et al. 2020). Here we fo-
cus on filter pruning due to its applicability to any CNN ar-
chitectures without requiring special software/hardware ac-
celerators. Specifically, Li et al. (Li et al. 2016) used ¢;-norm
to pick unimportant filters and pruned them. He et al. (He
et al. 2018) proposed SFP to enable the pruned filters to be
updated when training the model after pruning. Molchanov
et al. (Molchanov et al. 2017) and You et al. (You et al. 2019)
showed the effectiveness of the Taylor expansion method in
identifying the global importance of filters. TransTailor also
uses filter pruning techniques to tune the structure of the pre-
trained model. However, we target at pruning the filters that
are less important to the target task rather than the original
task as all the existing pruning methods did.

Neural Architecture Search

Neural architecture search (NAS) is dedicated to finding
new model architectures in a data-driven way. This is usu-
ally achieved using reinforcement learning or evolutionary
algorithms to update a model responses to produce archi-
tectures with better performance (Zoph and Le 2016; Zoph
et al. 2018). Typically NAS has an extremely large search-
ing space and thus is very time-consuming, which motivates
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Figure 2: Illustration of the two key techniques of TransTailor. Both target-aware pruning and importance-aware fine-tuning
are based on the target-aware filter importance. Here we use different colors to represent the freezing or training operations.

many works on accelerating the search process (Liu et al.
2018; Liu, Simonyan, and Yang 2018). TransTailor can also
be seen as an NAS process. However, TransTailor focuses
on searching a sub-model from a pre-trained model in or-
der to improve the transfer learning performance, which is
substantially different from the traditional NAS.

Method
Overview

In this paper, we propose TransTailor to tune both the struc-
ture and the weight to improve the transfer learning perfor-
mance. Starting with a pre-trained model, our goal is to gen-
erate a sub-model that can best match the target task. To this
end, we attempt to design a new pruning method to prune
the unimportant weights based on the target task, and a fine-
tuning method to tune the weight for better recovering the
transfer performance of the pruned model. Figure 2 illus-
trates the two key techniques, which we summarize as fol-
lows:

o Target-aware pruning. We present a new method to learn
the weight importance based on the specific target task.
Here the importance is measured in a filter-level manner.
Specifically, we introduce a scaling factor that is multi-
plied to the output of each filter and further train them
based on the target data. The learned factor values are then
transformed based on Taylor expansion, to generate the fi-
nal filter importance in a global way. Finally, we use the
filter pruning technique to prune the model, where unim-
portant filters can be easily pruned without the need for
special software/hardware accelerators for the resulting
model.

o [mportance-aware fine-tuning. After the pruning process,
each filter of the pruned model still attaches an importance
value computed by the previous process. Instead of adopt-
ing traditional fine-tuning to recover the accuracy of the
pruned model, we incorporate the importance value into
the tuning process, in order to provide guidance to the op-
timization of weights for better transfer performance.
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We conduct the two techniques iteratively until we find
the optimal sub-model. Note that TransTailor can be gener-
alized to prune any elements of CNNss, such as weight prun-
ing or layer pruning, although here we only focus on filter
pruning in this paper.

Problem Definition

We now introduce the symbols and annotations to formally
define the optimization objective. Let W be the pre-trained
model. f is the number of all filters in the pre-trained model
and s indicates the model is optimized for source domain.
We use D, and D; to respectively represent the source data
and target data. £() is the loss function used to optimize the
network. Existing filter pruning methods aim at searching a
sub-model W]? to minimize the loss increase for D, under
a certain pruning ratio ¢%, which can be denoted as

arg fain |L(Ds; W§) — L(Ds; W)

ey
st ff=f*xq%

However, in our transfer learning scenario, we do not care
about the loss increase on Dy and are not constrained by the
pruning ratio. Instead, we seek to find a sub-model W} that
can minimize the loss on D;. Here k& may take any value as
long as it satisfies £ < f. Based on the new scenario, we
reformulate the optimization objective as follows

Ws = argmin L(Dy; W) 2)
k
where W/ represents the optimal sub-model of the pre-
trained model. Furthermore, the weights of W7 should be
tuned with the target data to obtain the final target-aware op-
timal sub-model W.

