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Abstract

Regularization of (deep) learning models can be realized at
the model, loss, or data level. As a technique somewhere
in-between loss and data, label smoothing turns determinis-
tic class labels into probability distributions, for example by
uniformly distributing a certain part of the probability mass
over all classes. A predictive model is then trained on these
distributions as targets, using cross-entropy as loss function.
While this method has shown improved performance com-
pared to non-smoothed cross-entropy, we argue that the use
of a smoothed though still precise probability distribution as
a target can be questioned from a theoretical perspective. As
an alternative, we propose a generalized technique called la-
bel relaxation, in which the target is a set of probabilities rep-
resented in terms of an upper probability distribution. This
leads to a genuine relaxation of the target instead of a distor-
tion, thereby reducing the risk of incorporating an undesir-
able bias in the learning process. Methodically, label relax-
ation leads to the minimization of a novel type of loss func-
tion, for which we propose a suitable closed-form expression
for model optimization. The effectiveness of the approach is
demonstrated in an empirical study on image data.

Introduction

In standard settings of supervised learning, the result of a
learning process is essentially determined by the interplay of
the model class, the learning algorithm resp. the loss func-
tion this algorithm seeks to minimize in order to identify
the presumably optimal model, and the training data. Of
utmost practical importance, especially for flexible models
such as neural networks, is a regularization of the learner, so
as to prevent it from overfitting the training data. In the case
where models are non-deterministic and produce probabilis-
tic predictions, for example class probabilities in the case
of classification, overfitting also manifests itself in overly
confident predictors with a tendency to assign probabilities
close to the extremes of 0 or 1.

While the role of the model class and the loss function
in helping to regularize the learner is quite obvious, this is
arguably less true for the training data. The role of the data
becomes especially important when supervision is only indi-
rect in the sense that the target of the predictor is not directly
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observed. Again, class probabilities constitute an important
example: Even if probabilistic predictions are sought, the
data will normally not provide such probabilities as training
information. Instead, it typically consists of examples with a
single class label attached. In such cases, the formalization
of the learning problem also involves the modeling of the
training data.

This aspect, the modeling of data, is at the core of this
paper. Compared to the model class and learning algorithm,
it has received rather little attention in the literature so far,
and is mostly done in an implicit way. For example, when
training a model by optimizing losses such as log-loss or
Brier score, an observed class label is implicitly treated as a
degenerate (one-point) distribution, which assigns the entire
probability mass to that label. Unsurprisingly, feeding the
learner with extreme distributions of that kind aggravates the
problems of overfitting and over-confidence.

So-called label smoothing (Szegedy et al. 2016) has re-
cently been proposed to address these issues. The idea is to
remove a certain amount of probability mass from the ob-
served class and spread it across the other classes, thereby
making the distribution less extreme. While probability mass
can be spread in any way, the authors suggest a uniform dis-
tribution over all classes. This modification of the data en-
courages the model to be less confident about the predic-
tions, which effectively narrows the gap between the log-
its of the observed class and the others. This method has
proved successful in various applications, such as classifica-
tion of image data using deep convolutional neural networks
(Szegedy et al. 2016; Miiller, Kornblith, and Hinton 2019).

Although label smoothing undoubtedly provokes a regu-
larization effect (Lukasik et al. 2020), it can be questioned
from a data modeling point of view. In particular, since the
smoothed probability distribution is still unlikely to match
the true underlying conditional class probability, it is likely
to introduce a bias that may harm the generalization perfor-
mance (Li, Dasarathy, and Berisha 2020). Indeed, while la-
bel smoothing helps to calibrate the degree of confidence of
a model, and improves compared to the use of the conven-
tional cross-entropy loss with one-point probabilities, ex-
plicit calibration methods such as temperature scaling (Guo
et al. 2017) turn out to calibrate models even better (Miiller,
Kornblith, and Hinton 2019).

In this paper, we propose label relaxation as an alternative



approach to data modeling. To avoid a possibly undesirable
bias, the key idea is to replace a degenerate probability dis-
tribution associated with an observed class label, not by a
single smoothed distribution, but by a larger set of candidate
distributions. All distributions in this set still assign the high-
est probability to the observed class, but the concrete degree
is not fixed, and the remaining mass can be distributed freely
over the other classes. This way, the learner itself can decide
on the most appropriate distribution. In other words, instead
of predetermining an alleged ground-truth distribution as a
target, this distribution will be determined in a data-driven
way as a result of the learning process itself.