In the following sections, we introduce a series of tech-

niques in order to obtain /.

Target-aware Pruning

Fine-tuning Target-aware pruning aims at defining the fil-
ter importance to the target task. However, the FC (fully-
connected) layers of the pre-trained model do not match our



Algorithm 1 The Pipeline of TransTailor

Input: Pre-trained model W)?, source data Dy, target data
Dy
Output: Optimal sub-model W}

1: Initialize the scaling factors o randomly
2: Fine-tune the pre-trained model to generate 17 )

3: Initialize the optimal sub-model W} = Ws ’

4: while (1) do '

Train the factors o by Eq. 3

6 Transform « to the importance vector 5 by Eq. 5

7:  Prune z filters based on /3

8:  Fine-tune the pruned model by Eq. 6 to generate W;

9: if Ace(Dy; WY) — Ace(Dy; W) > 7 then

10: break

11:  else

12: Wi =W}
13:  endif

14: end while
15: Get the final optimal sub-model W}

target task. For example, the number of neurons in the last
FC layer of the ImageNet2012 pre-trained model is 1000
while the target task may not have 1000 classes. Thus we
first replace the last FC layer according to the number of the
target class and then fine-tune it to fit the target task. The
fine-tuned pre-trained model is denoted as W7*. After fine-
tuning, the weights in FC layers match the target task and
we can focus on estimating the target-aware importance of
pre-trained filters.

Training the factors To measure the filter importance,
we introduce a set of tunable scaling factors o
(ai,a?,...,am), each of which is attached to a pre-trained
filter. Here m is the number of layer in the pre-trained model
and n is the number of filter in the my; layer. Specifically,
for the jy, filter of the iy, layer F7, its output F/ (X) is mul-
tiplied by the corresponding scaling factor o] . Then we train
the factors based on the target data to learn a more suitable
o™ to minimize the loss

a* = argmin L(Dy; W§ © «) 3)

where © represents the element-wise multiplication for each
F/(X) and o . X represents the output of the (i — 1), fil-
ter. During the process, pre-trained filters in W} are frozen
because our goal is to measure the importance of them.

Taylor-based transformation Although the factor a* can
intuitively represent the filter importance as it is generated
in a learning-based method using the target data, there is
still a lack of a metric that can define the filter importance
with the same scaling factor value while existed in differ-
ent layers. In other words, it is desirable if we can design
a global importance metric over the whole model. Previous
works (Molchanov et al. 2017; You et al. 2019) have proved
the effectiveness of the Taylor expansion method to define
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the global importance of filters, which can be denoted as

OL()
00
where 6 can be the feature map or a factor related to the
corresponding filter. Using this equation, one can calculate

the importance of each filter in a global way.

Here we also utilize the Taylor expansion method to trans-
form the learned factor o™ to the vector /3 that represents the

global importance. In specific, the importance of FZ] (.e.,
/37) can be calculated by

OL(Dy;; Wi © a*)
. a*)!
A(a*)!

7

“4)

d

%

&)

In terms of the vector /3, we can easily compare filters in
any location and prune those with low importance values.

Importance-aware Fine-tuning

In the traditional pruning pipeline, fine-tuning is an essential
step to recover the accuracy of the pruned model. However,
this process treats the whole filters (weights) equally, which
may be undesirable as each filter has a unique importance
to the target task. Inspired by this, we develop a new fine-
tuning scheme based on the target-aware filter importance
generated by previous steps. Concretely, we multiply these
importance factors to the output of the filter and fix them.
Then we only fine-tune the filters using the target data to
learn the optimal filter weights to fit the importance as well
as minimize the loss

W, = argmin L(Dy; Wy © ) (6)
where the 3 is frozen and W represents the pruned model.
After the fine-tuning, we can recover the performance of the
pruned model on the target task and obtain W]}f . Note that the
vector 3 is also integrated into the model to jointly conduct
a model inference process.