To put label relaxation into practice, we devise a suitable
generalization of the Kullback-Leibler (KL) divergence loss,
which is able to compare a predicted probability distribution
with a class of candidate distributions. The effectiveness of
learning by minimizing this generalized loss is demonstrated
on commonly used image datasets. While being competi-
tive to label smoothing and other related regularization tech-
niques in terms of classification performance, label relax-
ation does indeed improve in terms of calibration, i.e., ac-
curate estimation of probabilities, often even compared to
explicit calibration techniques that require extra data.

Related Work

As already said, different actions could be taken to improve
learning, including the manipulation or modification of the
original training data. In this regard, one can distinguish
between methods acting on the instance, feature, and label
level. While there are approaches to augment the instance
set, e.g., by synthetically generating additional training ex-
amples (Ciresan et al. 2010; Krizhevsky, Sutskever, and Hin-
ton 2012), or to introduce noise in the input features (e.g.,
(Vincent et al. 2008; van der Maaten et al. 2013)), our focus
is on the adjustment of the labels.

One of the most prominent approaches of this kind, label
smoothing (Szegedy et al. 2016), was already mentioned. It
turns deterministic observations of class labels into proba-
bility distributions, assigning a predefined amount of prob-
ability mass to the non-observed classes; by default, a uni-
form distribution is used for that purpose. The newly gener-
ated targets are then used together with a conventional cross-
entropy loss. As a result, the learner no longer tries to per-
fectly predict the original class (with probability 1), which
may lead to drastic differences among the class logits and
cause numerical instabilities. Label smoothing has been ap-
plied successfully not only to the domain of image classifica-
tion, but also to other domains such as machine translation.
More recently, Miiller, Kornblith, and Hinton (2019) ob-
served a calibration effect produced through label smooth-
ing. Moreover, the authors analyzed the activation patterns
in penultimate layers in neural networks. Apparently, label
smoothing supports a regular distribution of the classes in
these layers, in which clusters of instances associated with
a class are well separated and tend to be equi-distant. Addi-
tionally, label smoothing has also turned out to be effective
against label noise (Lukasik et al. 2020).

While label smoothing in its original form distributes
probability mass to the non-observed classes uniformly, dis-
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tributions other than uniform are of course conceivable. Al-
though the work does not directly build upon label smooth-
ing, (Hinton, Vinyals, and Dean 2015) follows a similar ap-
proach. Here, a teacher network predicts target probabili-
ties which are then used for training a student network to
distill the teacher’s knowledge. In a different approach, a
bootstrapping technique is proposed that makes use of the
model’s own distribution to adjust the training labels (Reed
et al. 2015). Similarly, self-distillation approaches gathering
the target labels from the model itself have shown regular-
izing effects to improve generalization performance (Zhang
et al. 2019; Yun et al. 2020).

As an alternative approach to prevent the model becom-
ing too overconfident and closely related to label smooth-
ing, Pereyra et al. (2017) propose the penalization of confi-
dent distributions by adding the negative entropy of the pre-
dicted distribution to the original loss. Following this princi-
ple, Dubey et al. (2018) transfer the method to fine-grained
classification. Related to this, with similar effects, the so-
called focal loss (Lin et al. 2020) aims to reduce the loss for
“well-classified” instances, i.e., predictions close to the ac-
tual target, by dynamically scaling cross-entropy loss. With
this, designed to cope with class imbalance in object detec-
tion problems, the danger of overconfidence is reduced by
flattening the loss near the true target and, thereby, shrink-
ing the gradients for confident predictions.

In addition to the approaches outlined above, further ideas
to adjust the given labels in order to achieve better gener-
alization properties can be found in the literature. For in-
stance, the approach by Xie et al. (2016) randomly flips
targets with a fixed probability, resulting in training on a
dataset ensemble with shared weights. As a result, an av-
eraging effect lowers the risk of overfitting. Motivated by
(Hinton, Vinyals, and Dean 2015), Li et al. (2017) propose
a related distillery approach considering noisy side informa-
tion. Bagherinezhad et al. (2018) describe a model that itera-
tively refines label probabilities from previous model predic-
tions in a chain of multiple networks. By refining the labels
over all models, data is augmented by soft targets to prevent
overfitting.