Searching the Optimal Sub-model

Based on the aforementioned techniques, we attempt to
search out the optimal sub-model W. Specifically, we first
initialize the W! with W*. Then we iteratively implement
our target-aware pruning and importance-aware fine-tuning
techniques. For each iteration, we prune z filters and fine-
tune the pruned model, generating a series of sub-models

Wi Wi g Wi gy (7)
If the ¢;, sub-model satisfies
Acc(Dy; W) — Ace(Dy; W}_C*Z) > T (8)

we stop the iteration process, otherwise we use W;_C*Z to

replace the current W/. This logic indicates that the perfor-
mance of the ¢, sub-model is significantly worse than the
current optimal sub-model, which motivates us to stop the
searching and select the current W/ as the desirable sub-
model. Here the significance degree is controlled by a hyper-
parameter 7. An illustration of our overall pipeline is shown
in Algorithm 1.



Dataset

Method
Caltech256-30  Caltech256-60 CUB-200 Stanford Dogs MIT Indoor-67

. Top-1 Acc 83.7% 85.0% 64.5% 89.4% 64.5%

FT (Tajbakhsh et al. 2016) FLOPs | 0% 0% 0% 0% 0%
Top-1 Acc 83.8% 86.9% 78.8% 89.0% 77.3%

SEP (Heetal. 2018) gy opg | 10% 10% 20% 10% 10%
Top-1 Acc 79.2% 82.4% 80.7% 82.0% 75.2%

GBN (Youetal- 2019) gy p | 10% 10% 30% 10% 20%
TransTailor Top-1 Acc  85.3% 87.3% 80.7% 91.0% 782%
FLOPs | 20% 30% 30% 20% 20%

Table 1: Optimal sub-models generated by traditional pruning methods and TransTailor. We mainly compare the accuracy and

FLOPs reduction achieved with different schemes.

Method
Dataset
L? L?-SP DELTA TransTailor
Caltech256-30 84.7% 85.4%  85.7% 85.3%
Caltech256-60 87.2% 872%  87.6% 87.3%
CUB-200 784% 195%  78.9% 80.7 %
Stanford Dogs 83.3% 88.3%  88.3% 91.0%

Table 2: Comparison with state-of-the-art transfer learning
methods. TransTailor can achieve comparable or even bet-
ter performance than other transfer methods with 20%-30%
FLOPs reduction.

Experiments
Experimental Settings

Pre-trained models and datasets We use three pre-
trained models with different architectures, including VGG-
16 (Simonyan and Zisserman 2014), ResNet-101 (He et al.
2016) and EfficientNet-BO (Tan and Le 2019). All of them
are pre-trained with the ImageNet2012 (Deng et al. 2009)
dataset. We evaluate TransTailor on the following five
datasets that are widely used in transfer learning:

Caltech 256-30 & Caltech 256-60 (Griffin, Holub, and
Perona 2007). Caltech 256 is a dataset of 256 object cate-
gories which contains a total of 30607 images. In this paper,
we establish two configurations for Caltech 256, with 30 and
60 randomly sampled training examples for each group, in
accordance with the procedure used in (Li, Grandvalet, and
Davoine 2018).

CUB-200 (Wah et al. 2011) and Stanford Dogs (Khosla
et al. 2011). CUB-200 contains 11,788 images of 200
species of birds. Stanford Dogs contains photographs of 120
dog classes, each of which contains 100 samples. The two
datasets are usually used for fine-grained tasks.

MIT Indoor-67 (Quattoni and Torralba 2009). MIT
Indoor-67 is a scene classification dataset of 67 indoor scene
categories, each of which consists of 80 training images and
20 test images.

8631

D Method
ataset
FT  FT-Full | Ours FLOPs |

Caltech256-30 75.9% 763% | 76.4% 20%
Caltech256-60 71.4% 80.9% | 81.8% 20%

CUB-200 592% 78.4% | 79.2% 50%
Stanford Dogs 81.8% 82.6% | 84.2% 20%
MIT Indoor-67 68.3% 763% | 76.5% 30%

Table 3: Results on VGG-16. We only compare two fine-
tuning baselines since few works on transfer learning use
this model.