In neural network learning, the predicted probabilities
should ideally match the true distribution. However, as
shown empirically by Guo et al. (2017), modern neural net-
works tend to be calibrated very poorly. While there exists
a wide range of calibration methods, including isotonic re-
gression (Zadrozny and Elkan 2002), Bayesian binning tech-
niques (Naeini, Cooper, and Hauskrecht 2015), or beta cal-
ibration (Kull, Filho, and Flach 2017), a simple technique
called temperature scaling proved to provide strong perfor-
mance compared to its competitors (Guo et al. 2017). How-
ever, most calibration methods require additional data to de-
termine the calibration parameters, being left with less data
for training the model. Typically, this comes with a loss of
generalization performance. Although label smoothing re-
duces the calibration error compared to non-smoothed train-
ing, it is still slightly inferior to temperature scaling (Miiller,
Kornblith, and Hinton 2019).



Label Relaxation

In the following, we detail our idea of label relaxation as an
alternative to label smoothing, i.e., the idea of modeling de-
terministic data, namely observed class labels, in terms of a
set of probability distributions instead of a single target dis-
tribution. We also propose a generalization of an underlying
loss function, which compares probabilistic predictions with
a set of candidate distributions, and derive a closed-form ex-
pression for the case of the KL divergence.

Motivation

Consider a conventional setting of supervised learning, in
which we are interested in learning a probabilistic classi-
fier p : X — P()), where X is an instance space,
Y ={y1,...,yx } asetof class labels, and P()) the space
of probability distributions over ). To this end, we typically
proceed from training data D = {(z;,v:)}Y; C X x ),
i.e., observations in the form of instances labeled by one of
the classes. Thus, even if we assume a ground-truth (con-
ditional) probability distribution p} = p*(-| ;) to exist for
each x; € X, this distribution will normally not be provided
as training information. Instead, the training will be based on
the deterministic label y;, which is (explicitly or implicitly)
treated as a degenerate (one-point) distribution p; € P())
such that p;(y; | ;) = 1 and p;(y | ;) = 0 fory # y;.

Needless to say, making the realistic assumption of a non-
deterministic dependency between X’ and )/, the true distri-
bution p; will normally be less extreme than the surrogate
p;. Therefore, providing the former as training information
may suggest a level of determinism that is actually not war-
ranted. As a consequence, the learner will be encouraged
to make extreme predictions, which suggests a high degree
of confidence, leading to biased probability estimates and
a tendency to overfit the training data— all the more when
training flexible models such as neural networks.

In label smoothing, a surrogate distribution p is replaced
by a less extreme surrogate p° = (1 — «) p + cu as a target
for the learner, where u € P()) is a fixed distribution and
a € (0,1] a smoothing factor. As shown by Szegedy et al.
(2016), the resulting cross-entropy H, which often serves as
a loss function for the learner, for a prediction p € P(}) is
of the form

H(psaﬁ) = (]' - OZ)H(p,ﬁ) + aH(“ﬁﬁ)

= (1 —a)H(p,p) + a(Dxr(ul|p) + H(u))
Since H(p) 0 for a degenerate p, the first term on
the right-hand side simplifies to H(p,p) = Dxr(p||p) +
H(p) = Dk (p||p), with Dy, the Kullback-Leibler diver-
gence. Moreover, assuming u to be independent of p, H (u)
can be treated as a constant with no influence on loss min-
imization. Furthermore, as pointed out by Szegedy et al.
(2016), the divergence Dy, (u||p) essentially corresponds
to the negative entropy of p for the case where u is the uni-
form distribution. Thus, we eventually end up with a loss
function of the form

L(p®,p) = (1 — ) Dir(pl|p) + « H(p) , 2

i.e., a loss that augments the original cross-entropy loss by
a penalty that enforces a higher entropy for the prediction p,
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and which hence serves the purpose of regularization, as em-
pirical results have confirmed (Pereyra et al. 2017). Training
a learner with the loss (2) will obviously lead to less ex-
treme predictions (for a = 1, the learner will always predict
the uniform distribution on ))).

Thus, there are different ways of looking at label smooth-
ing. According to what we just explained, it can be seen as
a regularization technique, which may explain its practical
usefulness. On the other side, coming back to the discussion
we started with, it can also be seen as an attempt at pre-
senting the training information in a more “faithful” way:
A smoothed target probability p® is arguably more realistic
than a degenerate distribution p assigning the fully probabil-
ity mass to a single class label.

However, it is still unlikely that the adjusted distribution
p°® matches the ground-truth p*. Therefore, using p® as a
more or less arbitrary target, the learner will still be biased in
a possibly undesirable way. Related to this, one may wonder
whether a systematic penalization of the learner for “overly
correct” predictions, i.e., predictions p that are closer to the
original p (the truly observed class label) than p*, is indeed
appropriate. At least in some cases, such predictions could
be justified, and indeed be closer to the ground-truth.