State-of-the-arts We compare the proposed approach to
two lines of work. The first one is the traditional pruning,
which also targets at tuning model structures. Here we im-
plement two state-of-the-art methods: Soft Filter Pruning
(SFP) (He et al. 2018) and Gate Batch Normalization (GBN)
(You et al. 2019) to evaluate the performance on the trans-
fer learning scenario. The second one is the regularization
based transfer learning scheme, which aims to optimize the
weights of the pre-trained model. Three regularization ap-
proaches, L2, L?2-SP (Li, Grandvalet, and Davoine 2018)
and DELTA (Li et al. 2019), are compared to TransTailor.
We faithfully record the performance if it is reported in re-
lated papers.

Implementation details All experiments are conducted
with PyTorch framework. Pre-trained models are provided
by Torchvision. The input images are randomly cropped to
224%*224 and normalized to zero mean for each channel. All
networks are trained using SGD, with 0.005 weight decay
and 0.9 momentum respectively. The learning rate is set to
0.005 for the FC layer and 0.0005 for Conv layers. 7 is set
to 0.3. After 10% FLOPs of the pre-trained model is pruned
with our target-aware pruning, we conduct the importance-
aware fine-tuning with 40 epochs for ResNet101 and 60
epochs for VGG-16. We iterate this process until the opti-
mal sub-model is selected out. Note that in each iteration,
we can flexibly select different pruning budgets (FLOPs re-
duction) of the pre-trained model and here we use 10% as
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Figure 3: Performance on the generated sub-models during the searching process.

an example. All of the experiments are run 3 times and we
average them as the reported results.

Ablation Study

To verify the effectiveness of the proposed farget-aware
pruning, we compare TransTailor with other two pruning
methods on ResNet-101, where we mainly focus on the ac-
curacy and FLOPs. Table 1 summarizes the results. Here FT
represents the fine-tuning pipeline that tunes weights of the
FC layer based on the target data (Tajbakhsh et al. 2016),
which can be considered as a baseline without pruning the
structure. Based on the fine-tuned model, we prune its fil-
ters with different schemes. The results demonstrate that the
Top-1 accuracy achieved by TransTailor outperforms SFP
and GBN over all datasets as well as reducing more FLOPs,
which validates the effectiveness of the proposed approach.
Besides, we observe that other pruning methods can also
exceed the FT baseline in some cases (e.g., on the CUB-
200 dataset), which indicates that the overfitting problem
or some ‘“negative” pre-trained filters may harm the perfor-
mance when training on these datasets.

Comparison with State-of-the-arts

Here we conduct comparisons based on the ResNet-101 pre-
trained model since most of state-of-the-arts use it as the
backbone. Specifically, we compare TransTailor to many
transfer learning methods, which improve the transfer per-
formance by only tuning the weights. We record the reported
performance and show the results in Table 2. Here the com-
parison on MIT Indoor-67 is omitted because this dataset
is based on a different pre-trained model in the related pa-
pers. From the results, we can see that TransTailor achieves
consistently higher accuracy than L? and L2-SP baselines
over all datasets. In addition, the performance of TransTai-
lor is comparable or even better than DELTA with a smaller
model (20%-30% FLOPs reduction). Note that our method
only utilizes the pruning pipeline, which indicates that if
we combine the proposed method with other regularization
methods to further tune the weights, greater benefits may be
gained.

Performance on Sub-models

During the process of searching the optimal sub-model, a
series of sub-models are generated as we state in the previ-
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ous section. To better observe the trend during the searching
process, we implement our method and two other pruning
methods step by step, during which we record the accuracy
of the pruned model in each iteration. Figure 3 demonstrates
the results on four datasets. Here we also use ResNet-101 as
the base model.