As a presumably better but at least more faithful repre-
sentation of our knowledge about the ground-truth p*, we
propose to replace the original target p by a set Q@ C P())
of candidate probabilities that are “sufficiently close” to the
original target p. While the replacement of p by a single dis-
tribution p® can be seen as a distortion of the original tar-
get, this can be considered as a relaxation of the target: As
long as the learner predicts any distribution p € () inside the
candidate set, it should not be penalized at all, i.e., the loss
should be 0. This is to some extent comparable to the use
of loss functions like the e-insensitive loss in support vector
regression, where the loss is O in the e-neighborhood of the
original target; essentially, this means that the original tar-
get, which is a real number, is relaxed and replaced by a set
in the form of an interval.

Note that, by using set-valued targets @); for the training
instances x;, a regularization effect can also be expected: By
accepting all predictions as correct that are sufficiently close
to the original target distribution, the learner is still allowed
to produce extreme predictions but no longer urged to do so.
Instead, the learner is more flexible and can freely choose a
target p; € () that appears most appropriate. Since the p]
are the result of a learning process and determined in a data-
driven way, one expects them to be closer to the p; than
the surrogates p;, which are chosen arbitrarily. This is com-
pletely in line with the idea of data disambiguation in the
context of learning from set-valued data (Hiillermeier and
Cheng 2015). See Fig. 1 for an illustration of the conceptual
differences between label smoothing and label relaxation.

Loss Formulation

To formalize the ideas sketched above, we leverage the the-
ory of imprecise probabilities (Walley 1991). A convenient
way to express a set of probability distributions is to provide
upper probabilities, i.e., upper bounds on the probabilities
of events. So-called possibility distributions 7 : J) — [0, 1]



Figure 1: An illustration of label smoothing (left) and la-
bel relaxation (right), using a barycentric representation, in
which points correspond to (3-class) distributions and prob-
abilities are given by the lengths of the projections to the
sides of the triangle. In the former, the original distribution
p (in the lower right corner) is shifted toward the uniform
distribution u, and the loss of a prediction p depends on the
(KL) distance to p*, hence on the distance to p as well as u.
In label relaxation, p is replaced by a set Q of distributions,
indicated by the shaded region. The learner is free to choose
any of the distributions inside this set (non-filled circles in-
side the region), and the loss is determined by the minimal
distance between p and any of the distributions in Q (filled
red circle).

are often interpreted in this way (Dubois and Prade 2004),
i.e., in the sense that 7(y) is an upper bound on p*(y). More
generally, since a possibility distribution 7 induces a mea-
sure IT on Y defined by II(Y) = maxycy n(y) for all
Y C Y, the set of probability distributions associated with a
distribution 7 is given by

Q= {pePO) VY C¥: Y p(y)
yey
Note that a possibility distribution 7 is assumed to be nor-
malized in the sense that m(y) = 1 for at least one y € Y.
In other words, there is at least one alternative that appears
completely plausible. In our case, this alternative naturally
corresponds to the class label that has actually been observed
for a training instance: Potentially, this class may have a
(conditional) probability of 1.

However, by assigning a certain degree m(y) > 0 of pos-
sibility also to the other classes, we can express that these
classes are not completely excluded either. More specifi-
cally, consider a distribution of the following kind:

1 ify=vy,
m(y)Z{ y=y

< ma
< y@;wr(y)

a ify#y
where a € [0, 1] is a parameter. By definition, the associated
set Q. is then given by the set of probability distributions
p that assign a probability mass of at most 1 to the observed
class y; and ar most « to the other classes:

Q= {peP®| Y s <a}

Yi#FYEY
Replacing the class labels y; observed as training informa-
tion by sets )¢ as new targets for the learner, we need to de-
fine a suitably generalized loss function L*. Since the learner

3
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Figure 2: A comparison of the different losses discussed
in this paper for binary classification. Left: Cross-entropy
losses with and without label smoothing. Right: LR loss L*
based on the Kullback-Leibler divergence.

is still assumed to produce probabilistic predictions, the loss
should be able to compare a predicted distribution p; with a
candidate set ()%*. According to what we said before, namely
that a prediction inside ()§* should be considered as perfect,
a natural definition is

L*(Q, p) :== min L(p,p), “4)
peQ
where L is a standard loss on probability distributions, i.e.,
aloss L : P())? — R. Interestingly, (4) can be seen as a
special case of what has been introduced under the notion of
optimistic superset loss in the context of superset learning
(Hiillermeier and Cheng 2015), and more recently as infi-
mum loss by Cabannes, Rudi, and Bach (2020). In the fol-
lowing, we shall refer to (4) as label relaxation (LR) loss.
As a theoretically convenient case, instantiating L with
the Kullback-Leibler divergence, that is,

y
L(p,p) = Dkr(p||p) = ZP )
yey
(4) simplifies as follows for sets Q¢ of the form (3):
. 0 ifp; € Qf
L*(QF,pi) = ;
(QFpi) {DKL(pZTHﬁi) otherwise ®
where
1—a ify =y,
T _ ~
pi(y) = Q- Pily) _ otherwise | ©
Zy/?ﬁyi pi(y’)

We refer to the technical appendix for a formal proof of this
result.

Fig. 2 shows a comparison of label smoothing (cross-
entropy losses with and without smoothing, left side) with
our label relaxation loss (right side). As can be seen (and is
proven in the appendix), L* based on the Kullback-Leibler
divergence is convex, which makes the optimization compu-
tationally feasible. Moreover, label smoothing is not mono-
tone and again increases for predictions close to 1, while the
LR loss vanishes for values > 1 — «. This cut reflects the re-
laxation of the problem. For multi-class problems, since the
proposed label relaxation loss projects the predicted proba-
bilities from p, according to its own distribution to p;, it is



invariant to the concretely predicted probabilities for classes
not equal to the observed class.

Interestingly, the resulting losses as shown in Fig. 2 for
varying o« parameters seem to be very related to the focal
loss as introduced in (Lin et al. 2020). However, while the
focal loss deemphasizes predictions in the “well-classified”
region by almost flat regions, our loss completely eliminates
the loss in such a region for the genuine relaxation.

Evaluation

To demonstrate the effectiveness of label relaxation, an em-
pirical evaluation on image classification datasets assessing
the classification performance and calibration is conducted.

Experimental Setting

Within the empirical evaluation of our method proposal,
we compare models trained by conventional cross-entropy
(CE), label smoothing (LS), confidence penalizing (CP) as
described by Pereyra et al. (2017), and the focal loss (FL)
of Lin et al. (2020) to our label relaxation (LR) approach.
To this end, we study the performances on neural networks
for the task of image classification. Although the losses are
completely general and not specifically tailored to any do-
main, this problem serves as a good representative and has
been used in related studies in the past.

In addition to assessing the generalization accuracy in
terms of the classification rate, we also measure the de-
gree of calibration of the networks, i.e., the quality of the
predicted class probabilities. To this end, we use the esti-
mated expected calibration error (ECE) as done by Guo et al.
(2017). This measure requires probabilities to be discretized
through binning, and as suggested by Miiller, Kornblith, and
Hinton (2019), we fix the number of bins to 15. To compare
label smoothing and our approach with explicit calibration
methods, non-calibration and temperature scaling (Guo et al.
2017) serve as baselines.

Within our study, we consider MNIST (LeCun et al.
1998), Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017),
CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton 2009)
as image datasets. While MNIST and Fashion-MNIST both
have 60k training and 10k test examples, CIFAR-10 and
CIFAR-100 each consist of 50k training and 10k test in-
stances. For the first two datasets, we train our models on
a simple fully connected, ReLU activated neural network
structure with two hidden layers consisting of 1024 neurons
each. For the latter two datasets, we train the commonly used
deep architectures VGG16 (Simonyan and Zisserman 2015),
ResNet56 (V2) (He et al. 2016) and DenseNet-BC-100-12
(Huang et al. 2017). While we repeated every experiment
for MNIST and Fashion-MNIST with 10 different seeds, we
run each of the latter experiments 5 times. The runs were
conducted on 20 Nvidia RTX 2080 Ti and 10 Nvidia GTX
1080 Ti GPUs.

For a fair comparison, all hyperparameters are fixed, ex-
cept the parameter « in the case of label relaxation and
smoothing loss, 5 as degree of confidence penalization in
CP, and v as being used to adjust the focal loss. For ev-
ery combination of model and dataset, we empirically deter-
mined hyperparameters (such as the learning rate schedule
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and additional regularization) that work reasonably well for
all losses. Since all losses are quite similar to each other, this
was possible without favoring some of them while putting
others at a disadvantage. To diminish regularization effects
by additional means, we tried to exclude other techniques
(such as extensive weight decay or Dropout (Srivastava et al.
2014)) as much as possible, thereby emphasizing the effect
of the different loss functions while still achieving perfor-
mances close to the originally published results.