From the figure, we can draw the following conclusions.
First, using our approach, we can always generate a series
of pruned models with higher accuracy than the fine-tuned
model, which proves that the original pre-trained model does
not match the target task. However, SFP and GBN can not
well search the optimal sub-model as their pipelines are de-
signed for the source task. Second, when the pruning ratio is
large, the superiority of TransTailor is more significant. For
example, if we prune 50% FLOPs of the pre-trained model,
TransTailor can exceed other baselines by 8.1% on the Stan-
ford Dogs dataset, which further suggests the importance of
the target-aware pruning if we focus on acceleration.

Results on Other Model Architectures

Besides the complex ResNet-101, we also evaluate the per-
formance on VGG-16 and EfficientNet-B0, in order to fur-
ther validate the effectiveness of TransTailor. Since there are
few works of transfer learning based on these models, we
only compare our method to the FT baseline and its variant
FT-Full (i.e., fine-tuning all the parameters). Table 3 sum-
marizes the results on VGG-16. We can clearly see that
TransTailor yields consistently better results than the two
baselines while reducing 20%-50% FLOPs. Besides, we use
the EfficientNet-BO to evaluate our approach on Stanford
Dogs and find that we can outperform FT and FI-Full by
7.0% and 0.7% with 20% fewer FLOPs. This demonstrates
the effectiveness of our pipeline for lighter models.

Distribution of Pruned Filters

To observe the optimal sub-models generated by TransTai-
lor, we visualize the distribution of the pruned filters on
VGG-16 and ResNet-101. Specifically, we respectively se-
lect different datasets and record the corresponding pruned
filters in each Conv layer.

Pruned filters on VGG-16 We show the optimal sub-
models tailored for 4 different datasets on the top of Fig-
ure 4. We can clearly see that the pruned filters of these
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Figure 4: Distribution of the pruned filters on different models and datasets. The FLOPs| represents the ratio of reduced FLOPs

on the generated optimal sub-model.

sub-models differ from each other, indicating that TransTai-
lor is a task-driven structure tuning algorithm. Concretely,
two phenomena can be found: (1) Generally the number of
pruned filters in shallow layers is significantly less than deep
layers. This demonstrates that the shallow layers of VGG-16
hold more low-level general image features, which should
be reserved due to their generalization to any image recog-
nition tasks. (2) For the last Conv layer (layer index=13),
TransTailor tends to prune fewer filters compared with other
deep layers. We believe this is because the last Conv layer
is more related to the final classification, which may have
a more complex feature process and thus have little redun-
dancy.

Pruned filters on ResNet-101 For ResNet-101, it is hard
to display the pruned filters in each Conv layer since there
are too many Conv layers in the network. Thus, we partition
them into 13 groups in order to make a fair comparison to
VGG-16. We illustrate the filter distribution of the optimal
sub-models on the bottom of Figure 4. From the figure, we
can make the following observations. First, although the size
of most sub-models is identical (FLOPs reduction=20%),
their filter distribution in each layer is still diverse. For ex-
ample, in the 13¢h group, TransTailor can prune 125 and 161
filters for Caltech256-30 and Standford Dogs. However, on
MIT Indoor-67, our method can only prune 52 filters despite
having the same FLOPs reduction. Second, we surprisingly
find that the pruned filters do not have the same regularity
as we observe in VGG-16 (i.e., shallow layers prune less,
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deep layers prune more). Instead, it seems no specific reg-
ularity. Based on a recent work, which shows that ResNets
behave as ensembles of shallow classifiers (Veit, Wilber, and
Belongie 2016), we believe this phenomenon is reasonable
because the ensemble effect may diminish the assumption
that shallow layers should be shared with common low-level
features.

Conclusion

This paper improves transfer learning from a new angle: by
tuning both the model structure and the model weights. We
realize this goal through TransTailor, an approach aiming at
generating the target best structure by pruning techniques.
We design the pruning metric and the fine-tuning scheme
in terms of the rarget-aware filter importance, which can
be measured by a learning-based method and a transforma-
tion process. Extensive experiments confirm the effective-
ness of the proposed approach. In the future, we will attempt
to combine the structure tuning and existing regularization
schemes to further improve transfer learning.
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