To optimize the models, SGD with a Nesterov momen-
tum of 0.9 has been used as optimizer. In all experiments,
the batch size has been fixed to 64. Depending on the model,
we set the initial learning rates to 0.01 (VGG), 0.05 (simple
dense), and 0.1 (ResNet and DenseNet). For each model,
we optimized the learning rate schedule for generalization
performance by dividing the learning rate by a constant fac-
tor (ranging from 0.1 to v/0.1). We trained for either 25
(MNIST), 50 (Fashion-MNIST), 200 (CIFAR-10), or 300
(CIFAR-100) epochs. Furthermore, we used data augmenta-
tion by randomly horizontally flipping and shifting the input
images in width and height. We refer to the appendix for a
more comprehensive overview of the fixed hyperparameters.

Since the parameters « for LR and LS, § for CP, and
v for FL are of critical importance, they have been op-
timized separately on a separate hold-out validation set
consisting of 1/6 of the original training data. In the
first experiments, we optimize this parameter for the high-
est classification rate, whereas in the second evaluation,
we focus on a low ECE. In both cases, we assessed
values @ € {0.01,0.025,0.05,0.1,0.2,0.3,0.4}, 8 €
{0.1,0.3,0.5,1,2,4,8}, and vy € {0.1,0.2,0.5,1,2,3.5,5}
as suggested as reasonable parameters in the corresponding
publications. The best model is then retrained on the orig-
inal training data and evaluated on a separate test set. For
each seed, the original training and test splits are merged
and resampled to increase the variance of the experiments.
This way, we achieve a better estimation of the generaliza-
tion error. However, as a consequence, the presented results
are not directly comparable to previously published results
based on the original splits, although this special case is also
covered in our experiments.

For temperature scaling, a separate hold-out validation
set is used to optimize the parameter 7' among the values
T € {0.25,0.5,0.75,1,1.1,1.2,...,2,2.5,3}. This param-
eter highly depends on the actually trained model and does
not generalize well, i.e., a value performing well on an inner
optimization run does not necessarily imply good calibra-
tion on the model finally trained. Therefore, the evaluation
scenario is slightly different compared to the optimization of
a: For the latter, as opposed to the case of temperature scal-
ing, the hold-out validation set is included in the final train-
ing using the optimized parameters. This can be regarded as
the price being paid for explicitly calibrating the model with
temperature scaling, as opposed to the implicit calibration
achieved by label smoothing and label relaxation. Here, we
use 15% of the training data for calibration, which is almost
comparable to the validation set used for optimizing c.



Loss MNIST Fashion-MNIST Avg. Rank
Acc. ECE Acc. ECE Acc. ECE
CE (a«=0) 0.985 +0.002 0.010 +£0.001 0912 +£0.003 0.129 +0.184 2 35
LS (« opt. foracc.)  0.988 +£0.001 0.106 +£0.144 0.915 +0.002 0.155 4+ 0.128 1 5
CP (B opt. foracc.)  0.985 £0.002 0.012 £0.002 0.911 4+0.004 0.075 4 0.005 3 3.5
FL (y opt. foracc.)  0.984 +£0.002 0.009 £0.002 0.911 £0.002 0.062 +0.002 4.5 2
LR (« opt. foracc.)  0.985 £0.001 0.007 +0.002 0.912 +0.003  0.059 + 0.008 1
CE(a=0,Topt) 0.983+0.001 0.003+0.001 0.908+0.004 0.030 + 0.003 2.5
LS (a opt. for ECE)  0.987 +0.001 0.014 £0.001  0.915 £+ 0.003  0.016 4 0.002 1 3.5
CP (5 opt. for ECE)  0.984 +£0.001 0.011 +£0.001 0911 £0.003 0.072 + 0.003 2.5 4
FL (v opt. for ECE)  0.982 +0.001 0.004 +0.001 0.907 4 0.003  0.011 4 0.002 5 1.5
LR (« opt. for ECE) 0.985 +£0.002 0.003 +0.001 0.911 +£0.003 0.015 + 0.003 2 1.5

Table 1: Results on MNIST and Fashion-MNIST using a simple 2-layer dense architecture. Bold entries indicate the best
combination with regard to the corresponding metric per dataset and optimization scheme. The resulting ranks are averaged

over both datasets for the respective metric.

Results

Table 1 shows the results of all assessed loss variants with
regard to their classification performance and calibration er-
ror on MNIST and Fashion-MNIST. As can be seen, with
a single exception, our label relaxation approach provides
the lowest calibration error on both datasets regardless of
the optimization target (accuracy or ECE). Although mod-
els trained with the focal loss deliver competitive calibra-
tion results, they generalize worse than LR optimized mod-
els. Label smoothing delivers the highest classification rate,
while lacking calibration abilities. By still having a compet-
itive classification rate compared to LS, our method offers
a reasonable compromise between strong generalization (in
terms of classification rate) and good calibration.

Since the accuracies on MNIST and Fashion-MNIST are
already quite high, a more insightful evaluation is given by
the experiments on CIFAR-10 and CIFAR-100, using mul-
tiple popular deep convolutional network architectures. Ta-
ble 2 summarizes the results for both datasets and the dif-
ferent topologies. With few exceptions, LR minimizes the
calibration error in terms of ECE among the assessed losses.
At the same time, in accordance with the results presented
before, it provides competitive classification rates. While
FL-based models also yield relatively low calibration errors,
they sometimes drop significantly in terms of classification
performance (e.g., VGG16 and DenseNet-BC on CIFAR-
100 optimized for ECE). Also, although temperature scaling
uses separate data to explicitly optimize the temperature for
a low calibration error, the implicit calibration of LR outper-
forms temperature scaling in most of the cases. Thus, rely-
ing on losses that implicitly calibrate models seems to be a
reasonable strategy for model calibration.

To get a better overview of the presented results, Table 3
shows the resulting aggregated ranks for all datasets and
models per metric and parameter optimization target (accu-
racy or ECE). For both optimization schemes, LR clearly
dominates the other losses in terms of the calibration error.
At the same time, the overall classification performance is
reasonably close to the best loss, especially when applying
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accuracy-based hyperparameter optimization. As the results
demonstrate, it balances both metrics and provides a com-
pelling alternative to the other losses, particularly for appli-
cations in which the aim is to predict probabilities matching
the underlying true probabilities of the classes.

Conclusion

We proposed label relaxation as an alternative to label
smoothing, an established technique for preventing over-
fitting and over-confidence in classifier learning: Instead of
replacing the original (degenerate) distribution associated
with an observed class label by another, smoother yet still
precise distribution, we relax the problem by letting the
learner choose from a larger set of such distributions. This
kind of “imprecisiation” of training data relieves the learner
from the need to reproduce unrealistically definite observa-
tions, very much like label smoothing, but also allows it to
predict probabilities in a flexible way. This flexibility ap-
pears to be important, not only for accurate classification,
but even more so for producing less biased and better cali-
brated probability estimates.

These reflections are confirmed by an empirical study in
image classification. Here, the calibration of deep convo-
lutional neural network models could be improved without
a loss in classification accuracy compared to label smooth-
ing, penalizing confident output distributions and focal loss-
based optimization. Label relaxation even outperforms ex-
plicit calibration methods like temperature scaling, which,
due to requiring extra data for calibration, often pay with a
drop in classification performance.

The idea of modeling targets in supervised learning in
terms of imprecise probabilities, combined with the mini-
mization of generalized losses penalizing deviations from
the set of associated precise distributions, is very general and
could be instantiated in various ways. Here, we considered
the problem of classification and generalized the KL diver-
gence. However, motivated by the promising empirical re-
sults, we also plan to look at other problems and other com-
binations of “data imprecisiation” and loss functions. Even-



Model Loss CIFAR-10 CIFAR-100 Avg. Rank
Acc. ECE Acc. ECE Acc. ECE
CE (a«=0) 0.930 +0.002 0.041 +£0.001 0.708 £0.003 0.196 +0.003 1.5 3.5
LS (a opt. foracc.) 0.929 +£0.001 0.148 £0.119 0.711 £0.003 0.149 +£0.049 1.5 3.5
CP (B opt. foracc.) 0.927 £0.001 0.059 £0.002 0.703 & 0.003 0.228 4 0.013 3 4.5
FL (v opt. foracc.)  0.921 +£0.001  0.038 +0.004 0.700 +0.005 0.190 + 0.009 5 2.5
VGG16 LR (a opt. foracc.) 0.927 +£0.002 0.033 +0.008 0.701 £0.006 0.133 +£0.069 3.5 1
CE(a=0,Topt) 0922+0.001 0.0174+0.003 0.68940.005 0.053 £0.003 3.5 2
LS (« opt. for ECE)  0.932 +0.002 0.028 +0.010 0.711 £+ 0.003  0.085 =+ 0.005 1 4
CP (5 opt. for ECE)  0.922 +0.003 0.050 4 0.003  0.700 £ 0.004  0.209 + 0.004 3 5
FL (v opt. for ECE) 0918 £0.003 0.027 & 0.001  0.684 4-0.007 0.048 4 0.014 5 2.5
LR (a opt. for ECE) 0.926 +£0.001  0.022 4+ 0.001  0.703 4+ 0.006  0.046 + 0.005 2 1.5
CE (a =0) 0.940 £0.002 0.041 +0.002 0.737 £0.003 0.126 4 0.003 3 3
LS («a opt. foracc.) 0.938 +0.002 0.132 £0.145 0.733 +£0.004 0.110 £0.061 4.5 4
CP (B opt. foracc.) 0.939+0.003 0.046 £0.004 0.738 +£0.004 0.151 £ 0.007 2 4
FL (v opt. foracc.)  0.941 +0.002 0.036 +0.006 0.738 +0.005 0.107 £+ 0.017 1 1.5
ResNet56 LR (a opt. for acc.)  0.938 +£0.003 0.059 +£0.090 0.738 +0.003 0.092 +0.030 2.5 2.5
V2) CE(a=0,Topt) 0.933+0.002 0.030+0.002 0.709 +0.005 0.041 + 0.006 5 35
LS (« opt. for ECE) 0.940 +0.002 0.017 £0.002 0.730 £ 0.004 0.053 £ 0.003 2 3
CP (B opt. for ECE)  0.940 4+ 0.002 0.044 +0.001  0.741 +0.003 0.140 =+ 0.003 1 5
FL (v opt. for ECE) 0.938 +£0.002 0.017 £0.002 0.738 +0.005  0.024 + 0.003 3 2
LR (« opt. for ECE)  0.939 £0.002 0.016 +0.002 0.729 +0.003 0.017 +£0.003 3.5 1
CE (o =0) 0.929 +0.003 0.050 +0.002 0.706 £ 0.005 0.229 4 0.005 1 4
LS (a opt. foracc.) 0.927 +£0.004 0.046 £0.011 0.704 +0.008 0.182 + 0.063 4 1.5
CP (B opt. foracc.)  0.929 +0.002 0.056 £0.004 0.698 £0.011 0.252 £ 0.018 3 5
FL (v opt. foracc.)  0.928 £0.003 0.047 £0.004 0.703 £0.001 0.223 £0.001 3.5 3
DenseNet-BC LR (« opt. for acc.) 0.928 £0.002 0.039 +£0.014 0.706 + 0.003 0.203 + 0.023 2 1.5
(100-12) CE(a=0,Topt) 0.921 £0.003 0.009 +0.004 0.687 +0.006 0.096 + 0.006 4 2
LS (« opt. for ECE)  0.928 +0.003 0.020 +0.002 0.704 + 0.015 0.077 £ 0.035 1 2.5
CP (5 opt. for ECE)  0.928 + 0.002 0.054 4 0.002  0.704 +0.003  0.237 + 0.003 1 5
FL (v opt. for ECE) 0.915 +£0.003 0.016 +0.001 0.681 +0.004 0.133 + 0.004 5 3
LR («a opt. for ECE) 0.922 +£0.002 0.017 +£0.003 0.703 4+ 0.008  0.085 + 0.006 3 2.5

Table 2: Results on CIFAR-10 and CIFAR-100 for the assessed model architectures. Here, bold entries indicate the best perfor-
mances among the loss variants per dataset, model and optimization scheme. The ranks are averaged over both datasets as done

before.

Loss Acc. Opt. ECE Opt. Overall

’ Acc. ECE | Acc. ECE | Acc. ECE
CE 1.88 35 | 413 25 3 3
LS 275 35 1.25 3.25 2 3.38
CP 275 425 | 1.88 4.75 | 2.31 4.5
FL 35 225 | 45 225 4 2.25
LR 2.5 15 | 263 1.63 | 2.56 1.56

Table 3: Average ranks of the losses with regard to the accu-
racy and ECE when a) optimizing the accuracy, b) optimiz-
ing the ECE and c) the overall ranking.

tually, a broader study of different instantiations should lead
to a deeper understanding and general methodology of label
relaxation.
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